mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
JavaAPI: fixed typo; some constants are moved to private section; added tests for BruteForceMatcher-Hamming
This commit is contained in:
parent
cc6b7edf95
commit
6944c0dba4
@ -0,0 +1,203 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.features2d.DMatch;
|
||||
import org.opencv.features2d.DescriptorExtractor;
|
||||
import org.opencv.features2d.DescriptorMatcher;
|
||||
import org.opencv.features2d.FeatureDetector;
|
||||
import org.opencv.features2d.KeyPoint;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
public class BruteForceHammingDescriptorMatcherTest extends OpenCVTestCase {
|
||||
|
||||
DescriptorMatcher matcher;
|
||||
int matSize;
|
||||
DMatch[] truth;
|
||||
|
||||
protected void setUp() throws Exception {
|
||||
matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMING);
|
||||
matSize = 100;
|
||||
|
||||
truth = new DMatch[] {
|
||||
new DMatch (0, 0, 0, 51),
|
||||
new DMatch (1, 2, 0, 42),
|
||||
new DMatch (2, 1, 0, 40),
|
||||
new DMatch (3, 3, 0, 53) };
|
||||
super.setUp();
|
||||
}
|
||||
|
||||
private Mat getTrainImg() {
|
||||
Mat img = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Core.line(img, new Point(40, 40), new Point(matSize - 40, matSize - 40), new Scalar(0), 8);
|
||||
return img;
|
||||
}
|
||||
|
||||
private Mat getQueryImg() {
|
||||
Mat img = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Core.line(img, new Point(40, matSize - 40), new Point(matSize - 50, 50), new Scalar(0), 8);
|
||||
return img;
|
||||
}
|
||||
|
||||
private Mat getTestDescriptors(Mat img) {
|
||||
List<KeyPoint> keypoints = new ArrayList<KeyPoint>();
|
||||
Mat descriptors = new Mat();
|
||||
|
||||
FeatureDetector detector = FeatureDetector.create(FeatureDetector.FAST);
|
||||
DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.BRIEF);
|
||||
|
||||
detector.detect(img, keypoints);
|
||||
extractor.compute(img, keypoints, descriptors);
|
||||
|
||||
return descriptors;
|
||||
}
|
||||
|
||||
private Mat getQueryDescriptors() {
|
||||
return getTestDescriptors(getQueryImg());
|
||||
}
|
||||
|
||||
private Mat getTrainDescriptors() {
|
||||
return getTestDescriptors(getTrainImg());
|
||||
}
|
||||
|
||||
private Mat getMaskImg() {
|
||||
return new Mat(4, 4, CvType.CV_8U, new Scalar(0)) {
|
||||
{
|
||||
put(0, 0, 1, 1, 1, 1, 1, 1, 1, 1);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
public void testAdd() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
assertFalse(matcher.empty());
|
||||
}
|
||||
|
||||
public void testClear() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
|
||||
matcher.clear();
|
||||
|
||||
assertTrue(matcher.empty());
|
||||
}
|
||||
|
||||
public void testCloneBoolean() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
|
||||
DescriptorMatcher cloned = matcher.clone(true);
|
||||
|
||||
assertNotNull(cloned);
|
||||
assertTrue(cloned.empty());
|
||||
}
|
||||
|
||||
public void testClone() {
|
||||
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
|
||||
Mat truth = train.clone();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
DescriptorMatcher cloned = matcher.clone();
|
||||
|
||||
assertNotNull(cloned);
|
||||
|
||||
List<Mat> descriptors = cloned.getTrainDescriptors();
|
||||
assertEquals(1, descriptors.size());
|
||||
assertMatEqual(truth, descriptors.get(0));
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
assertNotNull(matcher);
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
assertTrue(matcher.empty());
|
||||
}
|
||||
|
||||
public void testGetTrainDescriptors() {
|
||||
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
|
||||
Mat truth = train.clone();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
List<Mat> descriptors = matcher.getTrainDescriptors();
|
||||
|
||||
assertEquals(1, descriptors.size());
|
||||
assertMatEqual(truth, descriptors.get(0));
|
||||
}
|
||||
|
||||
public void testIsMaskSupported() {
|
||||
assertTrue(matcher.isMaskSupported());
|
||||
}
|
||||
|
||||
public void testMatchMatMatListOfDMatchMat() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
Mat mask = getMaskImg();
|
||||
