An example how to use features2d for MSER. Data results are visualized in 3D using openglwith mouse or keyboard

This commit is contained in:
laurentBerger 2015-05-16 18:59:22 +02:00
parent 06b0fa6fc2
commit 68e9d19743
2 changed files with 524 additions and 571 deletions

View File

@ -1,571 +0,0 @@
#include <opencv2/opencv.hpp>
#include "opencv2/core/opengl.hpp"
#include <vector>
#include <map>
#include <iostream>
#ifdef WIN32
#define WIN32_LEAN_AND_MEAN 1
#define NOMINMAX 1
#include <windows.h>
#endif
#if defined(_WIN64)
#include <windows.h>
#endif
#if defined(__APPLE__)
#include <OpenGL/gl.h>
#include <OpenGL/glu.h>
#else
#include <GL/gl.h>
#include <GL/glu.h>
#endif
using namespace std;
using namespace cv;
void Example_MSER(vector<String> &fileName);
static void help()
{
cout << "\n This program demonstrates how to use BLOB and MSER to detect region \n"
"Usage: \n"
" ./BLOB_MSER <image1(../data/forme2.jpg as default)>\n"
"Press a key when image window is active to change descriptor";
}
struct MSERParams
{
MSERParams(int _delta = 5, int _min_area = 60, int _max_area = 14400,
double _max_variation = 0.25, double _min_diversity = .2,
int _max_evolution = 200, double _area_threshold = 1.01,
double _min_margin = 0.003, int _edge_blur_size = 5)
{
delta = _delta;
minArea = _min_area;
maxArea = _max_area;
maxVariation = _max_variation;
minDiversity = _min_diversity;
maxEvolution = _max_evolution;
areaThreshold = _area_threshold;
minMargin = _min_margin;
edgeBlurSize = _edge_blur_size;
pass2Only = false;
}
int delta;
int minArea;
int maxArea;
double maxVariation;
double minDiversity;
bool pass2Only;
int maxEvolution;
double areaThreshold;
double minMargin;
int edgeBlurSize;
};
String Legende(SimpleBlobDetector::Params &pAct)
{
String s="";
if (pAct.filterByArea)
{
String inf = static_cast<ostringstream*>(&(ostringstream() << pAct.minArea))->str();
String sup = static_cast<ostringstream*>(&(ostringstream() << pAct.maxArea))->str();
s = " Area range [" + inf + " to " + sup + "]";
}
if (pAct.filterByCircularity)
{
String inf = static_cast<ostringstream*>(&(ostringstream() << pAct.minCircularity))->str();
String sup = static_cast<ostringstream*>(&(ostringstream() << pAct.maxCircularity))->str();
if (s.length()==0)
s = " Circularity range [" + inf + " to " + sup + "]";
else
s += " AND Circularity range [" + inf + " to " + sup + "]";
}
if (pAct.filterByColor)
{
String inf = static_cast<ostringstream*>(&(ostringstream() << (int)pAct.blobColor))->str();
if (s.length() == 0)
s = " Blob color " + inf;
else
s += " AND Blob color " + inf;
}
if (pAct.filterByConvexity)
{
String inf = static_cast<ostringstream*>(&(ostringstream() << pAct.minConvexity))->str();
String sup = static_cast<ostringstream*>(&(ostringstream() << pAct.maxConvexity))->str();
if (s.length() == 0)
s = " Convexity range[" + inf + " to " + sup + "]";
else
s += " AND Convexity range[" + inf + " to " + sup + "]";
}
if (pAct.filterByInertia)
{
String inf = static_cast<ostringstream*>(&(ostringstream() << pAct.minInertiaRatio))->str();
String sup = static_cast<ostringstream*>(&(ostringstream() << pAct.maxInertiaRatio))->str();
if (s.length() == 0)
s = " Inertia ratio range [" + inf + " to " + sup + "]";
else
s += " AND Inertia ratio range [" + inf + " to " + sup + "]";
}
return s;
}
const int win_width = 800;
const int win_height = 640;
struct DrawData
{
ogl::Arrays arr;
ogl::Texture2D tex;
ogl::Buffer indices;
};
void draw(void* userdata);
void draw(void* userdata)
{
