mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 13:10:12 +08:00
Merge pull request #2480 from vpisarev:ocl_orb
This commit is contained in:
commit
6b434befc9
@ -28,7 +28,7 @@ PERF_TEST_P(orb, detect, testing::Values(ORB_IMAGES))
|
||||
TEST_CYCLE() detector(frame, mask, points);
|
||||
|
||||
sort(points.begin(), points.end(), comparators::KeypointGreater());
|
||||
SANITY_CHECK_KEYPOINTS(points);
|
||||
SANITY_CHECK_KEYPOINTS(points, 1e-5);
|
||||
}
|
||||
|
||||
PERF_TEST_P(orb, extract, testing::Values(ORB_IMAGES))
|
||||
@ -72,6 +72,6 @@ PERF_TEST_P(orb, full, testing::Values(ORB_IMAGES))
|
||||
TEST_CYCLE() detector(frame, mask, points, descriptors, false);
|
||||
|
||||
perf::sort(points, descriptors);
|
||||
SANITY_CHECK_KEYPOINTS(points);
|
||||
SANITY_CHECK_KEYPOINTS(points, 1e-5);
|
||||
SANITY_CHECK(descriptors);
|
||||
}
|
||||
|
@ -43,6 +43,7 @@ The references are:
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "fast_score.hpp"
|
||||
#include "opencl_kernels.hpp"
|
||||
|
||||
#if defined _MSC_VER
|
||||
# pragma warning( disable : 4127)
|
||||
@ -249,8 +250,90 @@ void FAST_t(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bo
|
||||
}
|
||||
}
|
||||
|
||||
template<typename pt>
|
||||
struct cmp_pt
|
||||
{
|
||||
bool operator ()(const pt& a, const pt& b) const { return a.y < b.y || (a.y == b.y && a.x < b.x); }
|
||||
};
|
||||
|
||||
static bool ocl_FAST( InputArray _img, std::vector<KeyPoint>& keypoints,
|
||||
int threshold, bool nonmax_suppression, int maxKeypoints )
|
||||
{
|
||||
UMat img = _img.getUMat();
|
||||
if( img.cols < 7 || img.rows < 7 )
|
||||
return false;
|
||||
size_t globalsize[] = { img.cols-6, img.rows-6 };
|
||||
|
||||
ocl::Kernel fastKptKernel("FAST_findKeypoints", ocl::features2d::fast_oclsrc);
|
||||
if (fastKptKernel.empty())
|
||||
return false;
|
||||
|
||||
UMat kp1(1, maxKeypoints*2+1, CV_32S);
|
||||
|
||||
UMat ucounter1(kp1, Rect(0,0,1,1));
|
||||
ucounter1.setTo(Scalar::all(0));
|
||||
|
||||
if( !fastKptKernel.args(ocl::KernelArg::ReadOnly(img),
|
||||
ocl::KernelArg::PtrReadWrite(kp1),
|
||||
maxKeypoints, threshold).run(2, globalsize, 0, true))
|
||||
return false;
|
||||
|
||||
Mat mcounter;
|
||||
ucounter1.copyTo(mcounter);
|
||||
int i, counter = mcounter.at<int>(0);
|
||||
counter = std::min(counter, maxKeypoints);
|
||||
|
||||
keypoints.clear();
|
||||
|
||||
if( counter == 0 )
|
||||
return true;
|
||||
|
||||
if( !nonmax_suppression )
|
||||
{
|
||||
Mat m;
|
||||
kp1(Rect(0, 0, counter*2+1, 1)).copyTo(m);
|
||||
const Point* pt = (const Point*)(m.ptr<int>() + 1);
|
||||
for( i = 0; i < counter; i++ )
|
||||
keypoints.push_back(KeyPoint((float)pt[i].x, (float)pt[i].y, 7.f, -1, 1.f));
|
||||
}
|
||||
else
|
||||
{
|
||||
UMat kp2(1, maxKeypoints*3+1, CV_32S);
|
||||
UMat ucounter2 = kp2(Rect(0,0,1,1));
|
||||
ucounter2.setTo(Scalar::all(0));
|
||||
|
||||
ocl::Kernel fastNMSKernel("FAST_nonmaxSupression", ocl::features2d::fast_oclsrc);
|
||||
if (fastNMSKernel.empty())
|
||||
return false;
|
||||
|
||||
size_t globalsize_nms[] = { counter };
|
||||
if( !fastNMSKernel.args(ocl::KernelArg::PtrReadOnly(kp1),
|
||||
ocl::KernelArg::PtrReadWrite(kp2),
|
||||
ocl::KernelArg::ReadOnly(img),
|
||||
counter, counter).run(1, globalsize_nms, 0, true))
|
||||
return false;
|
||||
|
||||
Mat m2;
|
||||
kp2(Rect(0, 0, counter*3+1, 1)).copyTo(m2);
|
||||
Point3i* pt2 = (Point3i*)(m2.ptr<int>() + 1);
|
||||
int newcounter = std::min(m2.at<int>(0), counter);
|
||||
|
||||
std::sort(pt2, pt2 + newcounter, cmp_pt<Point3i>());
|
||||
|
||||
for( i = 0; i < newcounter; i++ )
|
||||
keypoints.push_back(KeyPoint((float)pt2[i].x, (float)pt2[i].y, 7.f, -1, (float)pt2[i].z));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
void FAST(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool nonmax_suppression, int type)
|
||||
{
|
||||
if( ocl::useOpenCL() && _img.isUMat() && type == FastFeatureDetector::TYPE_9_16 &&
|
||||
ocl_FAST(_img, keypoints, threshold, nonmax_suppression, 10000))
|
||||
return;
|
||||
|
||||
switch(type) {
|
||||
case FastFeatureDetector::TYPE_5_8:
|
||||
FAST_t<8>(_img, keypoints, threshold, nonmax_suppression);
|
||||
@ -268,6 +351,7 @@ void FAST(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void FAST(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool nonmax_suppression)
|
||||
{
|
||||
FAST(_img, keypoints, threshold, nonmax_suppression, FastFeatureDetector::TYPE_9_16);
|
||||
@ -285,10 +369,16 @@ FastFeatureDetector::FastFeatureDetector( int _threshold, bool _nonmaxSuppressio
|
||||
|
||||
void FastFeatureDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) const
|
||||
{
|
||||
Mat image = _image.getMat(), mask = _mask.getMat(), grayImage = image;
|
||||
if( image.type() != CV_8U )
|
||||
cvtColor( image, grayImage, COLOR_BGR2GRAY );
|
||||
FAST( grayImage, keypoints, threshold, nonmaxSuppression, type );
|
||||
Mat mask = _mask.getMat(), grayImage;
|
||||
UMat ugrayImage;
|
||||
_InputArray gray = _image;
|
||||
if( _image.type() != CV_8U )
|
||||
{
|
||||
_OutputArray ogray = _image.isUMat() ? _OutputArray(ugrayImage) : _OutputArray(grayImage);
|
||||
cvtColor( _image, ogray, COLOR_BGR2GRAY );
|
||||
gray = ogray;
|
||||
}
|
||||
FAST( gray, keypoints, threshold, nonmaxSuppression, type );
|
||||
KeyPointsFilter::runByPixelsMask( keypoints, mask );
|
||||
}
|
||||
|
||||
|
162
modules/features2d/src/opencl/fast.cl
Normal file
162
modules/features2d/src/opencl/fast.cl
Normal file
@ -0,0 +1,162 @@
|
||||
// OpenCL port of the FAST corner detector.
