Rewrite distanceToCenters.

It supports NORM_L1 distance types now and can
use user provided indices.
Also fixed a bug of kmeans where distance pointers should be float instead
 of double.

NORM_L2 changed to NORM_L2SQR, Accuracy and Perf tests are added

added ROI support in accuracy test of distanceToCenters
This commit is contained in:
peng xiao 2013-10-08 15:49:40 +08:00 committed by Konstantin Matskevich
parent 2279c209c8
commit 68a8a11161
6 changed files with 300 additions and 58 deletions

View File

@ -85,4 +85,28 @@ Finds centers of clusters and groups input samples around the clusters.
* **KMEANS_USE_INITIAL_LABELS** During the first (and possibly the only) attempt, use the user-supplied labels instead of computing them from the initial centers. For the second and further attempts, use the random or semi-random centers. Use one of ``KMEANS_*_CENTERS`` flag to specify the exact method.
:param centers: Output matrix of the cluster centers, one row per each cluster center.
:param centers: Output matrix of the cluster centers, one row per each cluster center.
ocl::distanceToCenters
----------------------
For each samples in ``source``, find its closest neighour in ``centers``.
.. ocv:function:: void ocl::distanceToCenters(oclMat &dists, oclMat &labels, const oclMat &src, const oclMat &centers, int distType = NORM_L2SQR, const oclMat &indices = oclMat())
:param dists: The output distances calculated from each sample to the best matched center.
:param labels: The output index of best matched center for each row of sample.
:param src: Floating-point matrix of input samples. One row per sample.
:param centers: Floating-point matrix of center candidates. One row per center.
:param distType: Distance metric to calculate distances. Supports ``NORM_L1`` and ``NORM_L2SQR``.
:param indices: Optional source indices. If not empty:
* only the indexed source samples will be processed
* outputs, i.e., ``dists`` and ``labels``, have the same size of indices
* outputs are in the same order of indices instead of the order of src
The method is a utility function which maybe used for multiple clustering algorithms such as K-means.

View File

@ -877,7 +877,10 @@ namespace cv
//! Compute closest centers for each lines in source and lable it after center's index
// supports CV_32FC1/CV_32FC2/CV_32FC4 data type
CV_EXPORTS void distanceToCenters(oclMat &dists, oclMat &labels, const oclMat &src, const oclMat &centers);
// supports NORM_L1 and NORM_L2 distType
// if indices is provided, only the indexed rows will be calculated and their results are in the same
// order of indices
CV_EXPORTS void distanceToCenters(oclMat &dists, oclMat &labels, const oclMat &src, const oclMat &centers, int distType = NORM_L2SQR, const oclMat &indices = oclMat());
//!Does k-means procedure on GPU
// supports CV_32FC1/CV_32FC2/CV_32FC4 data type

View File

@ -860,3 +860,64 @@ PERF_TEST_P(columnSumFixture, columnSum, OCL_TYPICAL_MAT_SIZES)
else
OCL_PERF_ELSE
}
//////////////////////////////distanceToCenters////////////////////////////////////////////////
CV_ENUM(DistType, NORM_L1, NORM_L2SQR);
typedef tuple<Size, DistType> distanceToCentersParameters;
typedef TestBaseWithParam<distanceToCentersParameters> distanceToCentersFixture;
static void distanceToCentersPerfTest(Mat& src, Mat& centers, Mat& dists, Mat& labels, int distType)
{
Mat batch_dists;
cv::batchDistance(src,centers,batch_dists, CV_32FC1, noArray(), distType);
std::vector<float> dists_v;
std::vector<int> labels_v;
for(int i = 0; i<batch_dists.rows; i++)
{
Mat r = batch_dists.row(i);
double mVal;
Point mLoc;
minMaxLoc(r, &mVal, NULL, &mLoc, NULL);
dists_v.push_back((float)mVal);
labels_v.push_back(mLoc.x);
}
Mat temp_dists(dists_v);
Mat temp_labels(labels_v);
temp_dists.reshape(1,1).copyTo(dists);
temp_labels.reshape(1,1).copyTo(labels);
}
PERF_TEST_P(distanceToCentersFixture, distanceToCenters, ::testing::Combine(::testing::Values(cv::Size(256,256), cv::Size(512,512)), DistType::all()) )
{
Size size = get<0>(GetParam());
int distType = get<1>(GetParam());
Mat src(size, CV_32FC1);
Mat centers(size, CV_32FC1);
Mat dists(cv::Size(src.rows,1), CV_32FC1);
Mat labels(cv::Size(src.rows,1), CV_32SC1);
declare.in(src, centers, WARMUP_RNG).out(dists, labels);
if (RUN_OCL_IMPL)
{
ocl::oclMat ocl_src(src);
ocl::oclMat ocl_centers(centers);
ocl::oclMat ocl_dists(dists);
ocl::oclMat ocl_labels(labels);
OCL_TEST_CYCLE() ocl::distanceToCenters(ocl_dists,ocl_labels,ocl_src, ocl_centers, distType);
ocl_dists.download(dists);
ocl_labels.download(labels);
SANITY_CHECK(dists, 1e-6, ERROR_RELATIVE);
SANITY_CHECK(labels);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() distanceToCentersPerfTest(src,centers,dists,labels,distType);
SANITY_CHECK(dists, 1e-6, ERROR_RELATIVE);
SANITY_CHECK(labels);
}
else
OCL_PERF_ELSE
}

