mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
optimized gpu::minMax a little
This commit is contained in:
parent
13d18d65a8
commit
68a7fc9868
@ -400,6 +400,16 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
// Min max
|
||||
|
||||
enum { MIN, MAX };
|
||||
|
||||
template <typename T> struct MinMaxTypeTraits {};
|
||||
template <> struct MinMaxTypeTraits<unsigned char> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<signed char> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<unsigned short> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<signed short> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<int> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<float> { typedef float best_type; };
|
||||
template <> struct MinMaxTypeTraits<double> { typedef double best_type; };
|
||||
|
||||
template <typename T, int op> struct Cmp {};
|
||||
|
||||
template <typename T>
|
||||
@ -407,9 +417,7 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
{
|
||||
static __device__ void call(unsigned int tid, unsigned int offset, volatile T* optval)
|
||||
{
|
||||
T val = optval[tid + offset];
|
||||
if (val < optval[tid]) optval[tid] = val;
|
||||
//optval[tid] = min(optval[tid], optval[tid + offset]);
|
||||
optval[tid] = min(optval[tid], optval[tid + offset]);
|
||||
}
|
||||
};
|
||||
|
||||
@ -418,17 +426,16 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
{
|
||||
static __device__ void call(unsigned int tid, unsigned int offset, volatile T* optval)
|
||||
{
|
||||
T val = optval[tid + offset];
|
||||
if (val > optval[tid]) optval[tid] = val;
|
||||
//optval[tid] = max(optval[tid], optval[tid + offset]);
|
||||
optval[tid] = max(optval[tid], optval[tid + offset]);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template <int nthreads, typename Cmp, typename T>
|
||||
template <int nthreads, int op, typename T>
|
||||
__global__ void opt_kernel(int cols, int rows, const PtrStep src, PtrStep optval)
|
||||
{
|
||||
__shared__ T soptval[nthreads];
|
||||
typedef typename MinMaxTypeTraits<T>::best_type best_type;
|
||||
__shared__ best_type soptval[nthreads];
|
||||
|
||||
unsigned int x0 = blockIdx.x * blockDim.x;
|
||||
unsigned int y0 = blockIdx.y * blockDim.y;
|
||||
@ -441,21 +448,21 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (nthreads >= 512) if (tid < 256) { Cmp::call(tid, 256, soptval); __syncthreads(); }
|
||||
if (nthreads >= 256) if (tid < 128) { Cmp::call(tid, 128, soptval); __syncthreads(); }
|
||||
if (nthreads >= 128) if (tid < 64) { Cmp::call(tid, 64, soptval); __syncthreads(); }
|
||||
if (nthreads >= 512) if (tid < 256) { Cmp<best_type, op>::call(tid, 256, soptval); __syncthreads(); }
|
||||
if (nthreads >= 256) if (tid < 128) { Cmp<best_type, op>::call(tid, 128, soptval); __syncthreads(); }
|
||||
if (nthreads >= 128) if (tid < 64) { Cmp<best_type, op>::call(tid, 64, soptval); __syncthreads(); }
|
||||
|
||||
if (tid < 32)
|
||||
{
|
||||
if (nthreads >= 64) Cmp::call(tid, 32, soptval);
|
||||
if (nthreads >= 32) Cmp::call(tid, 16, soptval);
|
||||
if (nthreads >= 16) Cmp::call(tid, 8, soptval);
|
||||
if (nthreads >= 8) Cmp::call(tid, 4, soptval);
|
||||
if (nthreads >= 4) Cmp::call(tid, 2, soptval);
|
||||
if (nthreads >= 2) Cmp::call(tid, 1, soptval);
|
||||
if (nthreads >= 64) Cmp<best_type, op>::call(tid, 32, soptval);
|
||||
if (nthreads >= 32) Cmp<best_type, op>::call(tid, 16, soptval);
|
||||
if (nthreads >= 16) Cmp<best_type, op>::call(tid, 8, soptval);
|
||||
if (nthreads >= 8) Cmp<best_type, op>::call(tid, 4, soptval);
|
||||
if (nthreads >= 4) Cmp<best_type, op>::call(tid, 2, soptval);
|
||||
if (nthreads >= 2) Cmp<best_type, op>::call(tid, 1, soptval);
|
||||
}
|
||||
|
||||
if (tid == 0) ((T*)optval.ptr(blockIdx.y))[blockIdx.x] = soptval[0];
|
||||
if (tid == 0) ((T*)optval.ptr(blockIdx.y))[blockIdx.x] = (T)soptval[0];
|
||||
}
|
||||
|
||||
|
||||
@ -483,16 +490,16 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
dim3 cursize(src.cols, src.rows);
|
||||
dim3 grid(divUp(cursize.x, threads.x), divUp(cursize.y, threads.y));
|
||||
|
||||
opt_kernel<256, Cmp<T, MIN>, T><<<grid, threads>>>(cursize.x, cursize.y, src, minval_buf[curbuf]);
|
||||
opt_kernel<256, Cmp<T, MAX>, T><<<grid, threads>>>(cursize.x, cursize.y, src, maxval_buf[curbuf]);
|
||||
opt_kernel<256, MIN, T><<<grid, threads>>>(cursize.x, cursize.y, src, minval_buf[curbuf]);
|
||||
opt_kernel<256, MAX, T><<<grid, threads>>>(cursize.x, cursize.y, src, maxval_buf[curbuf]);
|
||||
cursize = grid;
|
||||
|
||||
while (cursize.x > 1 || cursize.y > 1)
|
||||
{
|
||||
grid.x = divUp(cursize.x, threads.x);
|
||||
grid.y = divUp(cursize.y, threads.y);
|
||||
opt_kernel<256, Cmp<T, MIN>, T><<<grid, threads>>>(cursize.x, cursize.y, minval_buf[curbuf], minval_buf[1 - curbuf]);
|
||||
opt_kernel<256, Cmp<T, MAX>, T><<<grid, threads>>>(cursize.x, cursize.y, maxval_buf[curbuf], maxval_buf[1 - curbuf]);
|
||||
opt_kernel<256, MIN, T><<<grid, threads>>>(cursize.x, cursize.y, minval_buf[curbuf], minval_buf[1 - curbuf]);
|
||||
opt_kernel<256, MAX, T><<<grid, threads>>>(cursize.x, cursize.y, maxval_buf[curbuf], maxval_buf[1 - curbuf]);
|
||||
curbuf = 1 - curbuf;
|
||||
cursize = grid;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user