mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 05:29:54 +08:00
added support of different descriptor formats into gpu HOGDescriptor
This commit is contained in:
parent
faf4d0bc74
commit
6a9d022a9f
@ -1007,11 +1007,15 @@ namespace cv
|
||||
GpuMat table_space;
|
||||
};
|
||||
|
||||
|
||||
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
|
||||
|
||||
struct CV_EXPORTS HOGDescriptor
|
||||
{
|
||||
public:
|
||||
enum { DEFAULT_WIN_SIGMA = -1 };
|
||||
enum { DEFAULT_NLEVELS = 64 };
|
||||
enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL };
|
||||
|
||||
HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16),
|
||||
Size block_stride=Size(8, 8), Size cell_size=Size(8, 8),
|
||||
@ -1029,13 +1033,14 @@ namespace cv
|
||||
void setSVMDetector(const vector<float>& detector);
|
||||
bool checkDetectorSize() const;
|
||||
|
||||
void computeBlockHistograms(const GpuMat& img);
|
||||
void detect(const GpuMat& img, vector<Point>& found_locations, double hit_threshold=0,
|
||||
Size win_stride=Size(), Size padding=Size());
|
||||
void detectMultiScale(const GpuMat& img, vector<Rect>& found_locations,
|
||||
double hit_threshold=0, Size win_stride=Size(), Size padding=Size(),
|
||||
double scale0=1.05, int group_threshold=2);
|
||||
void getDescriptors(const GpuMat& img, Size win_stride, GpuMat& descriptors);
|
||||
|
||||
void getDescriptors(const GpuMat& img, Size win_stride, GpuMat& descriptors,
|
||||
int descr_format=DESCR_FORMAT_COL_BY_COL);
|
||||
|
||||
Size win_size;
|
||||
Size block_size;
|
||||
@ -1044,9 +1049,17 @@ namespace cv
|
||||
int nbins;
|
||||
double win_sigma;
|
||||
double threshold_L2hys;
|
||||
bool gamma_correction;
|
||||
int nlevels;
|
||||
|
||||
protected:
|
||||
void computeBlockHistograms(const GpuMat& img);
|
||||
void computeGradient(const GpuMat& img, GpuMat& grad, GpuMat& qangle);
|
||||
|
||||
static int numPartsWithin(int size, int part_size, int stride);
|
||||
static Size numPartsWithin(Size size, Size part_size, Size stride);
|
||||
|
||||
bool gamma_correction;
|
||||
|
||||
// Coefficients of the separating plane
|
||||
float free_coef;
|
||||
GpuMat detector;
|
||||
@ -1058,13 +1071,8 @@ namespace cv
|
||||
// Results of the last histogram evaluation step
|
||||
GpuMat block_hists;
|
||||
|
||||
private:
|
||||
static int numPartsWithin(int size, int part_size, int stride);
|
||||
static Size numPartsWithin(Size size, Size part_size, Size stride);
|
||||
|
||||
void computeGradient(const GpuMat& img, GpuMat& grad, GpuMat& qangle);
|
||||
|
||||
GpuMat grad, qangle;
|
||||
// Gradients conputation results
|
||||
GpuMat grad, qangle;
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -428,9 +428,9 @@ void classify_hists(int win_height, int win_width, int block_stride_y, int block
|
||||
|
||||
|
||||
template <int nthreads>
|
||||
__global__ void extract_descriptors_kernel(const int img_win_width, const int img_block_width,
|
||||
const int win_block_stride_x, const int win_block_stride_y,
|
||||
const float* block_hists, PtrElemStepf descriptors)
|
||||
__global__ void extract_descrs_by_rows_kernel(const int img_block_width, const int win_block_stride_x,
|
||||
const int win_block_stride_y, const float* block_hists,
|
||||
PtrElemStepf descriptors)
|
||||
{
|
||||
// Get left top corner of the window in src
|
||||
const float* hist = block_hists + (blockIdx.y * win_block_stride_y * img_block_width +
|
||||
@ -449,9 +449,9 @@ __global__ void extract_descriptors_kernel(const int img_win_width, const int im
|
||||
}
|
||||
|
||||
|
||||
void extract_descriptors(int win_height, int win_width, int block_stride_y, int block_stride_x,
|
||||
int win_stride_y, int win_stride_x, int height, int width, float* block_hists,
|
||||
DevMem2Df descriptors)
|
||||
void extract_descrs_by_rows(int win_height, int win_width, int block_stride_y, int block_stride_x,
