Bugfix: #4030 SVM auto-training.

This commit is contained in:
Sancho McCann 2015-04-01 19:00:39 +00:00
parent 864b4e3b26
commit 6593422c05
2 changed files with 92 additions and 3 deletions

View File

@ -1669,13 +1669,13 @@ public:
Mat samples = data->getTrainSamples(); Mat samples = data->getTrainSamples();
Mat responses; Mat responses;
bool is_classification = false; bool is_classification = false;
Mat class_labels0 = class_labels;
int class_count = (int)class_labels.total(); int class_count = (int)class_labels.total();
if( svmType == C_SVC || svmType == NU_SVC ) if( svmType == C_SVC || svmType == NU_SVC )
{ {
responses = data->getTrainNormCatResponses(); responses = data->getTrainNormCatResponses();
class_labels = data->getClassLabels(); class_labels = data->getClassLabels();
class_count = (int)class_labels.total();
is_classification = true; is_classification = true;
vector<int> temp_class_labels; vector<int> temp_class_labels;
@ -1755,8 +1755,9 @@ public:
Mat temp_train_responses(train_sample_count, 1, rtype); Mat temp_train_responses(train_sample_count, 1, rtype);
Mat temp_test_responses; Mat temp_test_responses;
// If grid.minVal == grid.maxVal, this will allow one and only one pass through the loop with params.var = grid.minVal.
#define FOR_IN_GRID(var, grid) \ #define FOR_IN_GRID(var, grid) \
for( params.var = grid.minVal; params.var == grid.minVal || params.var < grid.maxVal; params.var *= grid.logStep ) for( params.var = grid.minVal; params.var == grid.minVal || params.var < grid.maxVal; params.var = (grid.minVal == grid.maxVal) ? grid.maxVal + 1 : params.var * grid.logStep )
FOR_IN_GRID(C, C_grid) FOR_IN_GRID(C, C_grid)
FOR_IN_GRID(gamma, gamma_grid) FOR_IN_GRID(gamma, gamma_grid)
@ -1814,7 +1815,6 @@ public:
} }
params = best_params; params = best_params;
class_labels = class_labels0;
return do_train( samples, responses ); return do_train( samples, responses );
} }

View File

@ -0,0 +1,89 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
using namespace cv;
using namespace std;
using cv::ml::SVM;
using cv::ml::TrainData;
//--------------------------------------------------------------------------------------------
class CV_SVMTrainAutoTest : public cvtest::BaseTest {
public:
CV_SVMTrainAutoTest() {}
protected:
virtual void run( int start_from );
};
void CV_SVMTrainAutoTest::run( int /*start_from*/ )
{
int datasize = 100;
cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 );
cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S );
RNG rng(0);
for (int i = 0; i < datasize; ++i)
{
int response = rng.uniform(0, 2); // Random from {0, 1}.
samples.at<float>( i, 0 ) = rng.uniform(0.f, 0.5f) + response * 0.5f;
samples.at<float>( i, 1 ) = rng.uniform(0.f, 0.5f) + response * 0.5f;
responses.at<int>( i, 0 ) = response;
}
cv::Ptr<TrainData> data = TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
cv::Ptr<SVM> svm = SVM::create();
svm->trainAuto( data, 10 ); // 2-fold cross validation.
float test_data0[2] = {0.25f, 0.25f};
cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 );
float result0 = svm->predict( test_point0 );
float test_data1[2] = {0.75f, 0.75f};
cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 );
float result1 = svm->predict( test_point1 );
if ( fabs( result0 - 0 ) > 0.001 || fabs( result1 - 1 ) > 0.001 )
{
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
}
}
TEST(ML_SVM, trainauto) { CV_SVMTrainAutoTest test; test.safe_run(); }