DrawData* data = static_cast<DrawData*>(userdata);
glRotated(0.6, 0, 1, 0);
ogl::render(data->arr, data->indices, ogl::TRIANGLES);
}
int main(int argc, char *argv[])
{
Mat imgcol = imread("../data/lena.jpg");
namedWindow("OpenGL", WINDOW_OPENGL);
//resizeWindow("OpenGL", win_width, win_height);
Mat_<Vec3f> vertex(1, 4);
vertex << Vec3f(-1, 1,0), Vec3f(-1, -1,0), Vec3f(1, -1,1), Vec3f(1, 1,-1);
Mat_<Vec2f> texCoords(1, 4);
texCoords << Vec2f(0, 0), Vec2f(0, 1), Vec2f(1, 1), Vec2f(1, 0);
Mat_<int> indices(1, 6);
indices << 0, 1, 2,2, 3, 0;
DrawData *data = new DrawData;
data->arr.setVertexArray(vertex);
data->arr.setTexCoordArray(texCoords);
data->indices.copyFrom(indices);
data->tex.copyFrom(imgcol);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(45.0, (double)win_width / win_height, 0.1, 100.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0, 0, 3, 0, 0, 0, 0, 1, 0);
glEnable(GL_TEXTURE_2D);
data->tex.bind();
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexEnvi(GL_TEXTURE_2D, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glDisable(GL_CULL_FACE);
setOpenGlDrawCallback("OpenGL", draw, data);
for (;;)
{
updateWindow("OpenGL");
int key = waitKey(40);
if ((key & 0xff) == 27)
break;
}
setOpenGlDrawCallback("OpenGL", 0, 0);
destroyAllWindows();
vector<String> fileName;
Example_MSER(fileName);
Mat img(600,800,CV_8UC1);
if (argc == 1)
{
fileName.push_back("../data/BLOB_MSER.bmp");
}
else if (argc == 2)
{
fileName.push_back(argv[1]);
}
else
{
help();
return(0);
}
img = imread(fileName[0], IMREAD_UNCHANGED);
if (img.rows*img.cols <= 0)
{
cout << "Image " << fileName[0] << " is empty or cannot be found\n";
return(0);
}
SimpleBlobDetector::Params pDefaultBLOB;
MSERParams pDefaultMSER;
// This is default parameters for SimpleBlobDetector
pDefaultBLOB.thresholdStep = 10;
pDefaultBLOB.minThreshold = 10;
pDefaultBLOB.maxThreshold = 220;
pDefaultBLOB.minRepeatability = 2;
pDefaultBLOB.minDistBetweenBlobs = 10;
pDefaultBLOB.filterByColor = false;
pDefaultBLOB.blobColor = 0;
pDefaultBLOB.filterByArea = false;
pDefaultBLOB.minArea = 25;
pDefaultBLOB.maxArea = 5000;
pDefaultBLOB.filterByCircularity = false;
pDefaultBLOB.minCircularity = 0.9f;
pDefaultBLOB.maxCircularity = std::numeric_limits<float>::max();
pDefaultBLOB.filterByInertia = false;
pDefaultBLOB.minInertiaRatio = 0.1f;
pDefaultBLOB.maxInertiaRatio = std::numeric_limits<float>::max();
pDefaultBLOB.filterByConvexity = false;
pDefaultBLOB.minConvexity = 0.95f;
pDefaultBLOB.maxConvexity = std::numeric_limits<float>::max();
// Descriptor array (BLOB or MSER)
vector<String> typeDesc;
// Param array for BLOB
vector<SimpleBlobDetector::Params> pBLOB;
vector<SimpleBlobDetector::Params>::iterator itBLOB;
// Param array for MSER
vector<MSERParams> pMSER;
vector<MSERParams>::iterator itMSER;
// Color palette
vector<Vec3b> palette;
for (int i=0;i<65536;i++)
palette.push_back(Vec3b((uchar)rand(), (uchar)rand(), (uchar)rand()));
help();
/* typeDesc.push_back("MSER");
pMSER.push_back(pDefaultMSER);
pMSER.back().delta = 1;
pMSER.back().minArea = 1;
pMSER.back().maxArea = 180000;
pMSER.back().maxVariation= 500;
pMSER.back().minDiversity = 0;
pMSER.back().pass2Only = false;*/
typeDesc.push_back("BLOB");
pBLOB.push_back(pDefaultBLOB);
pBLOB.back().filterByColor = true;
pBLOB.back().blobColor = 0;
// This descriptor are going to be detect and compute 4 BLOBS with 4 differents params
// Param for first BLOB detector we want all
typeDesc.push_back("BLOB"); // see http://docs.opencv.org/trunk/d0/d7a/classcv_1_1SimpleBlobDetector.html
