mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 19:20:28 +08:00
CUDA related func tables refactored to remove unneeded dependencies.
This commit is contained in:
parent
6da7c50fb5
commit
64c94cb22c
@ -239,23 +239,23 @@ static DeviceInfoFuncTable* deviceInfoFuncTable()
|
||||
|
||||
//////////////////////////////// Initialization & Info ////////////////////////
|
||||
|
||||
int cv::gpu::getCudaEnabledDeviceCount() { return gpuFuncTable()->getCudaEnabledDeviceCount(); }
|
||||
int cv::gpu::getCudaEnabledDeviceCount() { return deviceInfoFuncTable()->getCudaEnabledDeviceCount(); }
|
||||
|
||||
void cv::gpu::setDevice(int device) { gpuFuncTable()->setDevice(device); }
|
||||
int cv::gpu::getDevice() { return gpuFuncTable()->getDevice(); }
|
||||
void cv::gpu::setDevice(int device) { deviceInfoFuncTable()->setDevice(device); }
|
||||
int cv::gpu::getDevice() { return deviceInfoFuncTable()->getDevice(); }
|
||||
|
||||
void cv::gpu::resetDevice() { gpuFuncTable()->resetDevice(); }
|
||||
void cv::gpu::resetDevice() { deviceInfoFuncTable()->resetDevice(); }
|
||||
|
||||
bool cv::gpu::deviceSupports(FeatureSet feature_set) { return gpuFuncTable()->deviceSupports(feature_set); }
|
||||
bool cv::gpu::deviceSupports(FeatureSet feature_set) { return deviceInfoFuncTable()->deviceSupports(feature_set); }
|
||||
|
||||
bool cv::gpu::TargetArchs::builtWith(FeatureSet feature_set) { return gpuFuncTable()->builtWith(feature_set); }
|
||||
bool cv::gpu::TargetArchs::has(int major, int minor) { return gpuFuncTable()->has(major, minor); }
|
||||
bool cv::gpu::TargetArchs::hasPtx(int major, int minor) { return gpuFuncTable()->hasPtx(major, minor); }
|
||||
bool cv::gpu::TargetArchs::hasBin(int major, int minor) { return gpuFuncTable()->hasBin(major, minor); }
|
||||
bool cv::gpu::TargetArchs::hasEqualOrLessPtx(int major, int minor) { return gpuFuncTable()->hasEqualOrLessPtx(major, minor); }
|
||||
bool cv::gpu::TargetArchs::hasEqualOrGreater(int major, int minor) { return gpuFuncTable()->hasEqualOrGreater(major, minor); }
|
||||
bool cv::gpu::TargetArchs::hasEqualOrGreaterPtx(int major, int minor) { return gpuFuncTable()->hasEqualOrGreaterPtx(major, minor); }
|
||||
bool cv::gpu::TargetArchs::hasEqualOrGreaterBin(int major, int minor) { return gpuFuncTable()->hasEqualOrGreaterBin(major, minor); }
|
||||
bool cv::gpu::TargetArchs::builtWith(FeatureSet feature_set) { return deviceInfoFuncTable()->builtWith(feature_set); }
|
||||
bool cv::gpu::TargetArchs::has(int major, int minor) { return deviceInfoFuncTable()->has(major, minor); }
|
||||
bool cv::gpu::TargetArchs::hasPtx(int major, int minor) { return deviceInfoFuncTable()->hasPtx(major, minor); }
|
||||
bool cv::gpu::TargetArchs::hasBin(int major, int minor) { return deviceInfoFuncTable()->hasBin(major, minor); }
|
||||
bool cv::gpu::TargetArchs::hasEqualOrLessPtx(int major, int minor) { return deviceInfoFuncTable()->hasEqualOrLessPtx(major, minor); }
|
||||
bool cv::gpu::TargetArchs::hasEqualOrGreater(int major, int minor) { return deviceInfoFuncTable()->hasEqualOrGreater(major, minor); }
|
||||
bool cv::gpu::TargetArchs::hasEqualOrGreaterPtx(int major, int minor) { return deviceInfoFuncTable()->hasEqualOrGreaterPtx(major, minor); }
|
||||
bool cv::gpu::TargetArchs::hasEqualOrGreaterBin(int major, int minor) { return deviceInfoFuncTable()->hasEqualOrGreaterBin(major, minor); }
|
||||
|
||||
size_t cv::gpu::DeviceInfo::sharedMemPerBlock() const { return deviceInfoFuncTable()->sharedMemPerBlock(); }
|
||||
void cv::gpu::DeviceInfo::queryMemory(size_t& total_memory, size_t& free_memory) const { deviceInfoFuncTable()->queryMemory(total_memory, free_memory); }
|
||||
@ -270,8 +270,8 @@ std::string cv::gpu::DeviceInfo::name() const { return deviceInfoFuncTable()->na
|
||||
int cv::gpu::DeviceInfo::multiProcessorCount() const { return deviceInfoFuncTable()->multiProcessorCount(); }
|
||||