|
||||
// Copyright (C) 2014, Itseez Inc. See the license at http://opencv.org
|
||||
|
||||
inline int cornerScore(__global const uchar* img, int step)
|
||||
{
|
||||
int k, tofs, v = img[0], a0 = 0, b0;
|
||||
int d[16];
|
||||
#define LOAD2(idx, ofs) \
|
||||
tofs = ofs; d[idx] = (short)(v - img[tofs]); d[idx+8] = (short)(v - img[-tofs])
|
||||
LOAD2(0, 3);
|
||||
LOAD2(1, -step+3);
|
||||
LOAD2(2, -step*2+2);
|
||||
LOAD2(3, -step*3+1);
|
||||
LOAD2(4, -step*3);
|
||||
LOAD2(5, -step*3-1);
|
||||
LOAD2(6, -step*2-2);
|
||||
LOAD2(7, -step-3);
|
||||
|
||||
#pragma unroll
|
||||
for( k = 0; k < 16; k += 2 )
|
||||
{
|
||||
int a = min((int)d[(k+1)&15], (int)d[(k+2)&15]);
|
||||
a = min(a, (int)d[(k+3)&15]);
|
||||
a = min(a, (int)d[(k+4)&15]);
|
||||
a = min(a, (int)d[(k+5)&15]);
|
||||
a = min(a, (int)d[(k+6)&15]);
|
||||
a = min(a, (int)d[(k+7)&15]);
|
||||
a = min(a, (int)d[(k+8)&15]);
|
||||
a0 = max(a0, min(a, (int)d[k&15]));
|
||||
a0 = max(a0, min(a, (int)d[(k+9)&15]));
|
||||
}
|
||||
|
||||
b0 = -a0;
|
||||
#pragma unroll
|
||||
for( k = 0; k < 16; k += 2 )
|
||||
{
|
||||
int b = max((int)d[(k+1)&15], (int)d[(k+2)&15]);
|
||||
b = max(b, (int)d[(k+3)&15]);
|
||||
b = max(b, (int)d[(k+4)&15]);
|
||||
b = max(b, (int)d[(k+5)&15]);
|
||||
b = max(b, (int)d[(k+6)&15]);
|
||||
b = max(b, (int)d[(k+7)&15]);
|
||||
b = max(b, (int)d[(k+8)&15]);
|
||||
|
||||
b0 = min(b0, max(b, (int)d[k]));
|
||||
b0 = min(b0, max(b, (int)d[(k+9)&15]));
|
||||
}
|
||||
|
||||
return -b0-1;
|
||||
}
|
||||
|
||||
__kernel
|
||||
void FAST_findKeypoints(
|
||||
__global const uchar * _img, int step, int img_offset,
|
||||
int img_rows, int img_cols,
|
||||
volatile __global int* kp_loc,
|
||||
int max_keypoints, int threshold )
|
||||
{
|
||||
int j = get_global_id(0) + 3;
|
||||
int i = get_global_id(1) + 3;
|
||||
|
||||
if (i < img_rows - 3 && j < img_cols - 3)
|
||||
{
|
||||
__global const uchar* img = _img + mad24(i, step, j + img_offset);
|
||||
int v = img[0], t0 = v - threshold, t1 = v + threshold;
|
||||
int k, tofs, v0, v1;
|
||||
int m0 = 0, m1 = 0;
|
||||
|
||||
#define UPDATE_MASK(idx, ofs) \
|
||||
tofs = ofs; v0 = img[tofs]; v1 = img[-tofs]; \
|
||||
m0 |= ((v0 < t0) << idx) | ((v1 < t0) << (8 + idx)); \
|
||||
m1 |= ((v0 > t1) << idx) | ((v1 > t1) << (8 + idx))
|
||||
|
||||
UPDATE_MASK(0, 3);
|
||||
if( (m0 | m1) == 0 )
|
||||
return;
|
||||
|
||||
UPDATE_MASK(2, -step*2+2);
|
||||
UPDATE_MASK(4, -step*3);
|
||||
UPDATE_MASK(6, -step*2-2);
|
||||
|
||||
#define EVEN_MASK (1+4+16+64)
|
||||
|
||||
if( ((m0 | (m0 >> 8)) & EVEN_MASK) != EVEN_MASK &&
|
||||
((m1 | (m1 >> 8)) & EVEN_MASK) != EVEN_MASK )
|
||||
return;
|
||||
|
||||
UPDATE_MASK(1, -step+3);
|
||||
UPDATE_MASK(3, -step*3+1);
|
||||
UPDATE_MASK(5, -step*3-1);
|
||||
UPDATE_MASK(7, -step-3);
|
||||
if( ((m0 | (m0 >> 8)) & 255) != 255 &&
|
||||
((m1 | (m1 >> 8)) & 255) != 255 )
|
||||
return;
|
||||
|
||||
m0 |= m0 << 16;
|
||||
m1 |= m1 << 16;
|
||||
|
||||
#define CHECK0(i) ((m0 & (511 << i)) == (511 << i))
|
||||
#define CHECK1(i) ((m1 & (511 << i)) == (511 << i))
|
||||
|
||||
if( CHECK0(0) + CHECK0(1) + CHECK0(2) + CHECK0(3) +
|
||||
CHECK0(4) + CHECK0(5) + CHECK0(6) + CHECK0(7) +
|
||||
CHECK0(8) + CHECK0(9) + CHECK0(10) + CHECK0(11) +
|
||||
CHECK0(12) + CHECK0(13) + CHECK0(14) + CHECK0(15) +
|
||||
|
||||
CHECK1(0) + CHECK1(1) + CHECK1(2) + CHECK1(3) +
|
||||
CHECK1(4) + CHECK1(5) + CHECK1(6) + CHECK1(7) +
|
||||
CHECK1(8) + CHECK1(9) + CHECK1(10) + CHECK1(11) +
|
||||
CHECK1(12) + CHECK1(13) + CHECK1(14) + CHECK1(15) == 0 )
|
||||
return;
|
||||
|
||||
{
|
||||
int idx = atomic_inc(kp_loc);
|
||||
if( idx < max_keypoints )
|
||||
{
|
||||
kp_loc[1 + 2*idx] = j;
|
||||
kp_loc[2 + 2*idx] = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// nonmaxSupression
|
||||
|
||||
__kernel
|
||||
void FAST_nonmaxSupression(
|
||||
__global const int* kp_in, volatile __global int* kp_out,
|
||||
__global const uchar * _img, int step, int img_offset,
|
||||
int rows, int cols, int counter, int max_keypoints)
|
||||
{
|
||||
const int idx = get_global_id(0);
|
||||
|
||||
if (idx < counter)
|
||||
{
|
||||
int x = kp_in[1 + 2*idx];
|
||||
int y = kp_in[2 + 2*idx];
|
||||
__global const uchar* img = _img + mad24(y, step, x + img_offset);
|
||||
|
||||
int s = cornerScore(img, step);
|
||||
|
||||
if( (x < 4 || s > cornerScore(img-1, step)) +
|
||||
(y < 4 || s > cornerScore(img-step, step)) != 2 )
|
||||
return;
|
||||
if( (x >= cols - 4 || s > cornerScore(img+1, step)) +
|
||||
(y >= rows - 4 || s > cornerScore(img+step, step)) +
|
||||
(x < 4 || y < 4 || s > cornerScore(img-step-1, step)) +
|
||||
(x >= cols - 4 || y < 4 || s > cornerScore(img-step+1, step)) +
|
||||
(x < 4 || y >= rows - 4 || s > cornerScore(img+step-1, step)) +
|
||||
(x >= cols - 4 || y >= rows - 4 || s > cornerScore(img+step+1, step)) == 6)
|
||||
{
|
||||
int new_idx = atomic_inc(kp_out);
|
||||
if( new_idx < max_keypoints )
|
||||
{
|
||||
kp_out[1 + 3*new_idx] = x;
|
||||
kp_out[2 + 3*new_idx] = y;
|
||||
kp_out[3 + 3*new_idx] = s;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
254
modules/features2d/src/opencl/orb.cl
Normal file
254
modules/features2d/src/opencl/orb.cl
Normal file
@ -0,0 +1,254 @@
|
||||
// OpenCL port of the ORB feature detector and descriptor extractor
|
||||
// Copyright (C) 2014, Itseez Inc. See the license at http://opencv.org
|
||||
//
|
||||
