mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
dnn(test): reuse test/test_common.hpp, eliminate dead code warning
This commit is contained in:
parent
b2cff44084
commit
6816495bee
@ -10,6 +10,8 @@
|
||||
|
||||
#include "opencv2/dnn/shape_utils.hpp"
|
||||
|
||||
#include "../test/test_common.hpp"
|
||||
|
||||
namespace opencv_test {
|
||||
|
||||
CV_ENUM(DNNBackend, DNN_BACKEND_DEFAULT, DNN_BACKEND_HALIDE, DNN_BACKEND_INFERENCE_ENGINE)
|
||||
@ -29,28 +31,6 @@ public:
|
||||
target = (dnn::Target)(int)get<1>(GetParam());
|
||||
}
|
||||
|
||||
static bool checkMyriadTarget()
|
||||
{
|
||||
#ifndef HAVE_INF_ENGINE
|
||||
return false;
|
||||
#endif
|
||||
cv::dnn::Net net;
|
||||
cv::dnn::LayerParams lp;
|
||||
net.addLayerToPrev("testLayer", "Identity", lp);
|
||||
net.setPreferableBackend(cv::dnn::DNN_BACKEND_INFERENCE_ENGINE);
|
||||
net.setPreferableTarget(cv::dnn::DNN_TARGET_MYRIAD);
|
||||
net.setInput(cv::Mat::zeros(1, 1, CV_32FC1));
|
||||
try
|
||||
{
|
||||
net.forward();
|
||||
}
|
||||
catch(...)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void processNet(std::string weights, std::string proto, std::string halide_scheduler,
|
||||
const Mat& input, const std::string& outputLayer = "")
|
||||
{
|
||||
|
@ -42,12 +42,12 @@
|
||||
#ifndef __OPENCV_TEST_COMMON_HPP__
|
||||
#define __OPENCV_TEST_COMMON_HPP__
|
||||
|
||||
inline const std::string &getOpenCVExtraDir()
|
||||
static inline const std::string &getOpenCVExtraDir()
|
||||
{
|
||||
return cvtest::TS::ptr()->get_data_path();
|
||||
}
|
||||
|
||||
inline void normAssert(cv::InputArray ref, cv::InputArray test, const char *comment = "",
|
||||
static inline void normAssert(cv::InputArray ref, cv::InputArray test, const char *comment = "",
|
||||
double l1 = 0.00001, double lInf = 0.0001)
|
||||
{
|
||||
double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
|
||||
@ -74,7 +74,7 @@ static std::vector<cv::Rect2d> matToBoxes(const cv::Mat& m)
|
||||
return boxes;
|
||||
}
|
||||
|
||||
inline void normAssertDetections(const std::vector<int>& refClassIds,
|
||||
static inline void normAssertDetections(const std::vector<int>& refClassIds,
|
||||
const std::vector<float>& refScores,
|
||||
const std::vector<cv::Rect2d>& refBoxes,
|
||||
const std::vector<int>& testClassIds,
|
||||
@ -128,7 +128,7 @@ inline void normAssertDetections(const std::vector<int>& refClassIds,
|
||||
// For SSD-based object detection networks which produce output of shape 1x1xNx7
|
||||
// where N is a number of detections and an every detection is represented by
|
||||
// a vector [batchId, classId, confidence, left, top, right, bottom].
|
||||
inline void normAssertDetections(cv::Mat ref, cv::Mat out, const char *comment = "",
|
||||
static inline void normAssertDetections(cv::Mat ref, cv::Mat out, const char *comment = "",
|
||||
double confThreshold = 0.0, double scores_diff = 1e-5,
|
||||
double boxes_iou_diff = 1e-4)
|
||||
{
|
||||
@ -147,11 +147,11 @@ inline void normAssertDetections(cv::Mat ref, cv::Mat out, const char *comment =
|
||||
testBoxes, comment, confThreshold, scores_diff, boxes_iou_diff);
|
||||
}
|
||||
|
||||
inline bool checkMyriadTarget()
|
||||
static inline bool checkMyriadTarget()
|
||||
{
|
||||
#ifndef HAVE_INF_ENGINE
|
||||
return false;
|
||||
#endif
|
||||
#else
|
||||
cv::dnn::Net net;
|
||||
cv::dnn::LayerParams lp;
|
||||
net.addLayerToPrev("testLayer", "Identity", lp);
|
||||
@ -167,9 +167,10 @@ inline bool checkMyriadTarget()
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
#endif
|
||||
}
|
||||
|
||||
inline bool readFileInMemory(const std::string& filename, std::string& content)
|
||||
static inline bool readFileInMemory(const std::string& filename, std::string& content)
|
||||
{
|
||||
std::ios::openmode mode = std::ios::in | std::ios::binary;
|
||||
std::ifstream ifs(filename.c_str(), mode);
|
||||
|
Loading…
Reference in New Issue
Block a user