|
||||
int win_stride_y, int win_stride_x, int height, int width, float* block_hists,
|
||||
DevMem2Df descriptors)
|
||||
{
|
||||
const int nthreads = 256;
|
||||
|
||||
@ -464,9 +464,56 @@ void extract_descriptors(int win_height, int win_width, int block_stride_y, int
|
||||
|
||||
int img_block_width = (width - CELLS_PER_BLOCK_X * CELL_WIDTH + block_stride_x) /
|
||||
block_stride_x;
|
||||
extract_descriptors_kernel<nthreads><<<grid, threads>>>(
|
||||
img_win_width, img_block_width, win_block_stride_x, win_block_stride_y,
|
||||
block_hists, descriptors);
|
||||
extract_descrs_by_rows_kernel<nthreads><<<grid, threads>>>(
|
||||
img_block_width, win_block_stride_x, win_block_stride_y, block_hists, descriptors);
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
}
|
||||
|
||||
|
||||
template <int nthreads>
|
||||
__global__ void extract_descrs_by_cols_kernel(const int img_block_width, const int win_block_stride_x,
|
||||
const int win_block_stride_y, const float* block_hists,
|
||||
PtrElemStepf descriptors)
|
||||
{
|
||||
// Get left top corner of the window in src
|
||||
const float* hist = block_hists + (blockIdx.y * win_block_stride_y * img_block_width +
|
||||
blockIdx.x * win_block_stride_x) * cblock_hist_size;
|
||||
|
||||
// Get left top corner of the window in dst
|
||||
float* descriptor = descriptors.ptr(blockIdx.y * gridDim.x + blockIdx.x);
|
||||
|
||||
// Copy elements from src to dst
|
||||
for (int i = threadIdx.x; i < cdescr_size; i += nthreads)
|
||||
{
|
||||
int block_idx = i / cblock_hist_size;
|
||||
int idx_in_block = i - block_idx * cblock_hist_size;
|
||||
|
||||
int y = block_idx / cnblocks_win_x;
|
||||
int x = block_idx - y * cnblocks_win_x;
|
||||
|
||||
descriptor[(x * cnblocks_win_y + y) * cblock_hist_size + idx_in_block]
|
||||
= hist[(y * img_block_width + x) * cblock_hist_size + idx_in_block];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void extract_descrs_by_cols(int win_height, int win_width, int block_stride_y, int block_stride_x,
|
||||
int win_stride_y, int win_stride_x, int height, int width, float* block_hists,
|
||||
DevMem2Df descriptors)
|
||||
{
|
||||
const int nthreads = 256;
|
||||
|
||||
int win_block_stride_x = win_stride_x / block_stride_x;
|
||||
int win_block_stride_y = win_stride_y / block_stride_y;
|
||||
int img_win_width = (width - win_width + win_stride_x) / win_stride_x;
|
||||
int img_win_height = (height - win_height + win_stride_y) / win_stride_y;
|
||||
dim3 threads(nthreads, 1);
|
||||
dim3 grid(img_win_width, img_win_height);
|
||||
|
||||
int img_block_width = (width - CELLS_PER_BLOCK_X * CELL_WIDTH + block_stride_x) /
|
||||
block_stride_x;
|
||||
extract_descrs_by_cols_kernel<nthreads><<<grid, threads>>>(
|
||||
img_block_width, win_block_stride_x, win_block_stride_y, block_hists, descriptors);
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
}
|
||||
|
||||
|
@ -50,11 +50,9 @@ size_t cv::gpu::HOGDescriptor::getBlockHistogramSize() const { throw_nogpu(); re
|
||||
double cv::gpu::HOGDescriptor::getWinSigma() const { throw_nogpu(); return 0; }
|
||||
bool cv::gpu::HOGDescriptor::checkDetectorSize() const { throw_nogpu(); return false; }
|
||||
void cv::gpu::HOGDescriptor::setSVMDetector(const vector<float>&) { throw_nogpu(); }
|
||||
void cv::gpu::HOGDescriptor::computeGradient(const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
|
||||
void cv::gpu::HOGDescriptor::computeBlockHistograms(const GpuMat&) { throw_nogpu(); }
|
||||
void cv::gpu::HOGDescriptor::detect(const GpuMat&, vector<Point>&, double, Size, Size) { throw_nogpu(); }
|
||||
void cv::gpu::HOGDescriptor::detectMultiScale(const GpuMat&, vector<Rect>&, double, Size, Size, double, int) { throw_nogpu(); }
|
||||
void cv::gpu::HOGDescriptor::getDescriptors(const GpuMat&, Size, GpuMat&) { throw_nogpu(); }