// The original code has been contributed by Peter Andreas Entschev, peter@entschev.com
|
||||
|
||||
#define LAYERINFO_SIZE 1
|
||||
#define LAYERINFO_OFS 0
|
||||
#define KEYPOINT_SIZE 3
|
||||
#define ORIENTED_KEYPOINT_SIZE 4
|
||||
#define KEYPOINT_X 0
|
||||
#define KEYPOINT_Y 1
|
||||
#define KEYPOINT_Z 2
|
||||
#define KEYPOINT_ANGLE 3
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
#ifdef ORB_RESPONSES
|
||||
|
||||
__kernel void
|
||||
ORB_HarrisResponses(__global const uchar* imgbuf, int imgstep, int imgoffset0,
|
||||
__global const int* layerinfo, __global const int* keypoints,
|
||||
__global float* responses, int nkeypoints )
|
||||
{
|
||||
int idx = get_global_id(0);
|
||||
if( idx < nkeypoints )
|
||||
{
|
||||
__global const int* kpt = keypoints + idx*KEYPOINT_SIZE;
|
||||
__global const int* layer = layerinfo + kpt[KEYPOINT_Z]*LAYERINFO_SIZE;
|
||||
__global const uchar* img = imgbuf + imgoffset0 + layer[LAYERINFO_OFS] +
|
||||
(kpt[KEYPOINT_Y] - blockSize/2)*imgstep + (kpt[KEYPOINT_X] - blockSize/2);
|
||||
|
||||
int i, j;
|
||||
int a = 0, b = 0, c = 0;
|
||||
for( i = 0; i < blockSize; i++, img += imgstep-blockSize )
|
||||
{
|
||||
for( j = 0; j < blockSize; j++, img++ )
|
||||
{
|
||||
int Ix = (img[1] - img[-1])*2 + img[-imgstep+1] - img[-imgstep-1] + img[imgstep+1] - img[imgstep-1];
|
||||
int Iy = (img[imgstep] - img[-imgstep])*2 + img[imgstep-1] - img[-imgstep-1] + img[imgstep+1] - img[-imgstep+1];
|
||||
a += Ix*Ix;
|
||||
b += Iy*Iy;
|
||||
c += Ix*Iy;
|
||||
}
|
||||
}
|
||||
responses[idx] = ((float)a * b - (float)c * c - HARRIS_K * (float)(a + b) * (a + b))*scale_sq_sq;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
#ifdef ORB_ANGLES
|
||||
|
||||
#define _DBL_EPSILON 2.2204460492503131e-16f
|
||||
#define atan2_p1 (0.9997878412794807f*57.29577951308232f)
|
||||
#define atan2_p3 (-0.3258083974640975f*57.29577951308232f)
|
||||
#define atan2_p5 (0.1555786518463281f*57.29577951308232f)
|
||||
#define atan2_p7 (-0.04432655554792128f*57.29577951308232f)
|
||||
|
||||
inline float fastAtan2( float y, float x )
|
||||
{
|
||||
float ax = fabs(x), ay = fabs(y);
|
||||
float a, c, c2;
|
||||
if( ax >= ay )
|
||||
{
|
||||
c = ay/(ax + _DBL_EPSILON);
|
||||
c2 = c*c;
|
||||
a = (((atan2_p7*c2 + atan2_p5)*c2 + atan2_p3)*c2 + atan2_p1)*c;
|
||||
}
|
||||
else
|
||||
{
|
||||
c = ax/(ay + _DBL_EPSILON);
|
||||
c2 = c*c;
|
||||
a = 90.f - (((atan2_p7*c2 + atan2_p5)*c2 + atan2_p3)*c2 + atan2_p1)*c;
|
||||
}
|
||||
if( x < 0 )
|
||||
a = 180.f - a;
|
||||
if( y < 0 )
|
||||
a = 360.f - a;
|
||||
return a;
|
||||
}
|
||||
|
||||
|
||||
__kernel void
|
||||
ORB_ICAngle(__global const uchar* imgbuf, int imgstep, int imgoffset0,
|
||||
__global const int* layerinfo, __global const int* keypoints,
|
||||
__global float* responses, const __global int* u_max,
|
||||
int nkeypoints, int half_k )
|
||||
{
|
||||
int idx = get_global_id(0);
|
||||
if( idx < nkeypoints )
|
||||
{
|
||||
__global const int* kpt = keypoints + idx*KEYPOINT_SIZE;
|
||||
|
||||
__global const int* layer = layerinfo + kpt[KEYPOINT_Z]*LAYERINFO_SIZE;
|
||||
__global const uchar* center = imgbuf + imgoffset0 + layer[LAYERINFO_OFS] +
|
||||
kpt[KEYPOINT_Y]*imgstep + kpt[KEYPOINT_X];
|
||||
|
||||
int u, v, m_01 = 0, m_10 = 0;
|
||||
|
||||
// Treat the center line differently, v=0
|
||||
for( u = -half_k; u <= half_k; u++ )
|
||||
m_10 += u * center[u];
|
||||
|
||||
// Go line by line in the circular patch
|
||||
for( v = 1; v <= half_k; v++ )
|
||||
{
|
||||
// Proceed over the two lines
|
||||
int v_sum = 0;
|
||||
int d = u_max[v];
|
||||
for( u = -d; u <= d; u++ )
|
||||
{
|
||||
int val_plus = center[u + v*imgstep], val_minus = center[u - v*imgstep];
|
||||
v_sum += (val_plus - val_minus);
|
||||
m_10 += u * (val_plus + val_minus);
|
||||
}
|
||||
m_01 += v * v_sum;
|
||||
}
|
||||
|
||||
// we do not use OpenCL's atan2 intrinsic,
|
||||
// because we want to get _exactly_ the same results as the CPU version
|
||||
responses[idx] = fastAtan2((float)m_01, (float)m_10);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
#ifdef ORB_DESCRIPTORS
|
||||
|
||||
__kernel void
|
||||
ORB_computeDescriptor(__global const uchar* imgbuf, int imgstep, int imgoffset0,
|
||||
__global const int* layerinfo, __global const int* keypoints,
|
||||
__global uchar* _desc, const __global int* pattern,
|
||||
int nkeypoints, int dsize )
|
||||
{
|
||||
int idx = get_global_id(0);
|
||||
if( idx < nkeypoints )
|
||||
{
|
||||
int i;
|
||||
__global const int* kpt = keypoints + idx*ORIENTED_KEYPOINT_SIZE;
|
||||
|
||||
__global const int* layer = layerinfo + kpt[KEYPOINT_Z]*LAYERINFO_SIZE;
|
||||
__global const uchar* center = imgbuf + imgoffset0 + layer[LAYERINFO_OFS] +
|
||||
kpt[KEYPOINT_Y]*imgstep + kpt[KEYPOINT_X];
|
||||
float angle = as_float(kpt[KEYPOINT_ANGLE]);
|
||||
angle *= 0.01745329251994329547f;
|
||||
|
||||
float sina = sin(angle);
|
||||
float cosa = cos(angle);
|
||||
|
||||
__global uchar* desc = _desc + idx*dsize;
|
||||
|
||||
#define GET_VALUE(idx) \
|
||||
center[mad24(convert_int_rte(pattern[(idx)*2] * sina + pattern[(idx)*2+1] * cosa), imgstep, \
|
||||
convert_int_rte(pattern[(idx)*2] * cosa - pattern[(idx)*2+1] * sina))]
|
||||
|
||||
for( i = 0; i < dsize; i++ )
|
||||
{
|
||||
int val;
|
||||
#if WTA_K == 2
|
||||
int t0, t1;
|
||||
|
||||
t0 = GET_VALUE(0); t1 = GET_VALUE(1);
|
||||
val = t0 < t1;
|
||||
|
||||