View File

@ -160,32 +160,61 @@ static void generateCentersPP(const Mat& _data, Mat& _out_centers,
}
}
void cv::ocl::distanceToCenters(oclMat &dists, oclMat &labels, const oclMat &src, const oclMat &centers)
void cv::ocl::distanceToCenters(oclMat &dists, oclMat &labels, const oclMat &src, const oclMat &centers, int distType, const oclMat &indices)
{
//if(src.clCxt -> impl -> double_support == 0 && src.type() == CV_64F)
//{
// CV_Error(CV_OpenCLDoubleNotSupported, "Selected device doesn't support double");
// return;
//}
CV_Assert(src.cols*src.oclchannels() == centers.cols*centers.oclchannels());
CV_Assert(src.depth() == CV_32F && centers.depth() == CV_32F);
bool is_label_row_major = false;
ensureSizeIsEnough(1, src.rows, CV_32FC1, dists);
if(labels.empty() || (!labels.empty() && labels.rows == src.rows && labels.cols == 1))
{
ensureSizeIsEnough(src.rows, 1, CV_32SC1, labels);
is_label_row_major = true;
}
CV_Assert(distType == NORM_L1 || distType == NORM_L2SQR);
Context *clCxt = src.clCxt;
int labels_step = (int)(labels.step/labels.elemSize());
string kernelname = "distanceToCenters";
int threadNum = src.rows > 256 ? 256 : src.rows;
size_t localThreads[3] = {1, threadNum, 1};
size_t globalThreads[3] = {1, src.rows, 1};
std::stringstream build_opt_ss;
build_opt_ss
<< (distType == NORM_L1 ? "-D L1_DIST" : "-D L2SQR_DIST")
<< (indices.empty() ? "" : " -D USE_INDEX");
String build_opt = build_opt_ss.str();
const int src_step = (int)(src.oclchannels() * src.step / src.elemSize());
const int centers_step = (int)(centers.oclchannels() * centers.step / centers.elemSize());
const int colsNumb = centers.cols*centers.oclchannels();
const int label_step = is_label_row_major ? (int)(labels.step / labels.elemSize()) : 1;
String kernelname = "distanceToCenters";
const int number_of_input = indices.empty() ? src.rows : indices.size().area();
const int src_offset = (int)src.offset/src.elemSize();
const int centers_offset = (int)centers.offset/centers.elemSize();
size_t globalThreads[3] = {number_of_input, 1, 1};
vector<pair<size_t, const void *> > args;
args.push_back(make_pair(sizeof(cl_int), (void *)&labels_step));
args.push_back(make_pair(sizeof(cl_int), (void *)&centers.rows));
args.push_back(make_pair(sizeof(cl_mem), (void *)&src.data));
args.push_back(make_pair(sizeof(cl_mem), (void *)&labels.data));
args.push_back(make_pair(sizeof(cl_int), (void *)&centers.cols));
args.push_back(make_pair(sizeof(cl_int), (void *)&src.rows));
args.push_back(make_pair(sizeof(cl_mem), (void *)&centers.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&dists.data));
if(!indices.empty())
{
args.push_back(make_pair(sizeof(cl_mem), (void *)&indices.data));
}
args.push_back(make_pair(sizeof(cl_mem), (void *)&labels.data));
args.push_back(make_pair(sizeof(cl_mem), (void *)&dists.data));
args.push_back(make_pair(sizeof(cl_int), (void *)&colsNumb));
args.push_back(make_pair(sizeof(cl_int), (void *)&src_step));
args.push_back(make_pair(sizeof(cl_int), (void *)&centers_step));
args.push_back(make_pair(sizeof(cl_int), (void *)&label_step));
args.push_back(make_pair(sizeof(cl_int), (void *)&number_of_input));
args.push_back(make_pair(sizeof(cl_int), (void *)&centers.rows));
args.push_back(make_pair(sizeof(cl_int), (void *)&src_offset));
args.push_back(make_pair(sizeof(cl_int), (void *)&centers_offset));
openCLExecuteKernel(clCxt, &kmeans_kernel, kernelname, globalThreads, localThreads, args, -1, -1, NULL);
openCLExecuteKernel(Context::getContext(), &kmeans_kernel,
kernelname, globalThreads, NULL, args, -1, -1, build_opt.c_str());
}
///////////////////////////////////k - means /////////////////////////////////////////////////////////
double cv::ocl::kmeans(const oclMat &_src, int K, oclMat &_bestLabels,
@ -404,17 +433,17 @@ double cv::ocl::kmeans(const oclMat &_src, int K, oclMat &_bestLabels,
_bestLabels.upload(_labels);
_centers.upload(centers);
distanceToCenters(_dists, _bestLabels, _src, _centers);
Mat dists;
_dists.download(dists);
_bestLabels.download(_labels);
double* dist = dists.ptr<double>(0);
float* dist = dists.ptr<float>(0);
compactness = 0;
for( i = 0; i < N; i++ )
{
compactness += dist[i];
compactness += (double)dist[i];
}
}