List<DMatch> matches = new ArrayList<DMatch>();
|
||||
|
||||
matcher.match(query, train, matches, mask);
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches, EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatMatListOfDMatch() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
List<DMatch> matches = new ArrayList<DMatch>();
|
||||
|
||||
matcher.match(query, train, matches);
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth), matches, EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatListOfDMatchListOfMat() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
Mat mask = getMaskImg();
|
||||
List<DMatch> matches = new ArrayList<DMatch>();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
matcher.match(query, matches, Arrays.asList(mask));
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches, EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatListOfDMatch() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
List<DMatch> matches = new ArrayList<DMatch>();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
matcher.match(query, matches);
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth), matches, EPS);
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filename, "%YAML:1.0\n");
|
||||
|
||||
matcher.read(filename);
|
||||
assertTrue(true);// BruteforceMatcher has no settings
|
||||
}
|
||||
|
||||
public void testTrain() {
|
||||
matcher.train();// BruteforceMatcher does not need to train
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
|
||||
matcher.write(filename);
|
||||
|
||||
String truth = "%YAML:1.0\n";
|
||||
assertEquals(truth, readFile(filename));
|
||||
}
|
||||
|
||||
}
|
@ -0,0 +1,207 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.features2d.DMatch;
|
||||
import org.opencv.features2d.DescriptorExtractor;
|
||||
import org.opencv.features2d.DescriptorMatcher;
|
||||
import org.opencv.features2d.FeatureDetector;
|
||||
import org.opencv.features2d.KeyPoint;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
public class BruteForceHammingLUTDescriptorMatcherTest extends OpenCVTestCase {
|
||||
|
||||
DescriptorMatcher matcher;
|
||||
int matSize;
|
||||
DMatch[] truth;
|
||||
|
||||
protected void setUp() throws Exception {
|
||||
matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMINGLUT);
|
||||
matSize = 100;
|
||||
|
||||
truth = new DMatch[] {
|
||||
new DMatch (0, 0, 0, 51),
|
||||
new DMatch (1, 2, 0, 42),
|
||||
new DMatch (2, 1, 0, 40),
|
||||
new DMatch (3, 3, 0, 53) };
|
||||
super.setUp();
|
||||
}
|
||||
|
||||
private Mat getTrainImg() {
|
||||
Mat img = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Core.line(img, new Point(40, 40), new Point(matSize - 40, matSize - 40), new Scalar(0), 8);
|
||||
return img;
|
||||
}
|
||||
|
||||
private Mat getQueryImg() {
|
||||
Mat img = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Core.line(img, new Point(40, matSize - 40), new Point(matSize - 50, 50), new Scalar(0), 8);
|
||||
return img;
|
||||
}
|
||||
|
||||
private Mat getTestDescriptors(Mat img) {
|
||||
List<KeyPoint> keypoints = new ArrayList<KeyPoint>();
|
||||
Mat descriptors = new Mat();
|
||||
|
||||
FeatureDetector detector = FeatureDetector.create(FeatureDetector.FAST);
|
||||
DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.BRIEF);
|
||||
|
||||
detector.detect(img, keypoints);
|
||||
extractor.compute(img, keypoints, descriptors);
|
||||
|
||||
return descriptors;
|
||||
}
|
||||
|
||||
private Mat getQueryDescriptors() {
|
||||
return getTestDescriptors(getQueryImg());
|
||||
}
|
||||
|
||||
private Mat getTrainDescriptors() {
|
||||
return getTestDescriptors(getTrainImg());
|
||||
}
|
||||
|
||||
private Mat getMaskImg() {
|
||||
return new Mat(4, 4, CvType.CV_8U, new Scalar(0)) {
|
||||
{
|
||||
put(0, 0, 1, 1, 1, 1, 1, 1, 1, 1);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
public void testAdd() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
assertFalse(matcher.empty());
|
||||
}
|
||||
|
||||
public void testClear() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
|
||||
matcher.clear();
|
||||
|
||||
assertTrue(matcher.empty());
|
||||
}
|
||||
|
||||