t0 = GET_VALUE(2); t1 = GET_VALUE(3);
|
||||
val |= (t0 < t1) << 1;
|
||||
|
||||
t0 = GET_VALUE(4); t1 = GET_VALUE(5);
|
||||
val |= (t0 < t1) << 2;
|
||||
|
||||
t0 = GET_VALUE(6); t1 = GET_VALUE(7);
|
||||
val |= (t0 < t1) << 3;
|
||||
|
||||
t0 = GET_VALUE(8); t1 = GET_VALUE(9);
|
||||
val |= (t0 < t1) << 4;
|
||||
|
||||
t0 = GET_VALUE(10); t1 = GET_VALUE(11);
|
||||
val |= (t0 < t1) << 5;
|
||||
|
||||
t0 = GET_VALUE(12); t1 = GET_VALUE(13);
|
||||
val |= (t0 < t1) << 6;
|
||||
|
||||
t0 = GET_VALUE(14); t1 = GET_VALUE(15);
|
||||
val |= (t0 < t1) << 7;
|
||||
|
||||
pattern += 16*2;
|
||||
|
||||
#elif WTA_K == 3
|
||||
int t0, t1, t2;
|
||||
|
||||
t0 = GET_VALUE(0); t1 = GET_VALUE(1); t2 = GET_VALUE(2);
|
||||
val = t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0);
|
||||
|
||||
t0 = GET_VALUE(3); t1 = GET_VALUE(4); t2 = GET_VALUE(5);
|
||||
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 2;
|
||||
|
||||
t0 = GET_VALUE(6); t1 = GET_VALUE(7); t2 = GET_VALUE(8);
|
||||
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 4;
|
||||
|
||||
t0 = GET_VALUE(9); t1 = GET_VALUE(10); t2 = GET_VALUE(11);
|
||||
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 6;
|
||||
|
||||
pattern += 12*2;
|
||||
|
||||
#elif WTA_K == 4
|
||||
int t0, t1, t2, t3, k, val;
|
||||
int a, b;
|
||||
|
||||
t0 = GET_VALUE(0); t1 = GET_VALUE(1);
|
||||
t2 = GET_VALUE(2); t3 = GET_VALUE(3);
|
||||
a = 0, b = 2;
|
||||
if( t1 > t0 ) t0 = t1, a = 1;
|
||||
if( t3 > t2 ) t2 = t3, b = 3;
|
||||
k = t0 > t2 ? a : b;
|
||||
val = k;
|
||||
|
||||
t0 = GET_VALUE(4); t1 = GET_VALUE(5);
|
||||
t2 = GET_VALUE(6); t3 = GET_VALUE(7);
|
||||
a = 0, b = 2;
|
||||
if( t1 > t0 ) t0 = t1, a = 1;
|
||||
if( t3 > t2 ) t2 = t3, b = 3;
|
||||
k = t0 > t2 ? a : b;
|
||||
val |= k << 2;
|
||||
|
||||
t0 = GET_VALUE(8); t1 = GET_VALUE(9);
|
||||
t2 = GET_VALUE(10); t3 = GET_VALUE(11);
|
||||
a = 0, b = 2;
|
||||
if( t1 > t0 ) t0 = t1, a = 1;
|
||||
if( t3 > t2 ) t2 = t3, b = 3;
|
||||
k = t0 > t2 ? a : b;
|
||||
val |= k << 4;
|
||||
|
||||
t0 = GET_VALUE(12); t1 = GET_VALUE(13);
|
||||
t2 = GET_VALUE(14); t3 = GET_VALUE(15);
|
||||
a = 0, b = 2;
|
||||
if( t1 > t0 ) t0 = t1, a = 1;
|
||||
if( t3 > t2 ) t2 = t3, b = 3;
|
||||
k = t0 > t2 ? a : b;
|
||||
val |= k << 6;
|
||||
|
||||
pattern += 16*2;
|
||||
#else
|
||||
#error "unknown/undefined WTA_K value; should be 2, 3 or 4"
|
||||
#endif
|
||||
desc[i] = (uchar)val;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
@ -35,6 +35,7 @@
|
||||
/** Authors: Ethan Rublee, Vincent Rabaud, Gary Bradski */
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencl_kernels.hpp"
|
||||
#include <iterator>
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -43,14 +44,86 @@ namespace cv
|
||||
{
|
||||
|
||||
const float HARRIS_K = 0.04f;
|
||||
const int DESCRIPTOR_SIZE = 32;
|
||||
|
||||
template<typename _Tp> inline void copyVectorToUMat(const std::vector<_Tp>& v, OutputArray um)
|
||||
{
|
||||
if(v.empty())
|
||||
um.release();
|
||||
Mat(1, (int)(v.size()*sizeof(v[0])), CV_8U, (void*)&v[0]).copyTo(um);
|
||||
}
|
||||
|
||||
static bool
|
||||
ocl_HarrisResponses(const UMat& imgbuf,
|
||||
const UMat& layerinfo,
|
||||
const UMat& keypoints,
|
||||
UMat& responses,
|
||||
int nkeypoints, int blockSize, float harris_k)
|
||||
{
|
||||
size_t globalSize[] = {nkeypoints};
|
||||
|
||||
float scale = 1.f/((1 << 2) * blockSize * 255.f);
|
||||
float scale_sq_sq = scale * scale * scale * scale;
|
||||
|
||||
ocl::Kernel hr_ker("ORB_HarrisResponses", ocl::features2d::orb_oclsrc,
|
||||
format("-D ORB_RESPONSES -D blockSize=%d -D scale_sq_sq=%.12ef -D HARRIS_K=%.12ff", blockSize, scale_sq_sq, harris_k));
|
||||
if( hr_ker.empty() )
|
||||
return false;
|
||||
|
||||
return hr_ker.args(ocl::KernelArg::ReadOnlyNoSize(imgbuf),
|
||||
ocl::KernelArg::PtrReadOnly(layerinfo),
|
||||
ocl::KernelArg::PtrReadOnly(keypoints),
|
||||
ocl::KernelArg::PtrWriteOnly(responses),
|
||||
nkeypoints).run(1, globalSize, 0, true);
|
||||
}
|
||||
|
||||
static bool
|
||||
ocl_ICAngles(const UMat& imgbuf, const UMat& layerinfo,
|
||||
const UMat& keypoints, UMat& responses,
|
||||
const UMat& umax, int nkeypoints, int half_k)
|
||||
{
|
||||
size_t globalSize[] = {nkeypoints};
|
||||
|
||||
ocl::Kernel icangle_ker("ORB_ICAngle", ocl::features2d::orb_oclsrc, "-D ORB_ANGLES");
|
||||
if( icangle_ker.empty() )
|
||||
return false;
|
||||
|
||||
return icangle_ker.args(ocl::KernelArg::ReadOnlyNoSize(imgbuf),
|
||||
ocl::KernelArg::PtrReadOnly(layerinfo),
|
||||
ocl::KernelArg::PtrReadOnly(keypoints),
|
||||
ocl::KernelArg::PtrWriteOnly(responses),
|
||||
ocl::KernelArg::PtrReadOnly(umax),
|
||||
nkeypoints, half_k).run(1, globalSize, 0, true);
|
||||
}
|
||||
|
||||
|
||||
static bool
|
||||
ocl_computeOrbDescriptors(const UMat& imgbuf, const UMat& layerInfo,
|
||||
const UMat& keypoints, UMat& desc, const UMat& pattern,
|
||||
int nkeypoints, int dsize, int WTA_K)
|
||||
{
|
||||
size_t globalSize[] = {nkeypoints};
|
||||
|
||||
ocl::Kernel desc_ker("ORB_computeDescriptor", ocl::features2d::orb_oclsrc,
|
||||
format("-D ORB_DESCRIPTORS -D WTA_K=%d", WTA_K));
|
||||
if( desc_ker.empty() )
|
||||
return false;
|
||||
|
||||
return desc_ker.args(ocl::KernelArg::ReadOnlyNoSize(imgbuf),
|
||||
ocl::KernelArg::PtrReadOnly(layerInfo),
|
||||
ocl::KernelArg::PtrReadOnly(keypoints),
|
||||
ocl::KernelArg::PtrWriteOnly(desc),
|
||||
