Added the "Similarity check (PNSR and SSIM) on the GPU" tutorial. Corrected an highgui TOC tree mistake.

This commit is contained in:
Bernat Gabor 2011-08-14 15:05:56 +00:00
parent e95618d0b4
commit 695311d709
8 changed files with 399 additions and 16 deletions

View File

@ -357,21 +357,26 @@ extlinks = {'cvt_color': ('http://opencv.willowgarage.com/documentation/cpp/imgp
'svms':('http://opencv.itseez.com/modules/ml/doc/support_vector_machines.html#%s', None), 'svms':('http://opencv.itseez.com/modules/ml/doc/support_vector_machines.html#%s', None),
'xmlymlpers':('http://opencv.itseez.com/modules/core/doc/xml_yaml_persistence.html#%s', None), 'xmlymlpers':('http://opencv.itseez.com/modules/core/doc/xml_yaml_persistence.html#%s', None),
'huivideo' : ('http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#%s', None), 'huivideo' : ('http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#%s', None),
'filtering':('http://opencv.itseez.com/modules/imgproc/doc/filtering.html#%s', None), 'gpuinit' : ('http://opencv.itseez.com/modules/gpu/doc/initalization_and_information.html#%s', None),
'gpudatastructure' : ('http://opencv.itseez.com/modules/gpu/doc/data_structures.html#%s', None),
'gpuopmatrices' : ('http://opencv.itseez.com/modules/gpu/doc/operations_on_matrices.html#%s', None),
'gpuperelement' : ('http://opencv.itseez.com/modules/gpu/doc/per_element_operations.html#%s', None),
'gpuimgproc' : ('http://opencv.itseez.com/modules/gpu/doc/image_processing.html#%s', None),
'gpumatrixreduct' : ('http://opencv.itseez.com/modules/gpu/doc/matrix_reductions.html#%s', None),'filtering':('http://opencv.itseez.com/modules/imgproc/doc/filtering.html#%s', None),
'point_polygon_test' : ('http://opencv.willowgarage.com/documentation/cpp/imgproc_structural_analysis_and_shape_descriptors.html#cv-pointpolygontest%s', None), 'point_polygon_test' : ('http://opencv.willowgarage.com/documentation/cpp/imgproc_structural_analysis_and_shape_descriptors.html#cv-pointpolygontest%s', None),
'feature_detector' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_feature_detectors.html#featuredetector%s', None), 'feature_detector' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_feature_detectors.html#featuredetector%s', None),
'feature_detector_detect' : ('http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_feature_detectors.html#cv-featuredetector-detect%s', None ), 'feature_detector_detect' : ('http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_feature_detectors.html#cv-featuredetector-detect%s', None ),
'surf_feature_detector' : ('http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_feature_detectors.html#surffeaturedetector%s', None ), 'surf_feature_detector' : ('http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_feature_detectors.html#surffeaturedetector%s', None ),
'draw_keypoints' : ('http://opencv.willowgarage.com/documentation/cpp/features2d_drawing_function_of_keypoints_and_matches.html#cv-drawkeypoints%s', None ), 'draw_keypoints' : ('http://opencv.willowgarage.com/documentation/cpp/features2d_drawing_function_of_keypoints_and_matches.html#cv-drawkeypoints%s', None ),
'descriptor_extractor': ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_extractors.html#descriptorextractor%s', None ), 'descriptor_extractor': ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_extractors.html#descriptorextractor%s', None ),
'descriptor_extractor_compute' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_extractors.html#cv-descriptorextractor-compute%s', None ), 'descriptor_extractor_compute' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_extractors.html#cv-descriptorextractor-compute%s', None ),
'surf_descriptor_extractor' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_extractors.html#surfdescriptorextractor%s', None ), 'surf_descriptor_extractor' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_extractors.html#surfdescriptorextractor%s', None ),
'draw_matches' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_drawing_function_of_keypoints_and_matches.html#cv-drawmatches%s', None ), 'draw_matches' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_drawing_function_of_keypoints_and_matches.html#cv-drawmatches%s', None ),
'find_homography' : ('http://opencv.willowgarage.com/documentation/cpp/calib3d_camera_calibration_and_3d_reconstruction.html?#findHomography%s', None), 'find_homography' : ('http://opencv.willowgarage.com/documentation/cpp/calib3d_camera_calibration_and_3d_reconstruction.html?#findHomography%s', None),
'perspective_transform' : ('http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?#perspectiveTransform%s', None ), 'perspective_transform' : ('http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?#perspectiveTransform%s', None ),
'flann_based_matcher' : ('http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_matchers.html?#FlannBasedMatcher%s', None), 'flann_based_matcher' : ('http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_matchers.html?#FlannBasedMatcher%s', None),
'brute_force_matcher' : ('http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_matchers.html?#BruteForceMatcher%s', None ), 'brute_force_matcher' : ('http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_matchers.html?#BruteForceMatcher%s', None ),
'flann' : ('http://opencv.willowgarage.com/documentation/cpp/flann_fast_approximate_nearest_neighbor_search.html?%s', None ) 'flann' : ('http://opencv.willowgarage.com/documentation/cpp/flann_fast_approximate_nearest_neighbor_search.html?%s', None )
} }