pBLOB.push_back(pDefaultBLOB);
pBLOB.back().filterByArea = true;
pBLOB.back().minArea = 1;
pBLOB.back().maxArea = int(img.rows*img.cols);
// Param for second BLOB detector we want area between 500 and 2900 pixels
typeDesc.push_back("BLOB");
pBLOB.push_back(pDefaultBLOB);
pBLOB.back().filterByArea = true;
pBLOB.back().minArea = 500;
pBLOB.back().maxArea = 2900;
// Param for third BLOB detector we want only circular object
typeDesc.push_back("BLOB");
pBLOB.push_back(pDefaultBLOB);
pBLOB.back().filterByCircularity = true;
// Param for Fourth BLOB detector we want ratio inertia
typeDesc.push_back("BLOB");
pBLOB.push_back(pDefaultBLOB);
pBLOB.back().filterByInertia = true;
pBLOB.back().minInertiaRatio = 0;
pBLOB.back().maxInertiaRatio = (float)0.2;
// Param for Fourth BLOB detector we want ratio inertia
typeDesc.push_back("BLOB");
pBLOB.push_back(pDefaultBLOB);
pBLOB.back().filterByConvexity = true;
pBLOB.back().minConvexity = 0.;
pBLOB.back().maxConvexity = (float)0.9;
itBLOB = pBLOB.begin();
itMSER = pMSER.begin();
vector<double> desMethCmp;
Ptr<Feature2D> b;
String label;
// Descriptor loop
vector<String>::iterator itDesc;
for (itDesc = typeDesc.begin(); itDesc != typeDesc.end(); itDesc++)
{
vector<KeyPoint> keyImg1;
if (*itDesc == "BLOB"){
b = SimpleBlobDetector::create(*itBLOB);
label=Legende(*itBLOB);
itBLOB++;
}
if (*itDesc == "MSER"){
if(img.type()==CV_8UC3)
{
b = MSER::create(itMSER->delta, itMSER->minArea, itMSER->maxArea, itMSER->maxVariation, itMSER->minDiversity, itMSER->maxEvolution,
itMSER->areaThreshold, itMSER->minMargin, itMSER->edgeBlurSize);
b.dynamicCast<MSER>()->setPass2Only(itMSER->pass2Only);
}
else
{
b = MSER::create(itMSER->delta, itMSER->minArea, itMSER->maxArea, itMSER->maxVariation, itMSER->minDiversity);
}
//b = MSER::create();
//b = MSER::create();
}
try {
// We can detect keypoint with detect method
vector<KeyPoint> keyImg;
vector<Rect> zone;
vector<vector <Point>> region;
Mat desc, result(img.rows,img.cols,CV_8UC3);
if (b.dynamicCast<SimpleBlobDetector>() != NULL)
{
Ptr<SimpleBlobDetector> sbd = b.dynamicCast<SimpleBlobDetector>();
sbd->detect(img, keyImg, Mat());
drawKeypoints(img,keyImg,result);
int i=0;
for (vector<KeyPoint>::iterator k=keyImg.begin();k!=keyImg.end();k++,i++)
circle(result,k->pt,k->size,palette[i%65536]);
}
if (b.dynamicCast<MSER>() != NULL)
{
Ptr<MSER> sbd = b.dynamicCast<MSER>();
sbd->detectRegions(img, region, zone);
int i = 0;
result=Scalar(0,0,0);
for (vector<Rect>::iterator r = zone.begin(); r != zone.end();r++,i++)
{
// we draw a white rectangle which include all region pixels
rectangle(result, *r, Vec3b(255, 0, 0), 2);
}
i=0;
for (vector<vector <Point>>::iterator itr = region.begin(); itr != region.end(); itr++, i++)
{
for (vector <Point>::iterator itp = region[i].begin(); itp != region[i].end(); itp++)
{
// all pixels belonging to region are red
result.at<Vec3b>(itp->y, itp->x) = Vec3b(0,0,128);
}
}
}
namedWindow(*itDesc+label , WINDOW_AUTOSIZE);
imshow(*itDesc + label, result);
imshow("Original", img);
FileStorage fs(*itDesc + "_" + fileName[0] + ".xml", FileStorage::WRITE);
fs<<*itDesc<<keyImg;
waitKey();
}
catch (Exception& e)
{
cout << "Feature : " << *itDesc << "\n";
cout<<e.msg<<endl;
}
}
return 0;
}
void Example_MSER(vector<String> &fileName)
{
Mat img(800, 800, CV_8UC1);
fileName.push_back("SyntheticImage.bmp");
map<int, char> val;
int fond = 0;
img = Scalar(fond);
val[fond] = 1;