ocl::KernelArg::PtrReadOnly(pattern),
|
||||
nkeypoints, dsize).run(1, globalSize, 0, true);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Function that computes the Harris responses in a
|
||||
* blockSize x blockSize patch at given points in an image
|
||||
* blockSize x blockSize patch at given points in the image
|
||||
*/
|
||||
static void
|
||||
HarrisResponses(const Mat& img, std::vector<KeyPoint>& pts, int blockSize, float harris_k)
|
||||
HarrisResponses(const Mat& img, const std::vector<Rect>& layerinfo,
|
||||
std::vector<KeyPoint>& pts, int blockSize, float harris_k)
|
||||
{
|
||||
CV_Assert( img.type() == CV_8UC1 && blockSize*blockSize <= 2048 );
|
||||
|
||||
@ -60,8 +133,7 @@ HarrisResponses(const Mat& img, std::vector<KeyPoint>& pts, int blockSize, float
|
||||
int step = (int)(img.step/img.elemSize1());
|
||||
int r = blockSize/2;
|
||||
|
||||
float scale = (1 << 2) * blockSize * 255.0f;
|
||||
scale = 1.0f / scale;
|
||||
float scale = 1.f/((1 << 2) * blockSize * 255.f);
|
||||
float scale_sq_sq = scale * scale * scale * scale;
|
||||
|
||||
AutoBuffer<int> ofsbuf(blockSize*blockSize);
|
||||
@ -72,10 +144,11 @@ HarrisResponses(const Mat& img, std::vector<KeyPoint>& pts, int blockSize, float
|
||||
|
||||
for( ptidx = 0; ptidx < ptsize; ptidx++ )
|
||||
{
|
||||
int x0 = cvRound(pts[ptidx].pt.x - r);
|
||||
int y0 = cvRound(pts[ptidx].pt.y - r);
|
||||
int x0 = cvRound(pts[ptidx].pt.x);
|
||||
int y0 = cvRound(pts[ptidx].pt.y);
|
||||
int z = pts[ptidx].octave;
|
||||
|
||||
const uchar* ptr0 = ptr00 + y0*step + x0;
|
||||
const uchar* ptr0 = ptr00 + (y0 - r + layerinfo[z].y)*step + x0 - r + layerinfo[z].x;
|
||||
int a = 0, b = 0, c = 0;
|
||||
|
||||
for( int k = 0; k < blockSize*blockSize; k++ )
|
||||
@ -94,158 +167,175 @@ HarrisResponses(const Mat& img, std::vector<KeyPoint>& pts, int blockSize, float
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
static float IC_Angle(const Mat& image, const int half_k, Point2f pt,
|
||||
const std::vector<int> & u_max)
|
||||
static void ICAngles(const Mat& img, const std::vector<Rect>& layerinfo,
|
||||
std::vector<KeyPoint>& pts, const std::vector<int> & u_max, int half_k)
|
||||
{
|
||||
int m_01 = 0, m_10 = 0;
|
||||
int step = (int)img.step1();
|
||||
size_t ptidx, ptsize = pts.size();
|
||||
|
||||
const uchar* center = &image.at<uchar> (cvRound(pt.y), cvRound(pt.x));
|
||||
|
||||
// Treat the center line differently, v=0
|
||||
for (int u = -half_k; u <= half_k; ++u)
|
||||
m_10 += u * center[u];
|
||||
|
||||
// Go line by line in the circular patch
|
||||
int step = (int)image.step1();
|
||||
for (int v = 1; v <= half_k; ++v)
|
||||
for( ptidx = 0; ptidx < ptsize; ptidx++ )
|
||||
{
|
||||
// Proceed over the two lines
|
||||
int v_sum = 0;
|
||||
int d = u_max[v];
|
||||
for (int u = -d; u <= d; ++u)
|
||||
{
|
||||
int val_plus = center[u + v*step], val_minus = center[u - v*step];
|
||||
v_sum += (val_plus - val_minus);
|
||||
m_10 += u * (val_plus + val_minus);
|
||||
}
|
||||
m_01 += v * v_sum;
|
||||
}
|
||||
const Rect& layer = layerinfo[pts[ptidx].octave];
|
||||
const uchar* center = &img.at<uchar>(cvRound(pts[ptidx].pt.y) + layer.y, cvRound(pts[ptidx].pt.x) + layer.x);
|
||||
|
||||
return fastAtan2((float)m_01, (float)m_10);
|
||||
int m_01 = 0, m_10 = 0;
|
||||
|
||||
// Treat the center line differently, v=0
|
||||
for (int u = -half_k; u <= half_k; ++u)
|
||||
m_10 += u * center[u];
|
||||
|
||||
// Go line by line in the circular patch
|
||||
for (int v = 1; v <= half_k; ++v)
|
||||
{
|
||||
// Proceed over the two lines
|
||||
int v_sum = 0;
|
||||
int d = u_max[v];
|
||||
for (int u = -d; u <= d; ++u)
|
||||
{
|
||||
int val_plus = center[u + v*step], val_minus = center[u - v*step];
|
||||
v_sum += (val_plus - val_minus);
|
||||
m_10 += u * (val_plus + val_minus);
|
||||
}
|
||||
m_01 += v * v_sum;
|
||||
}
|
||||
|
||||
pts[ptidx].angle = fastAtan2((float)m_01, (float)m_10);
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
static void computeOrbDescriptor(const KeyPoint& kpt,
|
||||
const Mat& img, const Point* pattern,
|
||||
uchar* desc, int dsize, int WTA_K)
|
||||
static void
|
||||
computeOrbDescriptors( const Mat& imagePyramid, const std::vector<Rect>& layerInfo,
|
||||
const std::vector<float>& layerScale, std::vector<KeyPoint>& keypoints,
|
||||
Mat& descriptors, const std::vector<Point>& _pattern, int dsize, int WTA_K )
|
||||
{
|
||||
float angle = kpt.angle;
|
||||
//angle = cvFloor(angle/12)*12.f;
|
||||
angle *= (float)(CV_PI/180.f);
|
||||
float a = (float)cos(angle), b = (float)sin(angle);
|
||||
int step = (int)imagePyramid.step;
|
||||
int j, i, nkeypoints = (int)keypoints.size();
|
||||
|
||||
const uchar* center = &img.at<uchar>(cvRound(kpt.pt.y), cvRound(kpt.pt.x));
|
||||
int step = (int)img.step;
|
||||
for( j = 0; j < nkeypoints; j++ )
|
||||
{
|
||||
const KeyPoint& kpt = keypoints[j];
|
||||
const Rect& layer = layerInfo[kpt.octave];
|
||||
float scale = 1.f/layerScale[kpt.octave];
|
||||
float angle = kpt.angle;
|
||||
|
||||
float x, y;
|
||||
int ix, iy;
|
||||
#if 1
|
||||
#define GET_VALUE(idx) \
|
||||
(x = pattern[idx].x*a - pattern[idx].y*b, \
|
||||
angle *= (float)(CV_PI/180.f);
|
||||
float a = (float)cos(angle), b = (float)sin(angle);
|
||||
|
||||
const uchar* center = &imagePyramid.at<uchar>(cvRound(kpt.pt.y*scale) + layer.y,
|
||||
cvRound(kpt.pt.x*scale) + layer.x);
|
||||
float x, y;