void cv::gpu::DeviceInfo::query() { deviceInfoFuncTable()->query(); }
|
||||
|
||||
void cv::gpu::printCudaDeviceInfo(int device) { gpuFuncTable()->printCudaDeviceInfo(device); }
|
||||
void cv::gpu::printShortCudaDeviceInfo(int device) { gpuFuncTable()->printShortCudaDeviceInfo(device); }
|
||||
void cv::gpu::printCudaDeviceInfo(int device) { deviceInfoFuncTable()->printCudaDeviceInfo(device); }
|
||||
void cv::gpu::printShortCudaDeviceInfo(int device) { deviceInfoFuncTable()->printShortCudaDeviceInfo(device); }
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
|
@ -4,6 +4,7 @@
|
||||
class DeviceInfoFuncTable
|
||||
{
|
||||
public:
|
||||
// cv::DeviceInfo
|
||||
virtual size_t sharedMemPerBlock() const = 0;
|
||||
virtual void queryMemory(size_t&, size_t&) const = 0;
|
||||
virtual size_t freeMemory() const = 0;
|
||||
@ -16,25 +17,13 @@
|
||||
virtual int majorVersion() const = 0;
|
||||
virtual int minorVersion() const = 0;
|
||||
virtual int multiProcessorCount() const = 0;
|
||||
virtual ~DeviceInfoFuncTable() {};
|
||||
};
|
||||
|
||||
class GpuFuncTable
|
||||
{
|
||||
public:
|
||||
virtual ~GpuFuncTable() {}
|
||||
|
||||
// DeviceInfo routines
|
||||
virtual int getCudaEnabledDeviceCount() const = 0;
|
||||
|
||||
virtual void setDevice(int) const = 0;
|
||||
virtual int getDevice() const = 0;
|
||||
|
||||
virtual void resetDevice() const = 0;
|
||||
|
||||
virtual bool deviceSupports(FeatureSet) const = 0;
|
||||
|
||||
// TargetArchs
|
||||
// cv::TargetArchs
|
||||
virtual bool builtWith(FeatureSet) const = 0;
|
||||
virtual bool has(int, int) const = 0;
|
||||
virtual bool hasPtx(int, int) const = 0;
|
||||
@ -46,7 +35,15 @@
|
||||
|
||||
virtual void printCudaDeviceInfo(int) const = 0;
|
||||
virtual void printShortCudaDeviceInfo(int) const = 0;
|
||||
|
||||
|
||||
virtual ~DeviceInfoFuncTable() {};
|
||||
};
|
||||
|
||||
class GpuFuncTable
|
||||
{
|
||||
public:
|
||||
virtual ~GpuFuncTable() {}
|
||||
|
||||
// GpuMat routines
|
||||
virtual void copy(const Mat& src, GpuMat& dst) const = 0;
|
||||
virtual void copy(const GpuMat& src, Mat& dst) const = 0;
|
||||
@ -60,7 +57,7 @@
|
||||
|
||||
// for gpu::device::setTo funcs
|
||||
virtual void setTo(cv::gpu::GpuMat&, cv::Scalar, const cv::gpu::GpuMat&, CUstream_st*) const = 0;
|
||||
|
||||
|
||||
virtual void mallocPitch(void** devPtr, size_t* step, size_t width, size_t height) const = 0;
|
||||
virtual void free(void* devPtr) const = 0;
|
||||
};
|
||||
@ -80,20 +77,14 @@
|
||||
int majorVersion() const { throw_nogpu; return -1; }
|
||||
int minorVersion() const { throw_nogpu; return -1; }
|
||||
int multiProcessorCount() const { throw_nogpu; return -1; }
|
||||
};
|
||||
|
||||
class EmptyFuncTable : public GpuFuncTable
|
||||
{
|
||||
public:
|
||||
|
||||
// DeviceInfo routines
|
||||
|
||||
int getCudaEnabledDeviceCount() const { return 0; }
|
||||
|
||||
|
||||
void setDevice(int) const { throw_nogpu; }
|
||||
int getDevice() const { throw_nogpu; return 0; }
|
||||
|
||||
|
||||
void resetDevice() const { throw_nogpu; }
|
||||
|
||||
|
||||
bool deviceSupports(FeatureSet) const { throw_nogpu; return false; }
|
||||
|
||||
bool builtWith(FeatureSet) const { throw_nogpu; return false; }
|
||||
@ -104,10 +95,15 @@
|
||||
bool hasEqualOrGreater(int, int) const { throw_nogpu; return false; }
|
||||
bool hasEqualOrGreaterPtx(int, int) const { throw_nogpu; return false; }
|
||||
bool hasEqualOrGreaterBin(int, int) const { throw_nogpu; return false; }
|
||||
|
||||
|
||||
void printCudaDeviceInfo(int) const { throw_nogpu; }
|
||||
void printShortCudaDeviceInfo(int) const { throw_nogpu; }
|
||||
|
||||
};
|
||||
|
||||
class EmptyFuncTable : public GpuFuncTable
|
||||
{
|
||||
public:
|
||||
|
||||
void copy(const Mat&, GpuMat&) const { throw_nogpu; }
|
||||
void copy(const GpuMat&, Mat&) const { throw_nogpu; }
|
||||
void copy(const GpuMat&, GpuMat&) const { throw_nogpu; }