File diff suppressed because one or more lines are too long

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.6 KiB

View File

@ -1,12 +1,36 @@
.. _Table-Of-Content-GPU: .. _Table-Of-Content-GPU:
*gpu* module. GPU-Accelerated Computer Vision *gpu* module. GPU-Accelerated Computer Vision
----------------------------------------------------------- ---------------------------------------------
Squeeze out every little computation power from your system by using the power of your video card to run the OpenCV algorithms. Squeeze out every little computation power from your system by using the power of your video card to run the OpenCV algorithms.
.. include:: ../../definitions/noContent.rst .. include:: ../../definitions/tocDefinitions.rst
+
.. tabularcolumns:: m{100pt} m{300pt}
.. cssclass:: toctableopencv
=============== ======================================================
|hVideoWrite| *Title:* :ref:`gpuBasicsSimilarity`
*Compatibility:* > OpenCV 2.0
*Author:* |Author_BernatG|
This will give a good grasp on how to approach coding on the GPU module, once you already know how to handle the other modules. As a test case it will port the similarity methods from the tutorial :ref:`videoInputPSNRMSSIM` to the GPU.
=============== ======================================================
.. |hVideoWrite| image:: images/gpu-basics-similarity.png
:height: 90pt
:width: 90pt
.. raw:: latex .. raw:: latex
\pagebreak \pagebreak
.. toctree::
:hidden:
../gpu-basics-similarity/gpu-basics-similarity

View File

@ -1,7 +1,7 @@
.. _Table-Of-Content-HighGui: .. _Table-Of-Content-HighGui:
*highgui* module. High Level GUI and Media *highgui* module. High Level GUI and Media
----------------------------------------------------------- ------------------------------------------
This section contains valuable tutorials about how to read/save your image/video files and how to use the built-in graphical user interface of the library. This section contains valuable tutorials about how to read/save your image/video files and how to use the built-in graphical user interface of the library.
@ -74,3 +74,4 @@ This section contains valuable tutorials about how to read/save your image/video
../trackbar/trackbar ../trackbar/trackbar
../video-input-psnr-ssim/video-input-psnr-ssim ../video-input-psnr-ssim/video-input-psnr-ssim
../video-write/video-write