|
||||
int ix, iy;
|
||||
const Point* pattern = &_pattern[0];
|
||||
uchar* desc = descriptors.ptr<uchar>(j);
|
||||
|
||||
#if 1
|
||||
#define GET_VALUE(idx) \
|
||||
(x = pattern[idx].x*a - pattern[idx].y*b, \
|
||||
y = pattern[idx].x*b + pattern[idx].y*a, \
|
||||
ix = cvRound(x), \
|
||||
iy = cvRound(y), \
|
||||
*(center + iy*step + ix) )
|
||||
#else
|
||||
#define GET_VALUE(idx) \
|
||||
(x = pattern[idx].x*a - pattern[idx].y*b, \
|
||||
y = pattern[idx].x*b + pattern[idx].y*a, \
|
||||
ix = cvRound(x), \
|
||||
iy = cvRound(y), \
|
||||
*(center + iy*step + ix) )
|
||||
#else
|
||||
#define GET_VALUE(idx) \
|
||||
(x = pattern[idx].x*a - pattern[idx].y*b, \
|
||||
y = pattern[idx].x*b + pattern[idx].y*a, \
|
||||
ix = cvFloor(x), iy = cvFloor(y), \
|
||||
x -= ix, y -= iy, \
|
||||
cvRound(center[iy*step + ix]*(1-x)*(1-y) + center[(iy+1)*step + ix]*(1-x)*y + \
|
||||
center[iy*step + ix+1]*x*(1-y) + center[(iy+1)*step + ix+1]*x*y))
|
||||
#endif
|
||||
ix = cvFloor(x), iy = cvFloor(y), \
|
||||
x -= ix, y -= iy, \
|
||||
cvRound(center[iy*step + ix]*(1-x)*(1-y) + center[(iy+1)*step + ix]*(1-x)*y + \
|
||||
center[iy*step + ix+1]*x*(1-y) + center[(iy+1)*step + ix+1]*x*y))
|
||||
#endif
|
||||
|
||||
if( WTA_K == 2 )
|
||||
{
|
||||
for (int i = 0; i < dsize; ++i, pattern += 16)
|
||||
if( WTA_K == 2 )
|
||||
{
|
||||
int t0, t1, val;
|
||||
t0 = GET_VALUE(0); t1 = GET_VALUE(1);
|
||||
val = t0 < t1;
|
||||
t0 = GET_VALUE(2); t1 = GET_VALUE(3);
|
||||
val |= (t0 < t1) << 1;
|
||||
t0 = GET_VALUE(4); t1 = GET_VALUE(5);
|
||||
val |= (t0 < t1) << 2;
|
||||
t0 = GET_VALUE(6); t1 = GET_VALUE(7);
|
||||
val |= (t0 < t1) << 3;
|
||||
t0 = GET_VALUE(8); t1 = GET_VALUE(9);
|
||||
val |= (t0 < t1) << 4;
|
||||
t0 = GET_VALUE(10); t1 = GET_VALUE(11);
|
||||
val |= (t0 < t1) << 5;
|
||||
t0 = GET_VALUE(12); t1 = GET_VALUE(13);
|
||||
val |= (t0 < t1) << 6;
|
||||
t0 = GET_VALUE(14); t1 = GET_VALUE(15);
|
||||
val |= (t0 < t1) << 7;
|
||||
for (i = 0; i < dsize; ++i, pattern += 16)
|
||||
{
|
||||
int t0, t1, val;
|
||||
t0 = GET_VALUE(0); t1 = GET_VALUE(1);
|
||||
val = t0 < t1;
|
||||
t0 = GET_VALUE(2); t1 = GET_VALUE(3);
|
||||
val |= (t0 < t1) << 1;
|
||||
t0 = GET_VALUE(4); t1 = GET_VALUE(5);
|
||||
val |= (t0 < t1) << 2;
|
||||
t0 = GET_VALUE(6); t1 = GET_VALUE(7);
|
||||
val |= (t0 < t1) << 3;
|
||||
t0 = GET_VALUE(8); t1 = GET_VALUE(9);
|
||||
val |= (t0 < t1) << 4;
|
||||
t0 = GET_VALUE(10); t1 = GET_VALUE(11);
|
||||
val |= (t0 < t1) << 5;
|
||||
t0 = GET_VALUE(12); t1 = GET_VALUE(13);
|
||||
val |= (t0 < t1) << 6;
|
||||
t0 = GET_VALUE(14); t1 = GET_VALUE(15);
|
||||
val |= (t0 < t1) << 7;
|
||||
|
||||
desc[i] = (uchar)val;
|
||||
desc[i] = (uchar)val;
|
||||
}
|
||||
}
|
||||
}
|
||||
else if( WTA_K == 3 )
|
||||
{
|
||||
for (int i = 0; i < dsize; ++i, pattern += 12)
|
||||
else if( WTA_K == 3 )
|
||||
{
|
||||
int t0, t1, t2, val;
|
||||
t0 = GET_VALUE(0); t1 = GET_VALUE(1); t2 = GET_VALUE(2);
|
||||
val = t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0);
|
||||
for (i = 0; i < dsize; ++i, pattern += 12)
|
||||
{
|
||||
int t0, t1, t2, val;
|
||||
t0 = GET_VALUE(0); t1 = GET_VALUE(1); t2 = GET_VALUE(2);
|
||||
val = t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0);
|
||||
|
||||
t0 = GET_VALUE(3); t1 = GET_VALUE(4); t2 = GET_VALUE(5);
|
||||
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 2;
|
||||
t0 = GET_VALUE(3); t1 = GET_VALUE(4); t2 = GET_VALUE(5);
|
||||
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 2;
|
||||
|
||||
t0 = GET_VALUE(6); t1 = GET_VALUE(7); t2 = GET_VALUE(8);
|
||||
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 4;
|
||||
t0 = GET_VALUE(6); t1 = GET_VALUE(7); t2 = GET_VALUE(8);
|
||||
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 4;
|
||||
|
||||
t0 = GET_VALUE(9); t1 = GET_VALUE(10); t2 = GET_VALUE(11);
|
||||
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 6;
|
||||
t0 = GET_VALUE(9); t1 = GET_VALUE(10); t2 = GET_VALUE(11);
|
||||
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 6;
|
||||
|
||||
desc[i] = (uchar)val;
|
||||
desc[i] = (uchar)val;
|
||||
}
|
||||
}
|
||||
}
|
||||
else if( WTA_K == 4 )
|
||||
{
|
||||
for (int i = 0; i < dsize; ++i, pattern += 16)
|
||||
else if( WTA_K == 4 )
|
||||
{
|
||||
int t0, t1, t2, t3, u, v, k, val;
|
||||
t0 = GET_VALUE(0); t1 = GET_VALUE(1);
|
||||
t2 = GET_VALUE(2); t3 = GET_VALUE(3);
|
||||
u = 0, v = 2;
|
||||
if( t1 > t0 ) t0 = t1, u = 1;
|
||||
if( t3 > t2 ) t2 = t3, v = 3;
|
||||
k = t0 > t2 ? u : v;
|
||||
val = k;
|
||||
for (i = 0; i < dsize; ++i, pattern += 16)
|
||||
{
|
||||
int t0, t1, t2, t3, u, v, k, val;
|
||||
t0 = GET_VALUE(0); t1 = GET_VALUE(1);
|
||||
t2 = GET_VALUE(2); t3 = GET_VALUE(3);
|
||||
u = 0, v = 2;
|
||||
if( t1 > t0 ) t0 = t1, u = 1;
|
||||
if( t3 > t2 ) t2 = t3, v = 3;
|
||||
k = t0 > t2 ? u : v;
|
||||
val = k;
|
||||
|
||||
t0 = GET_VALUE(4); t1 = GET_VALUE(5);
|
||||
t2 = GET_VALUE(6); t3 = GET_VALUE(7);
|
||||
u = 0, v = 2;
|
||||
if( t1 > t0 ) t0 = t1, u = 1;
|
||||
if( t3 > t2 ) t2 = t3, v = 3;
|
||||
k = t0 > t2 ? u : v;
|
||||
val |= k << 2;
|
||||
t0 = GET_VALUE(4); t1 = GET_VALUE(5);
|
||||
t2 = GET_VALUE(6); t3 = GET_VALUE(7);
|
||||
u = 0, v = 2;
|
||||
if( t1 > t0 ) t0 = t1, u = 1;
|
||||
if( t3 > t2 ) t2 = t3, v = 3;
|
||||
k = t0 > t2 ? u : v;
|
||||
val |= k << 2;
|
||||
|
||||
t0 = GET_VALUE(8); t1 = GET_VALUE(9);
|
||||
