mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
fixed PDF generation
This commit is contained in:
parent
5d6467708c
commit
64bbab63dc
@ -293,7 +293,11 @@ This section documents OpenCV's interface to the FLANN\footnote{http://people.cs
|
||||
contains a collection of algorithms optimized for fast nearest neighbor search in large datasets and for high dimensional features. More
|
||||
information about FLANN can be found in \cite{muja_flann_2009}.
|
||||
|
||||
\ifplastex
|
||||
\cvclass{cv::flann::Index_}
|
||||
\else
|
||||
\subsubsection{cv::flann::Index\_}\label{cvflann.Index}
|
||||
\fi
|
||||
The FLANN nearest neighbor index class. This class is templated with the type of elements for which the index is built.
|
||||
|
||||
\begin{lstlisting}
|
||||
@ -345,10 +349,14 @@ namespace flann
|
||||
} } // namespace cv::flann
|
||||
\end{lstlisting}
|
||||
|
||||
\ifplastex
|
||||
\cvCppFunc{cv::flann::Index_<T>::Index_}
|
||||
\else
|
||||
\subsubsection{cvflann::Index\_$<T>$::Index\_}\label{cvflann.Index.Index}
|
||||
\fi
|
||||
Constructs a nearest neighbor search index for a given dataset.
|
||||
|
||||
\cvdefCpp{Index_<T>::Index_(const Mat\& features, const IndexParams\& params);}
|
||||
\cvdefCpp{Index\_<T>::Index\_(const Mat\& features, const IndexParams\& params);}
|
||||
\begin{description}
|
||||
\cvarg{features}{ Matrix of containing the features(points) to index. The size of the matrix is num\_features x feature\_dimensionality and
|
||||
the data type of the elements in the matrix must coincide with the type of the index.}
|
||||
@ -439,13 +447,21 @@ struct SavedIndexParams : public IndexParams
|
||||
\end{description}
|
||||
\end{description}
|
||||
|
||||
\ifplastex
|
||||
\cvCppFunc{cv::flann::Index_<T>::knnSearch}
|
||||
\else
|
||||
\subsubsection{cv::flann::Index\_$<T>$::knnSearch}\label{cvflann.Index.knnSearch}
|
||||
\fi
|
||||
Performs a K-nearest neighbor search for a given query point using the index.
|
||||
\cvdefCpp{void Index_<T>::knnSearch(const vector<T>\& query, \par
|
||||
\cvdefCpp{
|
||||
void Index\_<T>::knnSearch(const vector<T>\& query, \par
|
||||
vector<int>\& indices, \par
|
||||
vector<float>\& dists, \par
|
||||
int knn, \par
|
||||
const SearchParams\& params);}
|
||||
const SearchParams\& params);\newline
|
||||
void Index\_<T>::knnSearch(const Mat\& queries,\par
|
||||
Mat\& indices, Mat\& dists,\par
|
||||
int knn, const SearchParams\& params);}
|
||||
\begin{description}
|
||||
\cvarg{query}{The query point}
|
||||
\cvarg{indices}{Vector that will contain the indices of the K-nearest neighbors found. It must have at least knn size.}
|
||||
@ -462,28 +478,22 @@ Performs a K-nearest neighbor search for a given query point using the index.
|
||||
\end{description}
|
||||
\end{description}
|
||||
|
||||
\cvCppFunc{cv::flann::Index_<T>::knnSearch}
|
||||
Performs a K-nearest neighbor search for multiple query points.
|
||||
|
||||
\cvdefCpp{void Index_<T>::knnSearch(const Mat\& queries,\par
|
||||
Mat\& indices, Mat\& dists,\par
|
||||
int knn, const SearchParams\& params);}
|
||||
|
||||
\begin{description}
|
||||
\cvarg{queries}{The query points, one per row. The type of queries must match the index type.}
|
||||
\cvarg{indices}{Indices of the nearest neighbors found }
|
||||
\cvarg{dists}{Distances to the nearest neighbors found}
|
||||
\cvarg{knn}{Number of nearest neighbors to search for}
|
||||
\cvarg{params}{Search parameters}
|
||||
\end{description}
|
||||
|
||||
|
||||
\ifplastex
|
||||
\cvCppFunc{cv::flann::Index_<T>::radiusSearch}
|
||||
\else
|
||||
\subsubsection{cv::flann::Index\_$<T>$::radiusSearch}\label{cvflann.Index.radiusSearch}
|
||||
\fi
|
||||
Performs a radius nearest neighbor search for a given query point.
|
||||
\cvdefCpp{int Index_<T>::radiusSearch(const vector<T>\& query, \par
|
||||
\cvdefCpp{
|
||||
int Index\_<T>::radiusSearch(const vector<T>\& query, \par
|
||||
vector<int>\& indices, \par
|
||||
vector<float>\& dists, \par
|
||||
float radius, \par
|
||||
const SearchParams\& params);\newline
|
||||
int Index\_<T>::radiusSearch(const Mat\& query, \par
|
||||
Mat\& indices, \par
|
||||
Mat\& dists, \par
|
||||
float radius, \par
|
||||
const SearchParams\& params);}
|
||||
\begin{description}
|
||||
\cvarg{query}{The query point}
|
||||
@ -493,33 +503,26 @@ Performs a radius nearest neighbor search for a given query point.
|
||||
\cvarg{params}{Search parameters}
|
||||
\end{description}
|
||||
|
||||
|
||||
\cvCppFunc{cv::flann::Index_<T>::radiusSearch}
|
||||
Performs a radius nearest neighbor search for multiple query points.
|
||||
\cvdefCpp{int Index_<T>::radiusSearch(const Mat\& query, \par
|
||||
Mat\& indices, \par
|
||||
Mat\& dists, \par
|
||||
float radius, \par
|
||||
const SearchParams\& params);}
|
||||
\begin{description}
|
||||
\cvarg{queries}{The query points, one per row}
|
||||
\cvarg{indices}{Indices of the nearest neighbors found}
|
||||
\cvarg{dists}{Distances to the nearest neighbors found}
|
||||
\cvarg{radius}{The search radius}
|
||||
\cvarg{params}{Search parameters}
|
||||
\end{description}
|
||||
|
||||
|
||||
\ifplastex
|
||||
\cvCppFunc{cv::flann::Index_<T>::save}
|
||||
\else
|
||||
\subsubsection{cv::flann::Index\_$<T>$::save}\label{cvflann.Index.save}
|
||||
\fi
|
||||
|
||||
Saves the index to a file.
|
||||
\cvdefCpp{void Index_<T>::save(std::string filename);}
|
||||
\cvdefCpp{void Index\_<T>::save(std::string filename);}
|
||||
\begin{description}
|
||||
\cvarg{filename}{The file to save the index to}
|
||||
\end{description}
|
||||
|
||||
\ifplastex
|
||||
\cvCppFunc{cv::flann::Index_<T>::getIndexParameters}
|
||||
\else
|
||||
\subsubsection{cv::flann::Index\_$<T>$::getIndexParameters}\label{cvflann.Index.getIndexParameters}
|
||||
\fi
|
||||
|
||||
Returns the index paramreters. This is usefull in case of autotuned indices, when the parameters computed can be retrived using this method.
|
||||
\cvdefCpp{const IndexParams* Index_<T>::getIndexParameters();}
|
||||
\cvdefCpp{const IndexParams* Index\_<T>::getIndexParameters();}
|
||||
|
||||
|
||||
\cvCppFunc{cv::flann::hierarchicalClustering<ET,DT>}
|
||||
|
Loading…
Reference in New Issue
Block a user