public void testCloneBoolean() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
|
||||
DescriptorMatcher cloned = matcher.clone(true);
|
||||
|
||||
assertNotNull(cloned);
|
||||
assertTrue(cloned.empty());
|
||||
}
|
||||
|
||||
public void testClone() {
|
||||
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
|
||||
Mat truth = train.clone();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
DescriptorMatcher cloned = matcher.clone();
|
||||
|
||||
assertNotNull(cloned);
|
||||
|
||||
List<Mat> descriptors = cloned.getTrainDescriptors();
|
||||
assertEquals(1, descriptors.size());
|
||||
assertMatEqual(truth, descriptors.get(0));
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
assertNotNull(matcher);
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
assertTrue(matcher.empty());
|
||||
}
|
||||
|
||||
public void testGetTrainDescriptors() {
|
||||
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
|
||||
Mat truth = train.clone();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
List<Mat> descriptors = matcher.getTrainDescriptors();
|
||||
|
||||
assertEquals(1, descriptors.size());
|
||||
assertMatEqual(truth, descriptors.get(0));
|
||||
}
|
||||
|
||||
public void testIsMaskSupported() {
|
||||
assertTrue(matcher.isMaskSupported());
|
||||
}
|
||||
|
||||
public void testMatchMatMatListOfDMatchMat() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
Mat mask = getMaskImg();
|
||||
List<DMatch> matches = new ArrayList<DMatch>();
|
||||
|
||||
matcher.match(query, train, matches, mask);
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches, EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatMatListOfDMatch() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
List<DMatch> matches = new ArrayList<DMatch>();
|
||||
|
||||
matcher.match(query, train, matches);
|
||||
|
||||
OpenCVTestRunner.Log("matches found: " + matches.size());
|
||||
for (DMatch m : matches)
|
||||
OpenCVTestRunner.Log(m.toString());
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth), matches, EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatListOfDMatchListOfMat() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
Mat mask = getMaskImg();
|
||||
List<DMatch> matches = new ArrayList<DMatch>();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
matcher.match(query, matches, Arrays.asList(mask));
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches, EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatListOfDMatch() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
List<DMatch> matches = new ArrayList<DMatch>();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
matcher.match(query, matches);
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth), matches, EPS);
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filename, "%YAML:1.0\n");
|
||||
|
||||
matcher.read(filename);
|
||||
assertTrue(true);// BruteforceMatcher has no settings
|
||||
}
|
||||
|
||||
public void testTrain() {
|
||||
matcher.train();// BruteforceMatcher does not need to train
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
|
||||
matcher.write(filename);
|
||||
|
||||
String truth = "%YAML:1.0\n";
|
||||
assertEquals(truth, readFile(filename));
|
||||
}
|
||||
|
||||
}
|
@ -100,6 +100,10 @@ const_private_list = (
|
||||
"CV_INPAINT_.+",
|
||||
"CV_RETR_.+",
|
||||
"CV_CHAIN_APPROX_.+",
|
||||
"OPPONENTEXTRACTOR",
|
||||
"GRIDRETECTOR",
|
||||
"PYRAMIDDETECTOR",
|
||||
"DYNAMICDETECTOR",
|
||||
)
|
||||
|
||||
# { Module : { public : [[name, val],...], private : [[]...] } }
|
||||
|
@ -245,10 +245,10 @@ public:
|
||||
|
||||
OPPONENTEXTRACTOR = 1000,
|
||||
|
||||
OPPENENT_SIFT = OPPONENTEXTRACTOR + SIFT,
|
||||
OPPENENT_SURF = OPPONENTEXTRACTOR + SURF,
|
||||
OPPENENT_ORB = OPPONENTEXTRACTOR + ORB,
|
||||
OPPENENT_BRIEF = OPPONENTEXTRACTOR + BRIEF
|
||||
OPPONENT_SIFT = OPPONENTEXTRACTOR + SIFT,
|
||||
OPPONENT_SURF = OPPONENTEXTRACTOR + SURF,
|
||||
OPPONENT_ORB = OPPONENTEXTRACTOR + ORB,
|
||||
OPPONENT_BRIEF = OPPONENTEXTRACTOR + BRIEF
|
||||
};
|
||||
|
||||
//supported SIFT, SURF, ORB, BRIEF, Opponent(XXXX)
|
||||
|
Loading…
Reference in New Issue
Block a user