View File

@ -0,0 +1,352 @@
#include <iostream> // Console I/O
#include <sstream> // String to number conversion
#include <opencv2/core/core.hpp> // Basic OpenCV structures
#include <opencv2/imgproc/imgproc.hpp>// Image processing methods for the CPU
#include <opencv2/highgui/highgui.hpp>// Read images
#include <opencv2/gpu/gpu.hpp> // GPU structures and methods
using namespace std;
using namespace cv;
double getPSNR(const Mat& I1, const Mat& I2); // CPU versions
Scalar getMSSIM( const Mat& I1, const Mat& I2);
double getPSNR_GPU(const Mat& I1, const Mat& I2); // Basic GPU versions
Scalar getMSSIM_GPU( const Mat& I1, const Mat& I2);
struct BufferPSNR // Optimized GPU versions
{ // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later.
gpu::GpuMat gI1, gI2, gs, t1,t2;
gpu::GpuMat buf;
};
double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b);
struct BufferMSSIM // Optimized GPU versions
{ // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later.
gpu::GpuMat gI1, gI2, gs, t1,t2;
gpu::GpuMat I1_2, I2_2, I1_I2;
vector<gpu::GpuMat> vI1, vI2;
gpu::GpuMat mu1, mu2;
gpu::GpuMat mu1_2, mu2_2, mu1_mu2;
gpu::GpuMat sigma1_2, sigma2_2, sigma12;
gpu::GpuMat t3;
gpu::GpuMat ssim_map;
gpu::GpuMat buf;
};
Scalar getMSSIM_GPU_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b);
void help()
{
cout
<< "\n--------------------------------------------------------------------------" << endl
<< "This program shows how to port your CPU code to GPU or write that from scratch." << endl
<< "You can see the performance improvement for the similarity check methods (PSNR and SSIM)." << endl
<< "Usage:" << endl
<< "./gpu-basics-similarity referenceImage comparedImage numberOfTimesToRunTest(like 10)." << endl
<< "--------------------------------------------------------------------------" << endl
<< endl;
}
int main(int argc, char *argv[])
{
help();
Mat I1 = imread(argv[1]); // Read the two images
Mat I2 = imread(argv[2]);
if (!I1.data || !I2.data) // Check for success
{
cout << "Couldn't read the image";
return 0;
}
BufferPSNR bufferPSNR;
BufferMSSIM bufferMSSIM;
int TIMES;
stringstream sstr(argv[3]);
sstr >> TIMES;
double time, result;
//------------------------------- PSNR CPU ----------------------------------------------------
time = (double)getTickCount();
for (int i = 0; i < TIMES; ++i)
result = getPSNR(I1,I2);
time = 1000*((double)getTickCount() - time)/getTickFrequency();
time /= TIMES;
cout << "Time of PSNR CPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
<< " With result of: " << result << endl;
//------------------------------- PSNR GPU ----------------------------------------------------
time = (double)getTickCount();
for (int i = 0; i < TIMES; ++i)
result = getPSNR_GPU(I1,I2);
time = 1000*((double)getTickCount() - time)/getTickFrequency();
time /= TIMES;
cout << "Time of PSNR GPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
<< " With result of: " << result << endl;
//------------------------------- PSNR GPU Optimized--------------------------------------------
time = (double)getTickCount(); // Initial call
result = getPSNR_GPU_optimized(I1, I2, bufferPSNR);
time = 1000*((double)getTickCount() - time)/getTickFrequency();
cout << "Initial call GPU optimized: " << time <<" milliseconds."
<< " With result of: " << result << endl;
time = (double)getTickCount();
for (int i = 0; i < TIMES; ++i)
result = getPSNR_GPU_optimized(I1, I2, bufferPSNR);