|
||||
void cv::gpu::HOGDescriptor::getDescriptors(const GpuMat&, Size, GpuMat&, int) { throw_nogpu(); }
|
||||
std::vector<float> cv::gpu::HOGDescriptor::getDefaultPeopleDetector() { throw_nogpu(); return std::vector<float>(); }
|
||||
std::vector<float> cv::gpu::HOGDescriptor::getPeopleDetector_48x96() { throw_nogpu(); return std::vector<float>(); }
|
||||
std::vector<float> cv::gpu::HOGDescriptor::getPeopleDetector_64x128() { throw_nogpu(); return std::vector<float>(); }
|
||||
@ -78,9 +76,12 @@ void classify_hists(int win_height, int win_width, int block_stride_y,
|
||||
int width, float* block_hists, float* coefs, float free_coef,
|
||||
float threshold, unsigned char* labels);
|
||||
|
||||
void extract_descriptors(int win_height, int win_width, int block_stride_y, int block_stride_x,
|
||||
int win_stride_y, int win_stride_x, int height, int width, float* block_hists,
|
||||
cv::gpu::DevMem2Df descriptors);
|
||||
void extract_descrs_by_rows(int win_height, int win_width, int block_stride_y, int block_stride_x,
|
||||
int win_stride_y, int win_stride_x, int height, int width, float* block_hists,
|
||||
cv::gpu::DevMem2Df descriptors);
|
||||
void extract_descrs_by_cols(int win_height, int win_width, int block_stride_y, int block_stride_x,
|
||||
int win_stride_y, int win_stride_x, int height, int width, float* block_hists,
|
||||
cv::gpu::DevMem2Df descriptors);
|
||||
|
||||
void compute_gradients_8UC1(int nbins, int height, int width, const cv::gpu::DevMem2D& img,
|
||||
float angle_scale, cv::gpu::DevMem2Df grad, cv::gpu::DevMem2D qangle);
|
||||
@ -218,7 +219,7 @@ void cv::gpu::HOGDescriptor::computeBlockHistograms(const GpuMat& img)
|
||||
}
|
||||
|
||||
|
||||
void cv::gpu::HOGDescriptor::getDescriptors(const GpuMat& img, Size win_stride, GpuMat& descriptors)
|
||||
void cv::gpu::HOGDescriptor::getDescriptors(const GpuMat& img, Size win_stride, GpuMat& descriptors, int descr_format)
|
||||
{
|
||||
CV_Assert(win_stride.width % block_stride.width == 0 &&
|
||||
win_stride.height % block_stride.height == 0);
|
||||
@ -231,9 +232,21 @@ void cv::gpu::HOGDescriptor::getDescriptors(const GpuMat& img, Size win_stride,
|
||||
|
||||
descriptors.create(wins_per_img.area(), blocks_per_win.area() * block_hist_size, CV_32F);
|
||||
|
||||
hog::extract_descriptors(win_size.height, win_size.width, block_stride.height, block_stride.width,
|
||||
win_stride.height, win_stride.width, img.rows, img.cols, block_hists.ptr<float>(),
|
||||
descriptors);
|
||||
switch (descr_format)
|
||||
{
|
||||
case DESCR_FORMAT_ROW_BY_ROW:
|
||||
hog::extract_descrs_by_rows(win_size.height, win_size.width, block_stride.height, block_stride.width,
|
||||
win_stride.height, win_stride.width, img.rows, img.cols, block_hists.ptr<float>(),
|
||||
descriptors);
|
||||
break;
|
||||
case DESCR_FORMAT_COL_BY_COL:
|
||||
hog::extract_descrs_by_cols(win_size.height, win_size.width, block_stride.height, block_stride.width,
|
||||
win_stride.height, win_stride.width, img.rows, img.cols, block_hists.ptr<float>(),
|
||||
descriptors);
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsBadArg, "Unknown descriptor format");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
@ -51,9 +51,9 @@ using namespace std;
|
||||
ts->set_failed_test_info(err); \
|
||||
return; }
|
||||
|
||||
struct CV_GpuHogDetectionTest: public CvTest
|
||||
struct CV_GpuHogDetectionTest: public CvTest, public cv::gpu::HOGDescriptor
|
||||
{
|
||||
CV_GpuHogDetectionTest(): CvTest( "GPU-HOG-detect", "HOGDescriptorDetection" ) {}
|
||||
CV_GpuHogDetectionTest(): CvTest("GPU-HOG-detect", "HOGDescriptorDetection") {}
|
||||
|
||||
void run(int)
|
||||
{
|
||||
@ -141,54 +141,53 @@ struct CV_GpuHogDetectionTest: public CvTest
|
||||
{
|
||||
cv::gpu::GpuMat d_img(img);
|
||||
|
||||
cv::gpu::HOGDescriptor hog;
|
||||
hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
|
||||
setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
|
||||
//cpu detector may be updated soon
|
||||
//hog.setSVMDetector(cv::HOGDescriptor::getDefaultPeopleDetector());
|
||||
|
||||
std::vector<cv::Point> locations;
|
||||
|
||||
// Test detect
|
||||
hog.detect(d_img, locations, 0);
|
||||
detect(d_img, locations, 0);
|
||||
|
||||
#ifdef DUMP
|
||||
dump(hog.block_hists, locations);
|
||||
dump(block_hists, locations);
|
||||
#else
|
||||
compare(hog.block_hists, locations);
|
||||
compare(block_hists, locations);
|
||||
#endif
|
||||
|
||||
// Test detect on smaller image
|
||||
cv::gpu::GpuMat d_img2;
|
||||
cv::gpu::resize(d_img, d_img2, cv::Size(d_img.cols / 2, d_img.rows / 2));
|
||||
hog.detect(d_img2, locations, 0);
|
||||
detect(d_img2, locations, 0);
|
||||
|
||||
#ifdef DUMP
|
||||
dump(hog.block_hists, locations);
|
||||
dump(block_hists, locations);
|
||||
#else
|
||||
compare(hog.block_hists, locations);
|
||||
compare(block_hists, locations);
|
||||
#endif
|
||||
|
||||
// Test detect on greater image
|
||||
cv::gpu::resize(d_img, d_img2, cv::Size(d_img.cols * 2, d_img.rows * 2));
|
||||
hog.detect(d_img2, locations, 0);
|
||||
detect(d_img2, locations, 0);
|
||||
|
||||
#ifdef DUMP
|
||||
dump(hog.block_hists, locations);
|
||||
dump(block_hists, locations);
|
||||
#else
|
||||
compare(hog.block_hists, locations);
|
||||
compare(block_hists, locations);
|
||||
#endif
|
||||
|
||||
// Test detectMultiScale
|
||||
std::vector<cv::Rect> rects;
|
||||
size_t nrects;
|
||||
hog.detectMultiScale(d_img, rects, 0, cv::Size(8, 8), cv::Size(), 1.05, 2);
|
||||
detectMultiScale(d_img, rects, 0, cv::Size(8, 8), cv::Size(), 1.05, 2);
|
||||
|
||||
#ifdef DUMP
|
||||
nrects = rects.size();
|
||||
f.write((char*)&nrects, sizeof(nrects));
|
||||
for (size_t i = 0; i < rects.size(); ++i)
|
||||
f.write((char*)&rects[i], sizeof(rects[i]));
|
||||
dump(hog.block_hists, std::vector<cv::Point>());
|
||||
dump(block_hists, std::vector<cv::Point>());
|
||||
#else
|
||||
f.read((char*)&nrects, sizeof(nrects));
|
||||
CHECK(nrects == rects.size(), CvTS::FAIL_INVALID_OUTPUT)
|
||||
@ -198,7 +197,7 @@ struct CV_GpuHogDetectionTest: public CvTest
|
||||
f.read((char*)&rect, sizeof(rect));
|
||||
CHECK(rect == rects[i], CvTS::FAIL_INVALID_OUTPUT);
|
||||
}
|
||||
compare(hog.block_hists, std::vector<cv::Point>());
|
||||
compare(block_hists, std::vector<cv::Point>());
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -211,9 +210,10 @@ struct CV_GpuHogDetectionTest: public CvTest
|
||||
} gpu_hog_detection_test;
|
||||
|
||||
|
||||
struct CV_GpuHogGetDescriptorsTest: public CvTest
|
||||
struct CV_GpuHogGetDescriptorsTest: public CvTest, public cv::gpu::HOGDescriptor
|
||||
{
|
||||
CV_GpuHogGetDescriptorsTest(): CvTest("GPU-HOG-getDescriptors", "HOGDescriptorGetDescriptors") {}
|
||||
CV_GpuHogGetDescriptorsTest():
|
||||
CvTest("GPU-HOG-getDescriptors", "HOGDescriptorGetDescriptors"), HOGDescriptor(cv::Size(64, 128)) {}
|
||||
|
||||
void run(int)
|
||||
{
|
||||
@ -228,12 +228,11 @@ struct CV_GpuHogGetDescriptorsTest: public CvTest
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
cv::gpu::GpuMat d_img(img);
|
||||
|
||||
cv::Size win_size(64, 128);
|
||||
cv::gpu::HOGDescriptor hog(win_size);
|
||||
|
||||
// Convert train images into feature vectors (train table)
|
||||
cv::gpu::GpuMat descriptors;
|
||||
hog.getDescriptors(d_img, win_size, descriptors);
|
||||
cv::gpu::GpuMat descriptors, descriptors_by_cols;
|
||||
getDescriptors(d_img, win_size, descriptors, DESCR_FORMAT_ROW_BY_ROW);
|
||||
getDescriptors(d_img, win_size, descriptors_by_cols, DESCR_FORMAT_COL_BY_COL);
|
||||
|
||||
// Check size of the result train table
|
||||
wins_per_img_x = 3;
|
||||
@ -245,6 +244,20 @@ struct CV_GpuHogGetDescriptorsTest: public CvTest