int width1[]={390,380,300,290,280,270,260,250,210,190,150,100, 80,70};
int color1[]={ 80,180,160,140,120,100, 90,110,170,150,140,100,220};
Point p0(10, 10);
int *width,*color;
width = width1;
color = color1;
for (int i = 0; i<13; i++)
{
rectangle(img, Rect(p0, Size(width[i], width[i])), Scalar(color[i]), 1);
p0 += Point((width[i] - width[i + 1]) / 2, (width[i] - width[i + 1]) / 2);
floodFill(img, p0, Scalar(color[i]));
}
p0 = Point(200, 600);
for (int i = 0; i<13; i++)
{
circle(img, p0, width[i] / 2, Scalar(color[i]), 1);
floodFill(img, p0, Scalar(color[i]));
}
for (int i = 0; i<13; i++)
color1[i] = 255 - color1[i];
p0 = Point(410, 10);
for (int i = 0; i<13; i++)
{
rectangle(img, Rect(p0, Size(width[i], width[i])), Scalar(color[i]), 1);
p0 += Point((width[i] - width[i + 1]) / 2, (width[i] - width[i + 1]) / 2);
floodFill(img, p0, Scalar(color[i]));
}
p0 = Point(600, 600);
for (int i = 0; i<13; i++)
{
circle(img, p0, width[i]/2,Scalar(color[i]), 1);
floodFill(img, p0 , Scalar(color[i]));
}
int channel = 1;
int histSize = 256 ;
float range[] = { 0, 256 };
const float* histRange[] = { range };
Mat hist;
// we compute the histogram from the 0-th and 1-st channels
calcHist(&img, 1, 0, Mat(), hist, 1, &histSize, histRange, true, false);
Mat cumHist(hist.size(), hist.type());
cumHist.at<float>(0, 0) = hist.at<float>(0, 0);
for (int i = 1; i < hist.rows; i++)
cumHist.at<float>(i, 0) = cumHist.at<float>(i - 1, 0) + hist.at<float>(i, 0);
imwrite(fileName[0], img);
cout << "****************Maximal region************************\n";
cout << "i\th\t\tsh\t\tq\n";
cout << 0 << "\t" << hist.at<float>(0, 0) << "\t\t" << cumHist.at<float>(0, 0) << "\t\t\n";
for (int i = 1; i < hist.rows-1 ; i++)
{
if (cumHist.at<float>(i, 0)>0)
{
cout << i << "\t" << hist.at<float>(i, 0) << "\t\t" << cumHist.at<float>(i, 0) << "\t\t" << (cumHist.at<float>(i + 1, 0) - cumHist.at<float>(i, 0)) / cumHist.at<float>(i, 0);
}
else
cout << i << "\t" << hist.at<float>(i, 0) << "\t\t" << cumHist.at<float>(i, 0) << "\t\t";
cout << endl;
}
cout << 255 << "\t" << hist.at<float>(255, 0) << "\t\t" << cumHist.at<float>(255, 0) << "\t\t\n";
cout << "****************Minimal region************************\n";
cumHist.at<float>(255, 0) = hist.at<float>(255, 0);
for (int i = 254; i >= 0; i--)
cumHist.at<float>(i, 0) = cumHist.at<float>(i + 1, 0) + hist.at<float>(i, 0);
cout << "Minimal region\ni\th\t\tsh\t\tq\n";
cout << 255-255 << "\t" << hist.at<float>(255, 0) << "\t\t" << cumHist.at<float>(255, 0) << "\t\t\n";
for (int i = 254; i>=0; i--)
{
if (cumHist.at<float>(i, 0)>0)
{
cout << 255 - i << "\t" << i << "\t" << hist.at<float>(i, 0) << "\t\t" << cumHist.at<float>(i, 0) << "\t\t" << (cumHist.at<float>(i + 1, 0) - cumHist.at<float>(i, 0)) / cumHist.at<float>(i, 0);
}
else
cout << 255 - i << "\t" << i << "\t" << hist.at<float>(i, 0) << "\t\t" << cumHist.at<float>(i, 0) << "\t\t";
cout << endl;
}
// img = imread("C:/Users/laurent_2/Pictures/basketball1.png", IMREAD_GRAYSCALE);
MSERParams pDefaultMSER;
// Descriptor array (BLOB or MSER)
vector<String> typeDesc;
// Param array for BLOB
// Param array for MSER
vector<MSERParams> pMSER;
vector<MSERParams>::iterator itMSER;
// Color palette
vector<Vec3b> palette;
for (int i = 0; i<65536; i++)
palette.push_back(Vec3b((uchar)rand(), (uchar)rand(), (uchar)rand()));
help();
typeDesc.push_back("MSER");
pMSER.push_back(pDefaultMSER);
pMSER.back().delta = 1000;
pMSER.back().minArea = 1;
pMSER.back().maxArea = 180000;
pMSER.back().maxVariation = 1.701;
