LBP: implemented first version of device side part

This commit is contained in:
Marina Kolpakova 2012-06-25 16:39:50 +00:00
parent 71f94e12fb
commit 6801f475ad
4 changed files with 73 additions and 19 deletions

View File

@ -1454,12 +1454,14 @@ private:
int subsetSize;
int nodeStep;
// located on gpu
// gpu representation of classifier
GpuMat stage_mat;
GpuMat trees_mat;
GpuMat nodes_mat;
GpuMat leaves_mat;
GpuMat subsets_mat;
// current integral image
GpuMat integral;
};

View File

@ -59,7 +59,6 @@ struct Stage
struct DTreeNode
{
int featureIdx;
//float threshold; // for ordered features only
int left;
int right;
DTreeNode(int f = 0, int l = 0, int r = 0) : featureIdx(f), left(l), right(r) {}
@ -271,7 +270,8 @@ namespace cv { namespace gpu { namespace device
{
namespace lbp
{
void CascadeClassify(DevMem2Db image, DevMem2Db objects, double scaleFactor = 1.2, int minNeighbors = 4, cudaStream_t stream = 0);
void cascadeClassify(const DevMem2Db stages, const DevMem2Di trees, const DevMem2Db nodes, const DevMem2Df leaves, const DevMem2Di subsets,
const DevMem2Db integral, int workWidth, int workHeight, int step, int subsetSize, DevMem2D_<int4> objects, int minNeighbors = 4, cudaStream_t stream = 0);
}
}}}
@ -308,17 +308,8 @@ int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, Gp
int step = (factor <= 2.) + 1;
int stripCount = 1, stripSize = processingRectSize.height;
int y1 = 0;
int y2 = processingRectSize.height;
for (int y = y1; y < y2; y += step)
for (int x = 0; x < processingRectSize.width; x+=step)
{
//ToDO: classify
int result = 0;
}
cv::gpu::device::lbp::cascadeClassify(stage_mat, trees_mat, nodes_mat, leaves_mat, subsets_mat,
integral, processingRectSize.width, processingRectSize.height, step, subsetSize, objects, minNeighbors);
}
// TODO: reject levels

View File

@ -40,15 +40,51 @@
//
//M*/
#include <opencv2/gpu/device/detail/lbp.hpp>
#include <opencv2/gpu/device/lbp.hpp>
namespace cv { namespace gpu { namespace device
{
namespace lbp
{
void CascadeClassify(DevMem2Db image, DevMem2Db objects, double scaleFactor=1.2, int minNeighbors=4, cudaStream_t stream)
__global__ void lbp_classify(const DevMem2D_< ::cv::gpu::device::Stage> stages, const DevMem2Di trees, const DevMem2Db nodes, const DevMem2Df leaves, const DevMem2Di subsets,
const DevMem2Db integral, float step, int subsetSize, DevMem2D_<int4> objects)
{
unsigned int x = threadIdx.x;
unsigned int y = blockIdx.x;
int nodeOfs = 0, leafOfs = 0;
::cv::gpu::device::Feature feature;
for (int s = 0; s < stages.cols; s++ )
{
::cv::gpu::device::Stage stage = stages(0, s);
int sum = 0;
for (int w = 0; w < stage.ntrees; w++)
{
::cv::gpu::device::ClNode node = nodes(0, nodeOfs);
char c = feature();// TODO: inmplement it
const int subsetIdx = (nodeOfs * subsetSize);
int idx = subsetIdx + ((c >> 5) & ( 1 << (c & 31)) ? leafOfs : leafOfs + 1);
sum += leaves(0, subsets(0, idx) );
nodeOfs++;
leafOfs += 2;
}
if (sum < stage.threshold)
return; // nothing matched
return;//mathed
}
}
void cascadeClassify(const DevMem2Db bstages, const DevMem2Di trees, const DevMem2Db nodes, const DevMem2Df leaves, const DevMem2Di subsets,
const DevMem2Db integral, int workWidth, int workHeight, int step, int subsetSize, DevMem2D_<int4> objects, int minNeighbors, cudaStream_t stream)
{
printf("CascadeClassify");
int blocks = ceilf(workHeight / (float)step);
int threads = ceilf(workWidth / (float)step);
DevMem2D_< ::cv::gpu::device::Stage> stages = DevMem2D_< ::cv::gpu::device::Stage>(bstages);
lbp_classify<<<blocks, threads>>>(stages, trees, nodes, leaves, subsets, integral, step, subsetSize, objects);
}
}
}}}

View File

@ -43,6 +43,13 @@
#ifndef __OPENCV_GPU_DEVICE_LBP_HPP_
#define __OPENCV_GPU_DEVICE_LBP_HPP_
#include "internal_shared.hpp"
// #include "opencv2/gpu/device/border_interpolate.hpp"
// #include "opencv2/gpu/device/vec_traits.hpp"
// #include "opencv2/gpu/device/vec_math.hpp"
// #include "opencv2/gpu/device/saturate_cast.hpp"
// #include "opencv2/gpu/device/filters.hpp"
// #define CALC_SUM_(p0, p1, p2, p3, offset) \
// ((p0)[offset] - (p1)[offset] - (p2)[offset] + (p3)[offset])
@ -53,16 +60,34 @@
namespace cv { namespace gpu { namespace device {
struct Stage
{
int first;
int ntrees;
float threshold;
__device__ __forceinline__ Stage(int f = 0, int n = 0, float t = 0.f) : first(f), ntrees(n), threshold(t) {}
__device__ __forceinline__ Stage(const Stage& other) : first(other.first), ntrees(other.ntrees), threshold(other.threshold) {}
};
struct ClNode
{
int featureIdx;
int left;
int right;
__device__ __forceinline__ ClNode(int f = 0, int l = 0, int r = 0) : featureIdx(f), left(l), right(r) {}
__device__ __forceinline__ ClNode(const ClNode& other) : featureIdx(other.featureIdx), left(other.left), right(other.right) {}
};
struct Feature
{
__device__ __forceinline__ Feature(const Feature& other) {(void)other;}
__device__ __forceinline__ Feature() {}
__device__ __forceinline__ char operator() (volatile int* ptr, int offset)
__device__ __forceinline__ char operator() ()//(volatile int* ptr, int offset)
{
return char(0);
}
}
}// namespaces
};
} } }// namespaces
#endif