fixed PDF generation

This commit is contained in:
Vadim Pisarevsky 2010-10-18 12:36:22 +00:00
parent 5d6467708c
commit 64bbab63dc

View File

@ -293,7 +293,11 @@ This section documents OpenCV's interface to the FLANN\footnote{http://people.cs
contains a collection of algorithms optimized for fast nearest neighbor search in large datasets and for high dimensional features. More
information about FLANN can be found in \cite{muja_flann_2009}.
\ifplastex
\cvclass{cv::flann::Index_}
\else
\subsubsection{cv::flann::Index\_}\label{cvflann.Index}
\fi
The FLANN nearest neighbor index class. This class is templated with the type of elements for which the index is built.
\begin{lstlisting}
@ -345,10 +349,14 @@ namespace flann
} } // namespace cv::flann
\end{lstlisting}
\ifplastex
\cvCppFunc{cv::flann::Index_<T>::Index_}
\else
\subsubsection{cvflann::Index\_$<T>$::Index\_}\label{cvflann.Index.Index}
\fi
Constructs a nearest neighbor search index for a given dataset.
\cvdefCpp{Index_<T>::Index_(const Mat\& features, const IndexParams\& params);}
\cvdefCpp{Index\_<T>::Index\_(const Mat\& features, const IndexParams\& params);}
\begin{description}
\cvarg{features}{ Matrix of containing the features(points) to index. The size of the matrix is num\_features x feature\_dimensionality and
the data type of the elements in the matrix must coincide with the type of the index.}
@ -439,13 +447,21 @@ struct SavedIndexParams : public IndexParams
\end{description}
\end{description}
\ifplastex
\cvCppFunc{cv::flann::Index_<T>::knnSearch}
\else
\subsubsection{cv::flann::Index\_$<T>$::knnSearch}\label{cvflann.Index.knnSearch}
\fi
Performs a K-nearest neighbor search for a given query point using the index.
\cvdefCpp{void Index_<T>::knnSearch(const vector<T>\& query, \par
\cvdefCpp{
void Index\_<T>::knnSearch(const vector<T>\& query, \par
vector<int>\& indices, \par
vector<float>\& dists, \par
int knn, \par
const SearchParams\& params);}
const SearchParams\& params);\newline
void Index\_<T>::knnSearch(const Mat\& queries,\par
Mat\& indices, Mat\& dists,\par
int knn, const SearchParams\& params);}
\begin{description}
\cvarg{query}{The query point}
\cvarg{indices}{Vector that will contain the indices of the K-nearest neighbors found. It must have at least knn size.}
@ -462,28 +478,22 @@ Performs a K-nearest neighbor search for a given query point using the index.
\end{description}
\end{description}
\cvCppFunc{cv::flann::Index_<T>::knnSearch}
Performs a K-nearest neighbor search for multiple query points.
\cvdefCpp{void Index_<T>::knnSearch(const Mat\& queries,\par
Mat\& indices, Mat\& dists,\par
int knn, const SearchParams\& params);}
\begin{description}
\cvarg{queries}{The query points, one per row. The type of queries must match the index type.}
\cvarg{indices}{Indices of the nearest neighbors found }
\cvarg{dists}{Distances to the nearest neighbors found}
\cvarg{knn}{Number of nearest neighbors to search for}
\cvarg{params}{Search parameters}
\end{description}
\ifplastex
\cvCppFunc{cv::flann::Index_<T>::radiusSearch}
\else
\subsubsection{cv::flann::Index\_$<T>$::radiusSearch}\label{cvflann.Index.radiusSearch}
\fi
Performs a radius nearest neighbor search for a given query point.
\cvdefCpp{int Index_<T>::radiusSearch(const vector<T>\& query, \par
\cvdefCpp{
int Index\_<T>::radiusSearch(const vector<T>\& query, \par
vector<int>\& indices, \par
vector<float>\& dists, \par
float radius, \par
const SearchParams\& params);\newline
int Index\_<T>::radiusSearch(const Mat\& query, \par
Mat\& indices, \par
Mat\& dists, \par
float radius, \par
const SearchParams\& params);}
\begin{description}
\cvarg{query}{The query point}
@ -493,33 +503,26 @@ Performs a radius nearest neighbor search for a given query point.
\cvarg{params}{Search parameters}
\end{description}
\cvCppFunc{cv::flann::Index_<T>::radiusSearch}
Performs a radius nearest neighbor search for multiple query points.
\cvdefCpp{int Index_<T>::radiusSearch(const Mat\& query, \par
Mat\& indices, \par
Mat\& dists, \par
float radius, \par
const SearchParams\& params);}
\begin{description}
\cvarg{queries}{The query points, one per row}
\cvarg{indices}{Indices of the nearest neighbors found}
\cvarg{dists}{Distances to the nearest neighbors found}
\cvarg{radius}{The search radius}
\cvarg{params}{Search parameters}
\end{description}
\ifplastex
\cvCppFunc{cv::flann::Index_<T>::save}
\else
\subsubsection{cv::flann::Index\_$<T>$::save}\label{cvflann.Index.save}
\fi
Saves the index to a file.
\cvdefCpp{void Index_<T>::save(std::string filename);}
\cvdefCpp{void Index\_<T>::save(std::string filename);}
\begin{description}
\cvarg{filename}{The file to save the index to}
\end{description}
\ifplastex
\cvCppFunc{cv::flann::Index_<T>::getIndexParameters}
\else
\subsubsection{cv::flann::Index\_$<T>$::getIndexParameters}\label{cvflann.Index.getIndexParameters}
\fi
Returns the index paramreters. This is usefull in case of autotuned indices, when the parameters computed can be retrived using this method.
\cvdefCpp{const IndexParams* Index_<T>::getIndexParameters();}
\cvdefCpp{const IndexParams* Index\_<T>::getIndexParameters();}
\cvCppFunc{cv::flann::hierarchicalClustering<ET,DT>}