pMSER.back().minDiversity = 0;
pMSER.back().pass2Only = true;
itMSER = pMSER.begin();
vector<double> desMethCmp;
Ptr<Feature2D> b;
String label;
// Descriptor loop
vector<String>::iterator itDesc;
for (itDesc = typeDesc.begin(); itDesc != typeDesc.end(); itDesc++)
{
vector<KeyPoint> keyImg1;
if (*itDesc == "MSER"){
if (img.type() == CV_8UC3)
{
b = MSER::create(itMSER->delta, itMSER->minArea, itMSER->maxArea, itMSER->maxVariation, itMSER->minDiversity, itMSER->maxEvolution,
itMSER->areaThreshold, itMSER->minMargin, itMSER->edgeBlurSize);
}
else
{
b = MSER::create(itMSER->delta, itMSER->minArea, itMSER->maxArea, itMSER->maxVariation, itMSER->minDiversity);
b.dynamicCast<MSER>()->setPass2Only(itMSER->pass2Only);
}
}
try {
// We can detect keypoint with detect method
vector<KeyPoint> keyImg;
vector<Rect> zone;
vector<vector <Point>> region;
Mat desc, result(img.rows, img.cols, CV_8UC3);
int nb = img.channels();
if (b.dynamicCast<MSER>() != NULL)
{
Ptr<MSER> sbd = b.dynamicCast<MSER>();
sbd->detectRegions(img, region, zone);
int i = 0;
result = Scalar(0, 0, 0);
for (vector<vector <Point>>::iterator itr = region.begin(); itr != region.end(); itr++, i++)
{
for (vector <Point>::iterator itp = region[i].begin(); itp != region[i].end(); itp+=2)
{
// all pixels belonging to region are red
result.at<Vec3b>(itp->y, itp->x) = Vec3b(0, 0, 128);
}
}
i = 0;
for (vector<Rect>::iterator r = zone.begin(); r != zone.end(); r++, i++)
{
// we draw a white rectangle which include all region pixels
rectangle(result, *r, Vec3b(255, 0, 0), 2);
}
}
namedWindow(*itDesc + label, WINDOW_AUTOSIZE);
imshow(*itDesc + label, result);
imshow("Original", img);
FileStorage fs(*itDesc + "_" + fileName[0] + ".xml", FileStorage::WRITE);
fs << *itDesc << keyImg;
waitKey();
}
catch (Exception& e)
{
cout << "Feature : " << *itDesc << "\n";
cout << e.msg << endl;
}
}
return;
}

524
samples/cpp/detect_mser.cpp Normal file
View File

@ -0,0 +1,524 @@
#include <opencv2/opencv.hpp>
#include "opencv2/core/opengl.hpp"
#include <vector>
#include <map>
#include <iostream>
#ifdef WIN32
#define WIN32_LEAN_AND_MEAN 1
#define NOMINMAX 1
#include <windows.h>
#endif
#if defined(_WIN64)
#include <windows.h>
#endif
#if defined(__APPLE__)
#include <OpenGL/gl.h>
#include <OpenGL/glu.h>
#else
#include <GL/gl.h>
#include <GL/glu.h>
#endif
using namespace std;
using namespace cv;
static void help()
{
cout << "\n This program demonstrates how to use MSER to detect extremal regions \n"
"Usage: \n"
" ./detect_mser <image1(without parameter a syntehtic image is used as default)>\n"
"Press esc key when image window is active to change descriptor parameter\n";
"Press 2, 8, 4, 6, +,- or 5 keys in openGL windows to change view or use mouse\n";
}
struct MSERParams
{
MSERParams(int _delta = 5, int _min_area = 60, int _max_area = 14400,
double _max_variation = 0.25, double _min_diversity = .2,
int _max_evolution = 200, double _area_threshold = 1.01,
double _min_margin = 0.003, int _edge_blur_size = 5)
{
delta = _delta;
minArea = _min_area;
maxArea = _max_area;
maxVariation = _max_variation;
minDiversity = _min_diversity;
maxEvolution = _max_evolution;
areaThreshold = _area_threshold;
minMargin = _min_margin;
edgeBlurSize = _edge_blur_size;
pass2Only = false;
}
int delta;
int minArea;
int maxArea;
double maxVariation;
double minDiversity;
bool pass2Only;
int maxEvolution;
double areaThreshold;
double minMargin;
int edgeBlurSize;
};
String Legende(MSERParams &pAct)
{
String s="";