time = 1000*((double)getTickCount() - time)/getTickFrequency();
time /= TIMES;
cout << "Time of PSNR GPU OPTIMIZED ( / " << TIMES << " runs): " << time
<< " milliseconds." << " With result of: " << result << endl << endl;
//------------------------------- SSIM CPU -----------------------------------------------------
Scalar x;
time = (double)getTickCount();
for (int i = 0; i < TIMES; ++i)
x = getMSSIM(I1,I2);
time = 1000*((double)getTickCount() - time)/getTickFrequency();
time /= TIMES;
cout << "Time of MSSIM CPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
<< " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl;
//------------------------------- SSIM GPU -----------------------------------------------------
time = (double)getTickCount();
for (int i = 0; i < TIMES; ++i)
x = getMSSIM_GPU(I1,I2);
time = 1000*((double)getTickCount() - time)/getTickFrequency();
time /= TIMES;
cout << "Time of MSSIM GPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
<< " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl;
//------------------------------- SSIM GPU Optimized--------------------------------------------
time = (double)getTickCount();
x = getMSSIM_GPU_optimized(I1,I2, bufferMSSIM);
time = 1000*((double)getTickCount() - time)/getTickFrequency();
cout << "Time of MSSIM GPU Initial Call " << time << " milliseconds."
<< " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl;
time = (double)getTickCount();
for (int i = 0; i < TIMES; ++i)
x = getMSSIM_GPU_optimized(I1,I2, bufferMSSIM);
time = 1000*((double)getTickCount() - time)/getTickFrequency();
time /= TIMES;
cout << "Time of MSSIM GPU OPTIMIZED ( / " << TIMES << " runs): " << time << " milliseconds."
<< " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl << endl;
return 0;
}
double getPSNR(const Mat& I1, const Mat& I2)
{
Mat s1;
absdiff(I1, I2, s1); // |I1 - I2|
s1.convertTo(s1, CV_32F); // cannot make a square on 8 bits
s1 = s1.mul(s1); // |I1 - I2|^2
Scalar s = sum(s1); // sum elements per channel
double sse = s.val[0] + s.val[1] + s.val[2]; // sum channels
if( sse <= 1e-10) // for small values return zero
return 0;
else
{
double mse =sse /(double)(I1.channels() * I1.total());
double psnr = 10.0*log10((255*255)/mse);
return psnr;
}
}
double getPSNR_GPU(const Mat& I1, const Mat& I2)
{
gpu::GpuMat gI1, gI2, gs, t1,t2;
gI1.upload(I1);
gI2.upload(I2);
gI1.convertTo(t1, CV_32F);
gI2.convertTo(t2, CV_32F);
gpu::absdiff(t1.reshape(1), t2.reshape(1), gs);
gpu::multiply(gs, gs, gs);
Scalar s = gpu::sum(gs);
double sse = s.val[0] + s.val[1] + s.val[2];
if( sse <= 1e-10) // for small values return zero
return 0;
else
{
double mse =sse /(double)(gI1.channels() * I1.total());
double psnr = 10.0*log10((255*255)/mse);
return psnr;
}
}
double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b)
{
b.gI1.upload(I1);
b.gI2.upload(I2);
b.gI1.convertTo(b.t1, CV_32F);
b.gI2.convertTo(b.t2, CV_32F);
gpu::absdiff(b.t1.reshape(1), b.t2.reshape(1), b.gs);
gpu::multiply(b.gs, b.gs, b.gs);
double sse = gpu::sum(b.gs, b.buf)[0];
if( sse <= 1e-10) // for small values return zero
return 0;
else
{
double mse = sse /(double)(I1.channels() * I1.total());
double psnr = 10.0*log10((255*255)/mse);
return psnr;
}
}
Scalar getMSSIM( const Mat& i1, const Mat& i2)
{
const double C1 = 6.5025, C2 = 58.5225;
int d = CV_32F;
Mat I1, I2;
i1.convertTo(I1, d); // cannot calculate on one byte large values
i2.convertTo(I2, d);
Mat I2_2 = I2.mul(I2); // I2^2