|
||||
@ -185,62 +181,62 @@ namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
||||
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
|
||||
|
||||
|
||||
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI);
|
||||
};
|
||||
template<int DDEPTH> struct NppConvertFunc<CV_32F, DDEPTH>
|
||||
{
|
||||
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
|
||||
|
||||
|
||||
typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI, NppRoundMode eRoundMode);
|
||||
};
|
||||
|
||||
|
||||
template<int SDEPTH, int DDEPTH, typename NppConvertFunc<SDEPTH, DDEPTH>::func_ptr func> struct NppCvt
|
||||
{
|
||||
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
||||
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
|
||||
|
||||
|
||||
static void call(const GpuMat& src, GpuMat& dst)
|
||||
{
|
||||
NppiSize sz;
|
||||
sz.width = src.cols;
|
||||
sz.height = src.rows;
|
||||
|
||||
|
||||
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), dst.ptr<dst_t>(), static_cast<int>(dst.step), sz) );
|
||||
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<int DDEPTH, typename NppConvertFunc<CV_32F, DDEPTH>::func_ptr func> struct NppCvt<CV_32F, DDEPTH, func>
|
||||
{
|
||||
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
|
||||
|
||||
|
||||
static void call(const GpuMat& src, GpuMat& dst)
|
||||
{
|
||||
NppiSize sz;
|
||||
sz.width = src.cols;
|
||||
sz.height = src.rows;
|
||||
|
||||
|
||||
nppSafeCall( func(src.ptr<Npp32f>(), static_cast<int>(src.step), dst.ptr<dst_t>(), static_cast<int>(dst.step), sz, NPP_RND_NEAR) );
|
||||
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Set
|
||||
|
||||
|
||||
template<int SDEPTH, int SCN> struct NppSetFunc
|
||||
{
|
||||
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
||||
|
||||
|
||||
typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI);
|
||||
};
|
||||
template<int SDEPTH> struct NppSetFunc<SDEPTH, 1>
|
||||
{
|
||||
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
||||
|
||||
|
||||
typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI);
|
||||
};
|
||||
template<int SCN> struct NppSetFunc<CV_8S, SCN>
|
||||
@ -251,172 +247,172 @@ namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
typedef NppStatus (*func_ptr)(Npp8s val, Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI);
|
||||
};
|
||||
|
||||
|
||||
template<int SDEPTH, int SCN, typename NppSetFunc<SDEPTH, SCN>::func_ptr func> struct NppSet
|
||||
{
|
||||
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
||||
|
||||
|
||||
static void call(GpuMat& src, Scalar s)
|
||||
{
|
||||
NppiSize sz;
|
||||
sz.width = src.cols;
|
||||
sz.height = src.rows;
|
||||
|
||||
|
||||
Scalar_<src_t> nppS = s;
|
||||
|
||||
|
||||
nppSafeCall( func(nppS.val, src.ptr<src_t>(), static_cast<int>(src.step), sz) );
|
||||
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
};
|
||||
template<int SDEPTH, typename NppSetFunc<SDEPTH, 1>::func_ptr func> struct NppSet<SDEPTH, 1, func>
|
||||
{
|
||||
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
||||
|
||||
|
||||
static void call(GpuMat& src, Scalar s)
|
||||
{
|
||||
NppiSize sz;
|
||||
sz.width = src.cols;
|
||||
sz.height = src.rows;
|
||||
|
||||
|
||||
Scalar_<src_t> nppS = s;
|
||||
|
||||
|
||||
nppSafeCall( func(nppS[0], src.ptr<src_t>(), static_cast<int>(src.step), sz) );
|
||||
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<int SDEPTH, int SCN> struct NppSetMaskFunc
|
||||
{
|
||||
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
||||
|
||||
|
||||
typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
|
||||
};
|
||||
template<int SDEPTH> struct NppSetMaskFunc<SDEPTH, 1>
|
||||
{
|
||||
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
||||
|
||||
|
||||
typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
|
||||
};
|
||||
|
||||
|
||||
template<int SDEPTH, int SCN, typename NppSetMaskFunc<SDEPTH, SCN>::func_ptr func> struct NppSetMask