String inf = static_cast<ostringstream*>(&(ostringstream() << pAct.minArea))->str();
String sup = static_cast<ostringstream*>(&(ostringstream() << pAct.maxArea))->str();
s = " Area[" + inf + "," + sup + "]";
inf = static_cast<ostringstream*>(&(ostringstream() << pAct.delta))->str();
s += " del. [" + inf + "]";
inf = static_cast<ostringstream*>(&(ostringstream() << pAct.maxVariation))->str();
s += " var. [" + inf + "]";
inf = static_cast<ostringstream*>(&(ostringstream() << (int)pAct.minDiversity))->str();
s += " div. [" + inf + "]";
inf = static_cast<ostringstream*>(&(ostringstream() << (int)pAct.pass2Only))->str();
s += " pas. [" + inf + "]";
inf = static_cast<ostringstream*>(&(ostringstream() << (int)pAct.maxEvolution))->str();
s += "RGb-> evo. [" + inf + "]";
inf = static_cast<ostringstream*>(&(ostringstream() << (int)pAct.areaThreshold))->str();
s += " are. [" + inf + "]";
inf = static_cast<ostringstream*>(&(ostringstream() << (int)pAct.minMargin))->str();
s += " mar. [" + inf + "]";
inf = static_cast<ostringstream*>(&(ostringstream() << (int)pAct.edgeBlurSize))->str();
s += " siz. [" + inf + "]";
return s;
}
const int win_width = 800;
const int win_height = 640;
bool rotateEnable=true;
bool keyPressed=false;
Vec4f rotAxis(1,0,1,0);
Vec3f zoom(1,0,0);
float obsX = (float)0, obsY = (float)0, obsZ = (float)-10, tx = (float)0, ty = (float)0;
float thetaObs = (float)-1.570, phiObs = (float)1.570, rObs = (float)10;
int prevX=-1,prevY=-1,prevTheta=-1000,prevPhi=-1000;
struct DrawData
{
ogl::Arrays arr;
ogl::Texture2D tex;
ogl::Buffer indices;
};
void draw(void* userdata);
void draw(void* userdata)
{
DrawData* data = static_cast<DrawData*>(userdata);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(obsX, obsY, obsZ, 0, 0, .0, .0, 10.0, 0.0);
glTranslatef(tx,ty,0);
keyPressed = false;
ogl::render(data->arr, data->indices, ogl::TRIANGLES);
}
static void onMouse(int event, int x, int y, int flags, void*)
{
if (event == EVENT_RBUTTONDOWN)
{
prevX = x;
prevY = y;
}
if (event == EVENT_RBUTTONUP)
{
prevX = -1;
prevY = -1;
}
if (prevX != -1)
{
tx += float((x - prevX) / 100.0);
ty -= float((y - prevY) / 100.0);
prevX = x;
prevY = y;
}
if (event == EVENT_LBUTTONDOWN)
{
prevTheta = x;
prevPhi = y;
}
if (event == EVENT_LBUTTONUP)
{
prevTheta = -1000;
prevPhi = -1000;
}
if (prevTheta != -1000)
{
if (x - prevTheta<0)
{
thetaObs +=(float)0.02;
}
else if (x - prevTheta>0)
{
thetaObs -= (float)0.02;
}
if (y - prevPhi<0)
{
phiObs -= (float)0.02;
}
else if (y - prevPhi>0)
{
phiObs += (float)0.02;
}
prevTheta = x;
prevPhi = y;
}
if (event==EVENT_MOUSEWHEEL)
if (getMouseWheelDelta(flags)>0)
rObs += (float)0.1;
else
rObs -= (float)0.1;
float pi = (float)acos(-1.0);
if (thetaObs>pi)
{
thetaObs = -2 * pi + thetaObs;
}
if (thetaObs<-pi)
thetaObs = 2 * pi + thetaObs;
if (phiObs>pi / 2)
phiObs = pi / 2 - (float)0.0001;
if (phiObs<-pi / 2)
phiObs = -pi / 2 + (float)0.00001;
if (rObs<0)
rObs = 0;
}
void DrawOpenGLMSER(Mat img, Mat result)
{
Mat imgGray;
if (img.type() != CV_8UC1)
cvtColor(img, imgGray, COLOR_BGR2GRAY);
else
imgGray = img;
namedWindow("OpenGL", WINDOW_OPENGL);
setMouseCallback("OpenGL", onMouse, NULL);
Mat_<Vec3f> vertex(1, img.cols*img.rows);
Mat_<Vec2f> texCoords(1, img.cols*img.rows);
for (int i = 0, nbPix = 0; i<img.rows; i++)
{
for (int j = 0; j<img.cols; j++, nbPix++)
{
float x = (j) / (float)img.cols;
float y = (i) / (float)img.rows;
vertex.at< Vec3f >(0, nbPix) = Vec3f(float(2 * (x - 0.5)), float(2 * (0.5 - y)), float(imgGray.at<uchar>(i, j) / 512.0));