Mat I1_2 = I1.mul(I1); // I1^2
Mat I1_I2 = I1.mul(I2); // I1 * I2
Mat mu1, mu2;
GaussianBlur(I1, mu1, Size(11, 11), 1.5);
GaussianBlur(I2, mu2, Size(11, 11), 1.5);
Mat mu1_2 = mu1.mul(mu1);
Mat mu2_2 = mu2.mul(mu2);
Mat mu1_mu2 = mu1.mul(mu2);
Mat sigma1_2, sigma2_2, sigma12;
GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
sigma1_2 -= mu1_2;
GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
sigma2_2 -= mu2_2;
GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
sigma12 -= mu1_mu2;
///////////////////////////////// FORMULA ////////////////////////////////
Mat t1, t2, t3;
t1 = 2 * mu1_mu2 + C1;
t2 = 2 * sigma12 + C2;
t3 = t1.mul(t2); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
t1 = mu1_2 + mu2_2 + C1;
t2 = sigma1_2 + sigma2_2 + C2;
t1 = t1.mul(t2); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
Mat ssim_map;
divide(t3, t1, ssim_map); // ssim_map = t3./t1;
Scalar mssim = mean( ssim_map ); // mssim = average of ssim map
return mssim;
}
Scalar getMSSIM_GPU_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b)
{
int cn = i1.channels();
const float C1 = 6.5025f, C2 = 58.5225f;
b.gI1.upload(i1);
b.gI2.upload(i2);
gpu::Stream stream;
stream.enqueueConvert(b.gI1, b.t1, CV_32F);
stream.enqueueConvert(b.gI2, b.t2, CV_32F);
gpu::split(b.t1, b.vI1, stream);
gpu::split(b.t2, b.vI2, stream);
Scalar mssim;
for( int i = 0; i < b.gI1.channels(); ++i )
{
gpu::multiply(b.vI2[i], b.vI2[i], b.I2_2, stream); // I2^2
gpu::multiply(b.vI1[i], b.vI1[i], b.I1_2, stream); // I1^2
gpu::multiply(b.vI1[i], b.vI2[i], b.I1_I2, stream); // I1 * I2
gpu::GaussianBlur(b.vI1[i], b.mu1, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
gpu::GaussianBlur(b.vI2[i], b.mu2, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
gpu::multiply(b.mu1, b.mu1, b.mu1_2, stream);
gpu::multiply(b.mu2, b.mu2, b.mu2_2, stream);
gpu::multiply(b.mu1, b.mu2, b.mu1_mu2, stream);
gpu::GaussianBlur(b.I1_2, b.sigma1_2, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
gpu::subtract(b.sigma1_2, b.mu1_2, b.sigma1_2, stream);
//b.sigma1_2 -= b.mu1_2; - This would result in an extra data transfer operation
gpu::GaussianBlur(b.I2_2, b.sigma2_2, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
gpu::subtract(b.sigma2_2, b.mu2_2, b.sigma2_2, stream);
//b.sigma2_2 -= b.mu2_2;
gpu::GaussianBlur(b.I1_I2, b.sigma12, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
gpu::subtract(b.sigma12, b.mu1_mu2, b.sigma12, stream);
//b.sigma12 -= b.mu1_mu2;
//here too it would be an extra data transfer due to call of operator*(Scalar, Mat)
gpu::multiply(b.mu1_mu2, 2, b.t1, stream); //b.t1 = 2 * b.mu1_mu2 + C1;
gpu::add(b.t1, C1, b.t1, stream);
gpu::multiply(b.sigma12, 2, b.t2, stream); //b.t2 = 2 * b.sigma12 + C2;
gpu::add(b.t2, C2, b.t2, stream);
gpu::multiply(b.t1, b.t2, b.t3, stream); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
gpu::add(b.mu1_2, b.mu2_2, b.t1, stream);
gpu::add(b.t1, C1, b.t1, stream);
gpu::add(b.sigma1_2, b.sigma2_2, b.t2, stream);
gpu::add(b.t2, C2, b.t2, stream);
gpu::multiply(b.t1, b.t2, b.t1, stream); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
gpu::divide(b.t3, b.t1, b.ssim_map, stream); // ssim_map = t3./t1;
stream.waitForCompletion();
Scalar s = gpu::sum(b.ssim_map, b.buf);
mssim.val[i] = s.val[0] / (b.ssim_map.rows * b.ssim_map.cols);
}
return mssim;
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 230 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 282 KiB