|
||||
{
|
||||
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
||||
|
||||
|
||||
static void call(GpuMat& src, Scalar s, const GpuMat& mask)
|
||||
{
|
||||
NppiSize sz;
|
||||
sz.width = src.cols;
|
||||
sz.height = src.rows;
|
||||
|
||||
|
||||
Scalar_<src_t> nppS = s;
|
||||
|
||||
|
||||
nppSafeCall( func(nppS.val, src.ptr<src_t>(), static_cast<int>(src.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
|
||||
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
};
|
||||
template<int SDEPTH, typename NppSetMaskFunc<SDEPTH, 1>::func_ptr func> struct NppSetMask<SDEPTH, 1, func>
|
||||
{
|
||||
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
||||
|
||||
|
||||
static void call(GpuMat& src, Scalar s, const GpuMat& mask)
|
||||
{
|
||||
NppiSize sz;
|
||||
sz.width = src.cols;
|
||||
sz.height = src.rows;
|
||||
|
||||
|
||||
Scalar_<src_t> nppS = s;
|
||||
|
||||
|
||||
nppSafeCall( func(nppS[0], src.ptr<src_t>(), static_cast<int>(src.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
|
||||
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// CopyMasked
|
||||
|
||||
|
||||
template<int SDEPTH> struct NppCopyMaskedFunc
|
||||
{
|
||||
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
||||
|
||||
|
||||
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, src_t* pDst, int nDstStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
|
||||
};
|
||||
|
||||
|
||||
template<int SDEPTH, typename NppCopyMaskedFunc<SDEPTH>::func_ptr func> struct NppCopyMasked
|
||||
{
|
||||
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
|
||||
|
||||
|
||||
static void call(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t /*stream*/)
|
||||
{
|
||||
NppiSize sz;
|
||||
sz.width = src.cols;
|
||||
sz.height = src.rows;
|
||||
|
||||
|
||||
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), dst.ptr<src_t>(), static_cast<int>(dst.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
|
||||
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template <typename T> static inline bool isAligned(const T* ptr, size_t size)
|
||||
{
|
||||
return reinterpret_cast<size_t>(ptr) % size == 0;
|
||||
}
|
||||
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream = 0)
|
||||
{
|
||||
CV_Assert(src.size() == dst.size() && src.type() == dst.type());
|
||||
CV_Assert(src.size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == src.channels()));
|
||||
|
||||
|
||||
cv::gpu::device::copyToWithMask_gpu(src.reshape(1), dst.reshape(1), src.elemSize1(), src.channels(), mask.reshape(1), mask.channels() != 1, stream);
|
||||
}
|
||||
|
||||
|
||||
void convertTo(const GpuMat& src, GpuMat& dst)
|
||||
{
|
||||
cv::gpu::device::convert_gpu(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), 1.0, 0.0, 0);
|
||||
}
|
||||
|
||||
|
||||
void convertTo(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream = 0)
|
||||
{
|
||||
cv::gpu::device::convert_gpu(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), alpha, beta, stream);
|
||||
}
|
||||
|
||||
|
||||
void setTo(GpuMat& src, Scalar s, cudaStream_t stream)
|
||||
{
|
||||
typedef void (*caller_t)(GpuMat& src, Scalar s, cudaStream_t stream);
|
||||
|
||||
|
||||
static const caller_t callers[] =
|
||||
{
|
||||
kernelSetCaller<uchar>, kernelSetCaller<schar>, kernelSetCaller<ushort>, kernelSetCaller<short>, kernelSetCaller<int>,
|
||||
kernelSetCaller<float>, kernelSetCaller<double>
|
||||
};
|
||||
|
||||
|
||||
callers[src.depth()](src, s, stream);
|
||||
}
|
||||
|
||||
|
||||
void setTo(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream)
|
||||
{
|
||||
typedef void (*caller_t)(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream);
|
||||
|
||||
|
||||
static const caller_t callers[] =
|
||||
{
|
||||
kernelSetCaller<uchar>, kernelSetCaller<schar>, kernelSetCaller<ushort>, kernelSetCaller<short>, kernelSetCaller<int>,