texCoords.at< Vec2f>(0, nbPix) = Vec2f(x, y);
}
}
Mat_<int> indices(1, (img.rows - 1)*(6 * img.cols));
for (int i = 1, nbPix = 0; i<img.rows; i++)
{
for (int j = 1; j<img.cols; j++)
{
int c = i*img.cols + j;
indices.at<int>(0, nbPix++) = c ;
indices.at<int>(0, nbPix++) = c - 1;
indices.at<int>(0, nbPix++) = c- img.cols - 1;
indices.at<int>(0, nbPix++) = c- img.cols - 1;
indices.at<int>(0, nbPix++) = c - img.cols;
indices.at<int>(0, nbPix++) = c ;
}
}
DrawData *data = new DrawData;
data->arr.setVertexArray(vertex);
data->arr.setTexCoordArray(texCoords);
data->indices.copyFrom(indices);
data->tex.copyFrom(result);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(45.0, (double)win_width / win_height, 0.0, 1000.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glEnable(GL_TEXTURE_2D);
data->tex.bind();
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexEnvi(GL_TEXTURE_2D, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glDisable(GL_CULL_FACE);
setOpenGlDrawCallback("OpenGL", draw, data);
for (;;)
{
updateWindow("OpenGL");
int key = waitKey(40);
if ((key & 0xff) == 27)
break;
if (key == 0x20)
rotateEnable = !rotateEnable;
float pi = (float)acos(-1);
switch (key) {
case '5':
obsX = 0, obsY = 0, obsZ = -10;
thetaObs = -pi/2, phiObs = pi/2, rObs = 10;
tx=0;ty=0;
break;
case '4':
thetaObs += (float)0.1;
break;
case '6':
thetaObs -= (float)0.1;
break;
case '2':
phiObs -= (float).1;
break;
case '8':
phiObs += (float).1;
break;
case '+':
rObs -= (float).1;
break;
case '-':
rObs += (float).1;
break;
}
if (thetaObs>pi)
{
thetaObs = -2 * pi + thetaObs;
}
if (thetaObs<-pi)
thetaObs = 2 * pi + thetaObs;
if (phiObs>pi / 2)
phiObs = pi / 2 - (float)0.0001;
if (phiObs<-pi / 2)
phiObs = -pi / 2 + (float)0.00001;
if (rObs<0)
rObs = 0;
obsX = rObs*cos(thetaObs)*cos(phiObs);
obsY = rObs*sin(thetaObs)*cos(phiObs);
obsZ = rObs*sin(phiObs);
}
setOpenGlDrawCallback("OpenGL", 0, 0);
destroyAllWindows();
}
Mat MakeSyntheticImage()
{
Mat img(800, 800, CV_8UC1);
map<int, char> val;
int fond = 0;
img = Scalar(fond);
val[fond] = 1;
int width1[] = { 390, 380, 300, 290, 280, 270, 260, 250, 210, 190, 150, 100, 80, 70 };
int color1[] = { 80, 180, 160, 140, 120, 100, 90, 110, 170, 150, 140, 100, 220 };
Point p0(10, 10);
int *width, *color;
width = width1;
color = color1;
for (int i = 0; i<13; i++)
{
rectangle(img, Rect(p0, Size(width[i], width[i])), Scalar(color[i]), 1);
p0 += Point((width[i] - width[i + 1]) / 2, (width[i] - width[i + 1]) / 2);
floodFill(img, p0, Scalar(color[i]));
}
int color2[] = { 81, 181, 161, 141, 121, 101, 91, 111, 171, 151, 141, 101, 221 };
color = color2;
p0 = Point(200, 600);
for (int i = 0; i<13; i++)
{
circle(img, p0, width[i] / 2, Scalar(color[i]), 1);
floodFill(img, p0, Scalar(color[i]));
}
int color3[] = { 175,75,95,115,135,155,165,145,85,105,115,156 };
color = color3;
p0 = Point(410, 10);
for (int i = 0; i<13; i++)
{
rectangle(img, Rect(p0, Size(width[i], width[i])), Scalar(color[i]), 1);
p0 += Point((width[i] - width[i + 1]) / 2, (width[i] - width[i + 1]) / 2);
floodFill(img, p0, Scalar(color[i]));
}
int color4[] = { 173,73,93,113,133,153,163,143,83,103,114,154 };
color = color4;
p0 = Point(600, 600);
for (int i = 0; i<13; i++)
{
circle(img, p0, width[i] / 2, Scalar(color[i]), 1);
floodFill(img, p0, Scalar(color[i]));
}
int histSize = 256;
float range[] = { 0, 256 };
const float* histRange[] = { range };
Mat hist;
// we compute the histogram
calcHist(&img, 1, 0, Mat(), hist, 1, &histSize, histRange, true, false);