View File

@ -16,6 +16,7 @@
//
// @Authors
// Xiaopeng Fu, fuxiaopeng2222@163.com
// Peng Xiao, pengxiao@outlook.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
@ -43,42 +44,81 @@
//
//M*/
__kernel void distanceToCenters(
int label_step, int K,
__global float *src,
__global int *labels, int dims, int rows,
__global float *centers,
__global float *dists)
#ifdef L1_DIST
# define DISTANCE(A, B) fabs((A) - (B))
#elif defined L2SQR_DIST
# define DISTANCE(A, B) ((A) - (B)) * ((A) - (B))
#else
# define DISTANCE(A, B) ((A) - (B)) * ((A) - (B))
#endif
inline float dist(__global const float * center, __global const float * src, int feature_cols)
{
int gid = get_global_id(1);
float dist, euDist, min;
int minCentroid;
if(gid >= rows)
return;
for(int i = 0 ; i < K; i++)
float res = 0;
float4 tmp4;
int i;
for(i = 0; i < feature_cols / 4; i += 4, center += 4, src += 4)
{
euDist = 0;
for(int j = 0; j < dims; j++)
{
dist = (src[j + gid * dims]
- centers[j + i * dims]);
euDist += dist * dist;
}
tmp4 = vload4(0, center) - vload4(0, src);
#ifdef L1_DIST
tmp4 = fabs(tmp4);
#else
tmp4 *= tmp4;
#endif
res += tmp4.x + tmp4.y + tmp4.z + tmp4.w;
}
if(i == 0)
for(; i < feature_cols; ++i, ++center, ++src)
{
res += DISTANCE(*src, *center);
}
return res;
}
// to be distinguished with distanceToCenters in kmeans_kernel.cl
__kernel void distanceToCenters(
__global const float *src,
__global const float *centers,
#ifdef USE_INDEX
__global const int *indices,
#endif
__global int *labels,
__global float *dists,
int feature_cols,
int src_step,
int centers_step,
int label_step,
int input_size,
int K,
int offset_src,
int offset_centers
)
{
int gid = get_global_id(0);
float euDist, minval;
int minCentroid;
if(gid >= input_size)
{
return;
}
src += offset_src;
centers += offset_centers;
#ifdef USE_INDEX
src += indices[gid] * src_step;
#else
src += gid * src_step;
#endif
minval = dist(centers, src, feature_cols);
minCentroid = 0;
for(int i = 1 ; i < K; i++)
{
euDist = dist(centers + i * centers_step, src, feature_cols);
if(euDist < minval)
{
min = euDist;
minCentroid = 0;
}
else if(euDist < min)
{
min = euDist;
minval = euDist;
minCentroid = i;
}
}
dists[gid] = min;
labels[label_step * gid] = minCentroid;
labels[gid * label_step] = minCentroid;
dists[gid] = minval;
}