|
||||
kernelSetCaller<float>, kernelSetCaller<double>
|
||||
};
|
||||
|
||||
|
||||
callers[src.depth()](src, s, mask, stream);
|
||||
}
|
||||
|
||||
|
||||
void setTo(GpuMat& src, Scalar s)
|
||||
{
|
||||
setTo(src, s, 0);
|
||||
}
|
||||
|
||||
|
||||
void setTo(GpuMat& src, Scalar s, const GpuMat& mask)
|
||||
{
|
||||
setTo(src, s, mask, 0);
|
||||
@ -433,56 +429,56 @@ namespace cv { namespace gpu { namespace device
|
||||
fromStr(CUDA_ARCH_PTX, ptx);
|
||||
fromStr(CUDA_ARCH_FEATURES, features);
|
||||
}
|
||||
|
||||
|
||||
bool builtWith(FeatureSet feature_set) const
|
||||
{
|
||||
return !features.empty() && (features.back() >= feature_set);
|
||||
}
|
||||
|
||||
|
||||
bool hasPtx(int major, int minor) const
|
||||
{
|
||||
return find(ptx.begin(), ptx.end(), major * 10 + minor) != ptx.end();
|
||||
}
|
||||
|
||||
|
||||
bool hasBin(int major, int minor) const
|
||||
{
|
||||
return find(bin.begin(), bin.end(), major * 10 + minor) != bin.end();
|
||||
}
|
||||
|
||||
|
||||
bool hasEqualOrLessPtx(int major, int minor) const
|
||||
{
|
||||
return !ptx.empty() && (ptx.front() <= major * 10 + minor);
|
||||
}
|
||||
|
||||
|
||||
bool hasEqualOrGreaterPtx(int major, int minor) const
|
||||
{
|
||||
return !ptx.empty() && (ptx.back() >= major * 10 + minor);
|
||||
}
|
||||
|
||||
|
||||
bool hasEqualOrGreaterBin(int major, int minor) const
|
||||
{
|
||||
return !bin.empty() && (bin.back() >= major * 10 + minor);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
private:
|
||||
void fromStr(const string& set_as_str, vector<int>& arr)
|
||||
{
|
||||
if (set_as_str.find_first_not_of(" ") == string::npos)
|
||||
return;
|
||||
|
||||
|
||||
istringstream stream(set_as_str);
|
||||
int cur_value;
|
||||
|
||||
|
||||
while (!stream.eof())
|
||||
{
|
||||
stream >> cur_value;
|
||||
arr.push_back(cur_value);
|
||||
}
|
||||
|
||||
|
||||
sort(arr.begin(), arr.end());
|
||||
}
|
||||
|
||||
|
||||
vector<int> bin;
|
||||
vector<int> ptx;
|
||||
vector<int> features;
|
||||
@ -495,7 +491,7 @@ namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
props_.resize(10, 0);
|
||||
}
|
||||
|
||||
|
||||
~DeviceProps()
|
||||
{
|
||||
for (size_t i = 0; i < props_.size(); ++i)
|
||||
@ -505,18 +501,18 @@ namespace cv { namespace gpu { namespace device
|
||||
}
|
||||
props_.clear();
|
||||
}
|
||||
|
||||
|
||||
cudaDeviceProp* get(int devID)
|
||||
{
|
||||
if (devID >= (int) props_.size())
|
||||
props_.resize(devID + 5, 0);
|
||||
|
||||
|
||||
if (!props_[devID])
|
||||
{
|
||||
props_[devID] = new cudaDeviceProp;
|
||||
cudaSafeCall( cudaGetDeviceProperties(props_[devID], devID) );
|
||||
}
|
||||
|
||||
|
||||
return props_[devID];
|
||||
}
|
||||
private:
|
||||
@ -524,7 +520,7 @@ namespace cv { namespace gpu { namespace device
|
||||
};
|
||||
|
||||
DeviceProps deviceProps;
|
||||
|
||||
|
||||
class CudaDeviceInfoFuncTable: DeviceInfoFuncTable
|
||||
{
|
||||
public:
|
||||
@ -532,57 +528,57 @@ namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
return deviceProps.get(device_id_)->sharedMemPerBlock;
|
||||
}
|
||||
|
||||
|
||||
void queryMemory(size_t& _totalMemory, size_t& _freeMemory) const
|
||||
{
|
||||
int prevDeviceID = getDevice();
|
||||
if (prevDeviceID != device_id_)
|
||||
setDevice(device_id_);
|
||||
|
||||
|
||||
cudaSafeCall( cudaMemGetInfo(&_freeMemory, &_totalMemory) );
|
||||
|
||||
|
||||
if (prevDeviceID != device_id_)
|
||||
setDevice(prevDeviceID);
|
||||
}
|
||||
|
||||
|
||||
size_t freeMemory() const
|
||||
{
|
||||
size_t _totalMemory, _freeMemory;
|
||||
queryMemory(_totalMemory, _freeMemory);
|
||||
return _freeMemory;
|
||||
}
|
||||
|
||||
|
||||
size_t totalMemory() const
|
||||
{
|
||||
size_t _totalMemory, _freeMemory;
|
||||
queryMemory(_totalMemory, _freeMemory);
|
||||
return _totalMemory;
|
||||
}
|
||||
|
||||
|
||||
bool supports(FeatureSet feature_set) const