cout << "****************Maximal region************************\n";
for (int i = 0; i < hist.rows ; i++)
{
if (hist.at<float>(i, 0)!=0)
{
cout << "h" << i << "=\t" << hist.at<float>(i, 0) << "\n";
}
}
return img;
}
int main(int argc, char *argv[])
{
vector<String> fileName;
Mat imgOrig,img;
Size blurSize(5,5);
if (argc==2)
{
fileName.push_back(argv[1]);
imgOrig = imread(fileName[0], IMREAD_GRAYSCALE); blur(imgOrig, img, blurSize);
}
else
{
fileName.push_back("SyntheticImage.bmp");
imgOrig = MakeSyntheticImage();
img=imgOrig;
}
MSERParams pDefaultMSER;
// Descriptor array MSER
vector<String> typeDesc;
// Param array for MSER
vector<MSERParams> pMSER;
vector<MSERParams>::iterator itMSER;
// Color palette
vector<Vec3b> palette;
for (int i = 0; i<65536; i++)
palette.push_back(Vec3b((uchar)rand(), (uchar)rand(), (uchar)rand()));
help();
typeDesc.push_back("MSER");
pMSER.push_back(pDefaultMSER);
pMSER.back().delta = 10;
pMSER.back().minArea = 100;
pMSER.back().maxArea = 5000;
pMSER.back().maxVariation = 2;
pMSER.back().minDiversity = 0;
pMSER.back().pass2Only = true;
typeDesc.push_back("MSER");
pMSER.push_back(pDefaultMSER);
pMSER.back().delta = 10;
pMSER.back().minArea = 100;
pMSER.back().maxArea = 5000;
pMSER.back().maxVariation = 2;
pMSER.back().minDiversity = 0;
pMSER.back().pass2Only = false;
typeDesc.push_back("MSER");
pMSER.push_back(pDefaultMSER);
pMSER.back().delta = 100;
pMSER.back().minArea = 100;
pMSER.back().maxArea = 5000;
pMSER.back().maxVariation = 2;
pMSER.back().minDiversity = 0;
pMSER.back().pass2Only = false;
itMSER = pMSER.begin();
vector<double> desMethCmp;
Ptr<Feature2D> b;
String label;
// Descriptor loop
vector<String>::iterator itDesc;
Mat result(img.rows, img.cols, CV_8UC3);
for (itDesc = typeDesc.begin(); itDesc != typeDesc.end(); itDesc++)
{
vector<KeyPoint> keyImg1;
if (*itDesc == "MSER"){
if (img.type() == CV_8UC3)
{
b = MSER::create(itMSER->delta, itMSER->minArea, itMSER->maxArea, itMSER->maxVariation, itMSER->minDiversity, itMSER->maxEvolution,
itMSER->areaThreshold, itMSER->minMargin, itMSER->edgeBlurSize);
label = Legende(*itMSER);
itMSER++;
}
else
{
b = MSER::create(itMSER->delta, itMSER->minArea, itMSER->maxArea, itMSER->maxVariation, itMSER->minDiversity);
b.dynamicCast<MSER>()->setPass2Only(itMSER->pass2Only);
label = Legende(*itMSER);
itMSER++;
}
}
if (img.type()==CV_8UC3)
{
img.copyTo(result);
}
else
{
vector<Mat> plan;
plan.push_back(img);
plan.push_back(img);
plan.push_back(img);
merge(plan,result);
}
try
{
// We can detect regions using detectRegions method
vector<KeyPoint> keyImg;
vector<Rect> zone;
vector<vector <Point>> region;
Mat desc;
if (b.dynamicCast<MSER>() != NULL)
{
Ptr<MSER> sbd = b.dynamicCast<MSER>();
sbd->detectRegions(img, region, zone);
int i = 0;
//result = Scalar(0, 0, 0);
int nbPixelInMSER=0;
for (vector<vector <Point>>::iterator itr = region.begin(); itr != region.end(); itr++, i++)
{
for (vector <Point>::iterator itp = region[i].begin(); itp != region[i].end(); itp ++)
{
// all pixels belonging to region become blue
result.at<Vec3b>(itp->y, itp->x) = Vec3b(128, 0, 0);
nbPixelInMSER++;
}
}
cout << "Number of MSER region " << region.size()<<" Number of pixels in all MSER region : "<<nbPixelInMSER<<"\n";
}
namedWindow(*itDesc + label, WINDOW_AUTOSIZE);
imshow(*itDesc + label, result);
imshow("Original", img);
}
catch (Exception& e)
{
cout << "Feature : " << *itDesc << "\n";
cout << e.msg << endl;
}
DrawOpenGLMSER(img,result);
waitKey();
}
return 0;
}