View File

@ -99,7 +99,6 @@ PARAM_TEST_CASE(Kmeans, int, int, int)
}
};
OCL_TEST_P(Kmeans, Mat){
if(flags & KMEANS_USE_INITIAL_LABELS)
{
// inital a given labels
@ -116,11 +115,9 @@ OCL_TEST_P(Kmeans, Mat){
kmeans(src, K, labels,
TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 100, 0),
1, flags, centers);
ocl::kmeans(d_src, K, d_labels,
TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 100, 0),
1, flags, d_centers);
Mat dd_labels(d_labels);
Mat dd_centers(d_centers);
if(flags & KMEANS_USE_INITIAL_LABELS)
@ -153,9 +150,97 @@ OCL_TEST_P(Kmeans, Mat){
}
}
}
INSTANTIATE_TEST_CASE_P(OCL_ML, Kmeans, Combine(
Values(3, 5, 8),
Values(CV_32FC1, CV_32FC2, CV_32FC4),
Values(OCL_KMEANS_USE_INITIAL_LABELS/*, OCL_KMEANS_PP_CENTERS*/)));
/////////////////////////////// DistanceToCenters //////////////////////////////////////////
CV_ENUM(DistType, NORM_L1, NORM_L2SQR);
PARAM_TEST_CASE(distanceToCenters, DistType, bool)
{
cv::Size size;
int distType;
bool useRoi;
cv::Mat src, centers, src_roi, centers_roi;
cv::ocl::oclMat ocl_src, ocl_centers, ocl_src_roi, ocl_centers_roi;
virtual void SetUp()
{
distType = GET_PARAM(0);
useRoi = GET_PARAM(1);
}
void random_roi()
{
Size roiSize_src = randomSize(10,1000);
Size roiSize_centers = randomSize(10, 1000);
roiSize_src.width = roiSize_centers.width;
Border srcBorder = randomBorder(0, useRoi ? 500 : 0);
randomSubMat(src, src_roi, roiSize_src, srcBorder, CV_32FC1, -SHRT_MAX, SHRT_MAX);
Border centersBorder = randomBorder(0, useRoi ? 500 : 0);
randomSubMat(centers, centers_roi, roiSize_centers, centersBorder, CV_32FC1, -SHRT_MAX, SHRT_MAX);
for(int i = 0; i<centers.rows; i++)
centers.at<float>(i, randomInt(0,centers.cols-1)) = (float)randomDouble(SHRT_MAX, INT_MAX);
generateOclMat(ocl_src, ocl_src_roi, src, roiSize_src, srcBorder);
generateOclMat(ocl_centers, ocl_centers_roi, centers, roiSize_centers, centersBorder);
}
};
OCL_TEST_P(distanceToCenters, Accuracy)
{
for(int j = 0; j< LOOP_TIMES; j++)
{
random_roi();
cv::ocl::oclMat ocl_dists;
cv::ocl::oclMat ocl_labels;
cv::ocl::distanceToCenters(ocl_dists,ocl_labels,ocl_src_roi, ocl_centers_roi, distType);
Mat labels, dists;
ocl_labels.download(labels);
ocl_dists.download(dists);
ASSERT_EQ(ocl_dists.cols, ocl_labels.rows);
Mat batch_dists;
cv::batchDistance(src_roi, centers_roi, batch_dists, CV_32FC1, noArray(), distType);
std::vector<double> gold_dists_v;
for(int i = 0; i<batch_dists.rows; i++)
{
Mat r = batch_dists.row(i);
double mVal;
Point mLoc;
minMaxLoc(r, &mVal, NULL, &mLoc, NULL);
int ocl_label = *(int*)labels.row(i).col(0).data;
ASSERT_EQ(mLoc.x, ocl_label);
gold_dists_v.push_back(mVal);
}
Mat gold_dists(gold_dists_v);
dists.convertTo(dists, CV_64FC1);
double relative_error = cv::norm(gold_dists.t(), dists, NORM_INF|NORM_RELATIVE);
ASSERT_LE(relative_error, 1e-5);
}
}
INSTANTIATE_TEST_CASE_P (OCL_ML, distanceToCenters, Combine(DistType::all(), Bool()) );
#endif