|
||||
wins_per_img_x * wins_per_img_y);
|
||||
CHECK(descriptors.size() == descr_size_expected, CvTS::FAIL_INVALID_OUTPUT);
|
||||
|
||||
// Check both formats of output descriptors are handled correctly
|
||||
cv::Mat dr(descriptors);
|
||||
cv::Mat dc(descriptors_by_cols);
|
||||
for (int i = 0; i < wins_per_img_x * wins_per_img_y; ++i)
|
||||
{
|
||||
const float* l = dr.rowRange(i, i + 1).ptr<float>();
|
||||
const float* r = dc.rowRange(i, i + 1).ptr<float>();
|
||||
for (int y = 0; y < blocks_per_win_y; ++y)
|
||||
for (int x = 0; x < blocks_per_win_x; ++x)
|
||||
for (int k = 0; k < block_hist_size; ++k)
|
||||
CHECK(l[(y * blocks_per_win_x + x) * block_hist_size + k] ==
|
||||
r[(x * blocks_per_win_y + y) * block_hist_size + k], CvTS::FAIL_INVALID_OUTPUT);
|
||||
}
|
||||
|
||||
/* Now we want to extract the same feature vectors, but from single images. NOTE: results will
|
||||
be defferent, due to border values interpolation. Using of many small images is slower, however we
|
||||
wont't call getDescriptors and will use computeBlockHistograms instead of. computeBlockHistograms
|
||||
@ -253,39 +266,39 @@ struct CV_GpuHogGetDescriptorsTest: public CvTest
|
||||
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/positive1.png");
|
||||
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA);
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
hog.computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
// Everything is fine with interpolation for left top subimage
|
||||
CHECK(cv::norm(hog.block_hists, descriptors.rowRange(0, 1)) == 0.f, CvTS::FAIL_INVALID_OUTPUT);
|
||||
CHECK(cv::norm(block_hists, descriptors.rowRange(0, 1)) == 0.f, CvTS::FAIL_INVALID_OUTPUT);
|
||||
|
||||
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/positive2.png");
|
||||
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA);
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
hog.computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(hog.block_hists, descriptors.rowRange(1, 2));
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(block_hists, descriptors.rowRange(1, 2));
|
||||
|
||||
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/negative1.png");
|
||||
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA);
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
hog.computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(hog.block_hists, descriptors.rowRange(2, 3));
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(block_hists, descriptors.rowRange(2, 3));
|
||||
|
||||
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/negative2.png");
|
||||
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA);
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
hog.computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(hog.block_hists, descriptors.rowRange(3, 4));
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(block_hists, descriptors.rowRange(3, 4));
|
||||
|
||||
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/positive3.png");
|
||||
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA);
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
hog.computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(hog.block_hists, descriptors.rowRange(4, 5));
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(block_hists, descriptors.rowRange(4, 5));
|
||||
|
||||
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/negative3.png");
|
||||
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA);
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
hog.computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(hog.block_hists, descriptors.rowRange(5, 6));
|
||||
computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(block_hists, descriptors.rowRange(5, 6));
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user