t2 = GET_VALUE(10); t3 = GET_VALUE(11);
|
||||
u = 0, v = 2;
|
||||
if( t1 > t0 ) t0 = t1, u = 1;
|
||||
if( t3 > t2 ) t2 = t3, v = 3;
|
||||
k = t0 > t2 ? u : v;
|
||||
val |= k << 4;
|
||||
t0 = GET_VALUE(8); t1 = GET_VALUE(9);
|
||||
t2 = GET_VALUE(10); t3 = GET_VALUE(11);
|
||||
u = 0, v = 2;
|
||||
if( t1 > t0 ) t0 = t1, u = 1;
|
||||
if( t3 > t2 ) t2 = t3, v = 3;
|
||||
k = t0 > t2 ? u : v;
|
||||
val |= k << 4;
|
||||
|
||||
t0 = GET_VALUE(12); t1 = GET_VALUE(13);
|
||||
t2 = GET_VALUE(14); t3 = GET_VALUE(15);
|
||||
u = 0, v = 2;
|
||||
if( t1 > t0 ) t0 = t1, u = 1;
|
||||
if( t3 > t2 ) t2 = t3, v = 3;
|
||||
k = t0 > t2 ? u : v;
|
||||
val |= k << 6;
|
||||
t0 = GET_VALUE(12); t1 = GET_VALUE(13);
|
||||
t2 = GET_VALUE(14); t3 = GET_VALUE(15);
|
||||
u = 0, v = 2;
|
||||
if( t1 > t0 ) t0 = t1, u = 1;
|
||||
if( t3 > t2 ) t2 = t3, v = 3;
|
||||
k = t0 > t2 ? u : v;
|
||||
val |= k << 6;
|
||||
|
||||
desc[i] = (uchar)val;
|
||||
desc[i] = (uchar)val;
|
||||
}
|
||||
}
|
||||
else
|
||||
CV_Error( Error::StsBadSize, "Wrong WTA_K. It can be only 2, 3 or 4." );
|
||||
#undef GET_VALUE
|
||||
}
|
||||
else
|
||||
CV_Error( Error::StsBadSize, "Wrong WTA_K. It can be only 2, 3 or 4." );
|
||||
|
||||
#undef GET_VALUE
|
||||
}
|
||||
|
||||
|
||||
@ -591,21 +681,37 @@ void ORB::operator()(InputArray image, InputArray mask, std::vector<KeyPoint>& k
|
||||
}
|
||||
|
||||
|
||||
/** Compute the ORB keypoint orientations
|
||||
* @param image the image to compute the features and descriptors on
|
||||
* @param integral_image the integral image of the iamge (can be empty, but the computation will be slower)
|
||||
* @param scale the scale at which we compute the orientation
|
||||
* @param keypoints the resulting keypoints
|
||||
*/
|
||||
static void computeOrientation(const Mat& image, std::vector<KeyPoint>& keypoints,
|
||||
int halfPatchSize, const std::vector<int>& umax)
|
||||
static void uploadORBKeypoints(const std::vector<KeyPoint>& src, std::vector<Vec3i>& buf, OutputArray dst)
|
||||
{
|
||||
// Process each keypoint
|
||||
for (std::vector<KeyPoint>::iterator keypoint = keypoints.begin(),
|
||||
keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
|
||||
size_t i, n = src.size();
|
||||
buf.resize(std::max(buf.size(), n));
|
||||
for( i = 0; i < n; i++ )
|
||||
buf[i] = Vec3i(cvRound(src[i].pt.x), cvRound(src[i].pt.y), src[i].octave);
|
||||
copyVectorToUMat(buf, dst);
|
||||
}
|
||||
|
||||
typedef union if32_t
|
||||
{
|
||||
int i;
|
||||
float f;
|
||||
}
|
||||
if32_t;
|
||||
|
||||
static void uploadORBKeypoints(const std::vector<KeyPoint>& src,
|
||||
const std::vector<float>& layerScale,
|
||||
std::vector<Vec4i>& buf, OutputArray dst)
|
||||
{
|
||||
size_t i, n = src.size();
|
||||
buf.resize(std::max(buf.size(), n));
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
keypoint->angle = IC_Angle(image, halfPatchSize, keypoint->pt, umax);
|
||||
int z = src[i].octave;
|
||||
float scale = 1.f/layerScale[z];
|
||||
if32_t angle;
|
||||
angle.f = src[i].angle;
|
||||
buf[i] = Vec4i(cvRound(src[i].pt.x*scale), cvRound(src[i].pt.y*scale), z, angle.i);
|
||||
}
|
||||
copyVectorToUMat(buf, dst);
|
||||
}
|
||||
|
||||
|
||||
@ -614,13 +720,18 @@ static void computeOrientation(const Mat& image, std::vector<KeyPoint>& keypoint
|
||||
* @param mask_pyramid the masks to apply at every level
|
||||
* @param keypoints the resulting keypoints, clustered per level
|
||||
*/
|
||||
static void computeKeyPoints(const std::vector<Mat>& imagePyramid,
|
||||
const std::vector<Mat>& maskPyramid,
|
||||
std::vector<std::vector<KeyPoint> >& allKeypoints,
|
||||
int nfeatures, int firstLevel, double scaleFactor,
|
||||
int edgeThreshold, int patchSize, int scoreType )
|
||||
static void computeKeyPoints(const Mat& imagePyramid,
|
||||
const UMat& uimagePyramid,
|
||||
const Mat& maskPyramid,
|
||||
const std::vector<Rect>& layerInfo,
|
||||
const UMat& ulayerInfo,
|
||||
const std::vector<float>& layerScale,
|
||||
std::vector<KeyPoint>& allKeypoints,
|
||||
int nfeatures, double scaleFactor,
|
||||
int edgeThreshold, int patchSize, int scoreType,
|
||||
bool useOCL )
|
||||
{
|
||||
int nlevels = (int)imagePyramid.size();
|
||||
int i, nkeypoints, level, nlevels = (int)layerInfo.size();
|
||||
std::vector<int> nfeaturesPerLevel(nlevels);
|
||||
|
||||
// fill the extractors and descriptors for the corresponding scales
|
||||
@ -628,7 +739,7 @@ static void computeKeyPoints(const std::vector<Mat>& imagePyramid,
|
||||
float ndesiredFeaturesPerScale = nfeatures*(1 - factor)/(1 - (float)std::pow((double)factor, (double)nlevels));
|
||||
|
||||
int sumFeatures = 0;
|
||||
for( int level = 0; level < nlevels-1; level++ )
|
||||
for( level = 0; level < nlevels-1; level++ )
|
||||
{
|
||||
nfeaturesPerLevel[level] = cvRound(ndesiredFeaturesPerScale);
|
||||
sumFeatures += nfeaturesPerLevel[level];
|
||||
@ -657,66 +768,116 @@ static void computeKeyPoints(const std::vector<Mat>& imagePyramid,
|
||||
++v0;
|
||||
}
|
||||
|
||||
allKeypoints.resize(nlevels);
|
||||
allKeypoints.clear();
|
||||
std::vector<KeyPoint> keypoints;
|
||||
std::vector<int> counters(nlevels);
|
||||
keypoints.reserve(nfeaturesPerLevel[0]*2);
|
||||
|
||||
for (int level = 0; level < nlevels; ++level)
|
||||
for( level = 0; level < nlevels; level++ )
|
||||
{
|
||||
int featuresNum = nfeaturesPerLevel[level];
|
||||
allKeypoints[level].reserve(featuresNum*2);
|