|
||||
{
|
||||
int version = majorVersion_ * 10 + minorVersion_;
|
||||
return version >= feature_set;
|
||||
}
|
||||
|
||||
|
||||
bool isCompatible() const
|
||||
{
|
||||
// Check PTX compatibility
|
||||
if (TargetArchs::hasEqualOrLessPtx(majorVersion_, minorVersion_))
|
||||
if (hasEqualOrLessPtx(majorVersion_, minorVersion_))
|
||||
return true;
|
||||
|
||||
|
||||
// Check BIN compatibility
|
||||
for (int i = minorVersion_; i >= 0; --i)
|
||||
if (TargetArchs::hasBin(majorVersion_, i))
|
||||
if (hasBin(majorVersion_, i))
|
||||
return true;
|
||||
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
void query()
|
||||
{
|
||||
const cudaDeviceProp* prop = deviceProps.get(device_id_);
|
||||
|
||||
|
||||
name_ = prop->name;
|
||||
multi_processor_count_ = prop->multiProcessorCount;
|
||||
majorVersion_ = prop->major;
|
||||
@ -614,116 +610,78 @@ namespace cv { namespace gpu { namespace device
|
||||
return multi_processor_count_;
|
||||
}
|
||||
|
||||
private:
|
||||
int device_id_;
|
||||
|
||||
std::string name_;
|
||||
int multi_processor_count_;
|
||||
int majorVersion_;
|
||||
int minorVersion_;
|
||||
};
|
||||
|
||||
class CudaFuncTable : public GpuFuncTable
|
||||
{
|
||||
protected:
|
||||
|
||||
const CudaArch cudaArch;
|
||||
|
||||
int convertSMVer2Cores(int major, int minor) const
|
||||
{
|
||||
// Defines for GPU Architecture types (using the SM version to determine the # of cores per SM
|
||||
typedef struct {
|
||||
int SM; // 0xMm (hexidecimal notation), M = SM Major version, and m = SM minor version
|
||||
int Cores;
|
||||
} SMtoCores;
|
||||
|
||||
SMtoCores gpuArchCoresPerSM[] = { { 0x10, 8 }, { 0x11, 8 }, { 0x12, 8 }, { 0x13, 8 }, { 0x20, 32 }, { 0x21, 48 }, {0x30, 192}, {0x35, 192}, { -1, -1 } };
|
||||
|
||||
int index = 0;
|
||||
while (gpuArchCoresPerSM[index].SM != -1)
|
||||
{
|
||||
if (gpuArchCoresPerSM[index].SM == ((major << 4) + minor) )
|
||||
return gpuArchCoresPerSM[index].Cores;
|
||||
index++;
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
int getCudaEnabledDeviceCount() const
|
||||
{
|
||||
int count;
|
||||
cudaError_t error = cudaGetDeviceCount( &count );
|
||||
|
||||
|
||||
if (error == cudaErrorInsufficientDriver)
|
||||
return -1;
|
||||
|
||||
|
||||
if (error == cudaErrorNoDevice)
|
||||
return 0;
|
||||
|
||||
|
||||
cudaSafeCall( error );
|
||||
return count;
|
||||
}
|
||||
|
||||
|
||||
void setDevice(int device) const
|
||||
{
|
||||
cudaSafeCall( cudaSetDevice( device ) );
|
||||
}
|
||||
|
||||
|
||||
int getDevice() const
|
||||
{
|
||||
int device;
|
||||
cudaSafeCall( cudaGetDevice( &device ) );
|
||||
return device;
|
||||
}
|
||||
|
||||
|
||||
void resetDevice() const
|
||||
{
|
||||
cudaSafeCall( cudaDeviceReset() );
|
||||
}
|
||||
|
||||
|
||||
bool builtWith(FeatureSet feature_set) const
|
||||
{
|
||||
return cudaArch.builtWith(feature_set);
|
||||
}
|
||||
|
||||
|
||||
bool has(int major, int minor) const
|
||||
{
|
||||
return hasPtx(major, minor) || hasBin(major, minor);
|
||||
}
|
||||
|
||||
|
||||
bool hasPtx(int major, int minor) const
|
||||
{
|
||||
return cudaArch.hasPtx(major, minor);
|
||||
}
|
||||
|
||||
|
||||
bool hasBin(int major, int minor) const
|
||||
{
|
||||
return cudaArch.hasBin(major, minor);
|
||||
}
|
||||
|
||||
|
||||
bool hasEqualOrLessPtx(int major, int minor) const
|
||||
{
|
||||
return cudaArch.hasEqualOrLessPtx(major, minor);
|
||||
}
|
||||
|
||||
|
||||
bool hasEqualOrGreater(int major, int minor) const
|
||||
{
|
||||
return hasEqualOrGreaterPtx(major, minor) || hasEqualOrGreaterBin(major, minor);
|
||||
}
|
||||
|
||||
|
||||
bool hasEqualOrGreaterPtx(int major, int minor) const
|
||||
{
|
||||
return cudaArch.hasEqualOrGreaterPtx(major, minor);
|
||||
}
|
||||
|
||||
|
||||
bool hasEqualOrGreaterBin(int major, int minor) const
|
||||
{
|
||||
return cudaArch.hasEqualOrGreaterBin(major, minor);
|
||||
}
|
||||
|
||||
|
||||
bool deviceSupports(FeatureSet feature_set) const
|
||||
{
|
||||
static int versions[] =
|
||||
@ -731,11 +689,11 @@ namespace cv { namespace gpu { namespace device
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
|
||||
};
|
||||
static const int cache_size = static_cast<int>(sizeof(versions) / sizeof(versions[0]));
|
||||
|
||||
|
||||
const int devId = getDevice();
|
||||
|
||||
|
||||
int version;
|
||||
|
||||
|
||||
if (devId < cache_size && versions[devId] >= 0)
|
||||
version = versions[devId];
|
||||
else
|
||||
@ -745,25 +703,25 @@ namespace cv { namespace gpu { namespace device
|
||||
if (devId < cache_size)
|
||||
versions[devId] = version;
|
||||
}
|
||||
|
||||
|
||||
return TargetArchs::builtWith(feature_set) && (version >= feature_set);
|
||||
}
|
||||
|
||||
|
||||
void printCudaDeviceInfo(int device) const
|
||||
{
|
||||
int count = getCudaEnabledDeviceCount();
|
||||
bool valid = (device >= 0) && (device < count);
|
||||
|
||||
|
||||
int beg = valid ? device : 0;
|
||||
int end = valid ? device+1 : count;
|
||||
|
||||
|
||||
printf("*** CUDA Device Query (Runtime API) version (CUDART static linking) *** \n\n");
|
||||
printf("Device count: %d\n", count);
|
||||
|
||||
|
||||
int driverVersion = 0, runtimeVersion = 0;
|
||||
cudaSafeCall( cudaDriverGetVersion(&driverVersion) );
|
||||
cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) );
|
||||
|
||||
|
||||
const char *computeMode[] = {
|
||||
"Default (multiple host threads can use ::cudaSetDevice() with device simultaneously)",
|
||||
"Exclusive (only one host thread in one process is able to use ::cudaSetDevice() with this device)",
|
||||
@ -772,30 +730,30 @@ namespace cv { namespace gpu { namespace device
|
||||
"Unknown",
|
||||
NULL
|
||||
};
|
||||
|
||||
|
||||
for(int dev = beg; dev < end; ++dev)
|
||||
{
|
||||
cudaDeviceProp prop;
|
||||
cudaSafeCall( cudaGetDeviceProperties(&prop, dev) );
|
||||
|
||||
|
||||
printf("\nDevice %d: \"%s\"\n", dev, prop.name);
|
||||
printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100);
|
||||
printf(" CUDA Capability Major/Minor version number: %d.%d\n", prop.major, prop.minor);
|
||||
printf(" Total amount of global memory: %.0f MBytes (%llu bytes)\n", (float)prop.totalGlobalMem/1048576.0f, (unsigned long long) prop.totalGlobalMem);
|
||||
|
||||
|
||||
int cores = convertSMVer2Cores(prop.major, prop.minor);
|
||||
if (cores > 0)
|
||||
printf(" (%2d) Multiprocessors x (%2d) CUDA Cores/MP: %d CUDA Cores\n", prop.multiProcessorCount, cores, cores * prop.multiProcessorCount);
|
||||
|
||||
|
||||
printf(" GPU Clock Speed: %.2f GHz\n", prop.clockRate * 1e-6f);
|
||||
|
||||
|
||||
printf(" Max Texture Dimension Size (x,y,z) 1D=(%d), 2D=(%d,%d), 3D=(%d,%d,%d)\n",
|
||||
prop.maxTexture1D, prop.maxTexture2D[0], prop.maxTexture2D[1],
|
||||
prop.maxTexture3D[0], prop.maxTexture3D[1], prop.maxTexture3D[2]);
|
||||
prop.maxTexture1D, prop.maxTexture2D[0], prop.maxTexture2D[1],
|
||||
prop.maxTexture3D[0], prop.maxTexture3D[1], prop.maxTexture3D[2]);
|
||||
printf(" Max Layered Texture Size (dim) x layers 1D=(%d) x %d, 2D=(%d,%d) x %d\n",
|
||||
prop.maxTexture1DLayered[0], prop.maxTexture1DLayered[1],
|
||||
prop.maxTexture2DLayered[0], prop.maxTexture2DLayered[1], prop.maxTexture2DLayered[2]);
|
||||
|
||||
prop.maxTexture1DLayered[0], prop.maxTexture1DLayered[1],
|
||||
prop.maxTexture2DLayered[0], prop.maxTexture2DLayered[1], prop.maxTexture2DLayered[2]);
|
||||
|
||||
printf(" Total amount of constant memory: %u bytes\n", (int)prop.totalConstMem);
|
||||
printf(" Total amount of shared memory per block: %u bytes\n", (int)prop.sharedMemPerBlock);
|
||||
printf(" Total number of registers available per block: %d\n", prop.regsPerBlock);
|
||||
@ -805,12 +763,12 @@ namespace cv { namespace gpu { namespace device
|
||||
printf(" Maximum sizes of each dimension of a grid: %d x %d x %d\n", prop.maxGridSize[0], prop.maxGridSize[1], prop.maxGridSize[2]);
|
||||
printf(" Maximum memory pitch: %u bytes\n", (int)prop.memPitch);
|
||||
printf(" Texture alignment: %u bytes\n", (int)prop.textureAlignment);
|
||||
|
||||
|
||||
printf(" Concurrent copy and execution: %s with %d copy engine(s)\n", (prop.deviceOverlap ? "Yes" : "No"), prop.asyncEngineCount);
|
||||
printf(" Run time limit on kernels: %s\n", prop.kernelExecTimeoutEnabled ? "Yes" : "No");
|
||||
printf(" Integrated GPU sharing Host Memory: %s\n", prop.integrated ? "Yes" : "No");
|
||||
printf(" Support host page-locked memory mapping: %s\n", prop.canMapHostMemory ? "Yes" : "No");
|
||||
|
||||
|
||||
printf(" Concurrent kernel execution: %s\n", prop.concurrentKernels ? "Yes" : "No");
|
||||
printf(" Alignment requirement for Surfaces: %s\n", prop.surfaceAlignment ? "Yes" : "No");
|
||||
printf(" Device has ECC support enabled: %s\n", prop.ECCEnabled ? "Yes" : "No");
|
||||
@ -820,7 +778,7 @@ namespace cv { namespace gpu { namespace device
|
||||
printf(" Compute Mode:\n");
|
||||
printf(" %s \n", computeMode[prop.computeMode]);
|
||||
}
|
||||
|
||||
|
||||
printf("\n");
|
||||
printf("deviceQuery, CUDA Driver = CUDART");
|
||||
printf(", CUDA Driver Version = %d.%d", driverVersion / 1000, driverVersion % 100);
|
||||
@ -828,37 +786,73 @@ namespace cv { namespace gpu { namespace device
|
||||
printf(", NumDevs = %d\n\n", count);
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
|
||||
void printShortCudaDeviceInfo(int device) const
|
||||
{
|
||||
int count = getCudaEnabledDeviceCount();
|
||||
bool valid = (device >= 0) && (device < count);
|
||||
|
||||
|
||||
int beg = valid ? device : 0;
|
||||
int end = valid ? device+1 : count;
|
||||
|
||||
|
||||
int driverVersion = 0, runtimeVersion = 0;
|
||||
cudaSafeCall( cudaDriverGetVersion(&driverVersion) );
|
||||
cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) );
|
||||
|
||||
|
||||
for(int dev = beg; dev < end; ++dev)
|
||||
{
|
||||
cudaDeviceProp prop;
|
||||
cudaSafeCall( cudaGetDeviceProperties(&prop, dev) );
|
||||
|
||||
|
||||
const char *arch_str = prop.major < 2 ? " (not Fermi)" : "";
|
||||
printf("Device %d: \"%s\" %.0fMb", dev, prop.name, (float)prop.totalGlobalMem/1048576.0f);
|
||||
printf(", sm_%d%d%s", prop.major, prop.minor, arch_str);
|
||||
|
||||
|
||||
int cores = convertSMVer2Cores(prop.major, prop.minor);
|
||||
if (cores > 0)
|
||||
printf(", %d cores", cores * prop.multiProcessorCount);
|
||||
|
||||
|
||||
printf(", Driver/Runtime ver.%d.%d/%d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100);
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
int device_id_;
|
||||
|
||||
std::string name_;
|
||||
int multi_processor_count_;
|
||||
int majorVersion_;
|
||||
int minorVersion_;
|
||||
|
||||
const CudaArch cudaArch;
|
||||
|
||||
int convertSMVer2Cores(int major, int minor) const
|
||||
{
|
||||
// Defines for GPU Architecture types (using the SM version to determine the # of cores per SM
|
||||
typedef struct {
|
||||
int SM; // 0xMm (hexidecimal notation), M = SM Major version, and m = SM minor version
|
||||
int Cores;
|
||||
} SMtoCores;
|
||||
|
||||
SMtoCores gpuArchCoresPerSM[] = { { 0x10, 8 }, { 0x11, 8 }, { 0x12, 8 }, { 0x13, 8 }, { 0x20, 32 }, { 0x21, 48 }, {0x30, 192}, {0x35, 192}, { -1, -1 } };
|
||||
|
||||
int index = 0;
|
||||
while (gpuArchCoresPerSM[index].SM != -1)
|
||||
{
|
||||
if (gpuArchCoresPerSM[index].SM == ((major << 4) + minor) )
|
||||
return gpuArchCoresPerSM[index].Cores;
|
||||
index++;
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
};
|
||||
|
||||
class CudaFuncTable : public GpuFuncTable
|
||||
{
|
||||
public:
|
||||
|
||||
void copy(const Mat& src, GpuMat& dst) const
|
||||
{
|
||||
cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyHostToDevice) );
|
||||
|
Loading…
Reference in New Issue
Block a user