||||
|
||||
std::vector<KeyPoint> & keypoints = allKeypoints[level];
|
||||
Mat img = imagePyramid(layerInfo[level]);
|
||||
Mat mask = maskPyramid.empty() ? Mat() : maskPyramid(layerInfo[level]);
|
||||
|
||||
// Detect FAST features, 20 is a good threshold
|
||||
FastFeatureDetector fd(20, true);
|
||||
fd.detect(imagePyramid[level], keypoints, maskPyramid[level]);
|
||||
fd.detect(img, keypoints, mask);
|
||||
|
||||
// Remove keypoints very close to the border
|
||||
KeyPointsFilter::runByImageBorder(keypoints, imagePyramid[level].size(), edgeThreshold);
|
||||
KeyPointsFilter::runByImageBorder(keypoints, img.size(), edgeThreshold);
|
||||
|
||||
if( scoreType == ORB::HARRIS_SCORE )
|
||||
// Keep more points than necessary as FAST does not give amazing corners
|
||||
KeyPointsFilter::retainBest(keypoints, scoreType == ORB::HARRIS_SCORE ? 2 * featuresNum : featuresNum);
|
||||
|
||||
nkeypoints = (int)keypoints.size();
|
||||
counters[level] = nkeypoints;
|
||||
|
||||
float sf = layerScale[level];
|
||||
for( i = 0; i < nkeypoints; i++ )
|
||||
{
|
||||
// Keep more points than necessary as FAST does not give amazing corners
|
||||
KeyPointsFilter::retainBest(keypoints, 2 * featuresNum);
|
||||
|
||||
// Compute the Harris cornerness (better scoring than FAST)
|
||||
HarrisResponses(imagePyramid[level], keypoints, 7, HARRIS_K);
|
||||
keypoints[i].octave = level;
|
||||
keypoints[i].size = patchSize*sf;
|
||||
}
|
||||
|
||||
//cull to the final desired level, using the new Harris scores or the original FAST scores.
|
||||
KeyPointsFilter::retainBest(keypoints, featuresNum);
|
||||
|
||||
float sf = getScale(level, firstLevel, scaleFactor);
|
||||
|
||||
// Set the level of the coordinates
|
||||
for (std::vector<KeyPoint>::iterator keypoint = keypoints.begin(),
|
||||
keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
|
||||
{
|
||||
keypoint->octave = level;
|
||||
keypoint->size = patchSize*sf;
|
||||
}
|
||||
|
||||
computeOrientation(imagePyramid[level], keypoints, halfPatchSize, umax);
|
||||
std::copy(keypoints.begin(), keypoints.end(), std::back_inserter(allKeypoints));
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<Vec3i> ukeypoints_buf;
|
||||
|
||||
/** Compute the ORB decriptors
|
||||
* @param image the image to compute the features and descriptors on
|
||||
* @param integral_image the integral image of the image (can be empty, but the computation will be slower)
|
||||
* @param level the scale at which we compute the orientation
|
||||
* @param keypoints the keypoints to use
|
||||
* @param descriptors the resulting descriptors
|
||||
*/
|
||||
static void computeDescriptors(const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors,
|
||||
const std::vector<Point>& pattern, int dsize, int WTA_K)
|
||||
{
|
||||
//convert to grayscale if more than one color
|
||||
CV_Assert(image.type() == CV_8UC1);
|
||||
//create the descriptor mat, keypoints.size() rows, BYTES cols
|
||||
descriptors = Mat::zeros((int)keypoints.size(), dsize, CV_8UC1);
|
||||
nkeypoints = (int)allKeypoints.size();
|
||||
Mat responses;
|
||||
UMat ukeypoints, uresponses(1, nkeypoints, CV_32F);
|
||||
|
||||
for (size_t i = 0; i < keypoints.size(); i++)
|
||||
computeOrbDescriptor(keypoints[i], image, &pattern[0], descriptors.ptr((int)i), dsize, WTA_K);
|
||||
// Select best features using the Harris cornerness (better scoring than FAST)
|
||||
if( scoreType == ORB::HARRIS_SCORE )
|
||||
{
|
||||
if( useOCL )
|
||||
{
|
||||
uploadORBKeypoints(allKeypoints, ukeypoints_buf, ukeypoints);
|
||||
useOCL = ocl_HarrisResponses( uimagePyramid, ulayerInfo, ukeypoints,
|
||||
uresponses, nkeypoints, 7, HARRIS_K );
|
||||
if( useOCL )
|
||||
{
|
||||
uresponses.copyTo(responses);
|
||||
for( i = 0; i < nkeypoints; i++ )
|
||||
allKeypoints[i].response = responses.at<float>(i);
|
||||
}
|
||||
}
|
||||
|
||||
if( !useOCL )
|
||||
HarrisResponses(imagePyramid, layerInfo, allKeypoints, 7, HARRIS_K);
|
||||
|
||||
std::vector<KeyPoint> newAllKeypoints;
|
||||
newAllKeypoints.reserve(nfeaturesPerLevel[0]*nlevels);
|
||||
|
||||
int offset = 0;
|
||||
for( level = 0; level < nlevels; level++ )
|
||||
{
|
||||
int featuresNum = nfeaturesPerLevel[level];
|
||||
nkeypoints = counters[level];
|
||||
keypoints.resize(nkeypoints);
|
||||
std::copy(allKeypoints.begin() + offset,
|
||||
allKeypoints.begin() + offset + nkeypoints,
|
||||
keypoints.begin());
|
||||
offset += nkeypoints;
|
||||
|
||||
//cull to the final desired level, using the new Harris scores.
|
||||
KeyPointsFilter::retainBest(keypoints, featuresNum);
|
||||
|
||||
std::copy(keypoints.begin(), keypoints.end(), std::back_inserter(newAllKeypoints));
|
||||
}
|
||||
std::swap(allKeypoints, newAllKeypoints);
|
||||
}
|
||||
|
||||
nkeypoints = (int)allKeypoints.size();
|
||||
if( useOCL )
|
||||
{
|
||||
UMat uumax;
|
||||
if( useOCL )
|
||||
copyVectorToUMat(umax, uumax);
|
||||
|
||||
uploadORBKeypoints(allKeypoints, ukeypoints_buf, ukeypoints);
|
||||
useOCL = ocl_ICAngles(uimagePyramid, ulayerInfo, ukeypoints, uresponses, uumax,
|
||||
nkeypoints, halfPatchSize);
|
||||
|
||||
if( useOCL )
|
||||
{
|
||||
uresponses.copyTo(responses);
|
||||
for( i = 0; i < nkeypoints; i++ )
|
||||
allKeypoints[i].angle = responses.at<float>(i);
|
||||
}
|
||||
}
|
||||
|
||||
if( !useOCL )
|
||||
{
|
||||
ICAngles(imagePyramid, layerInfo, allKeypoints, umax, halfPatchSize);
|
||||
}
|
||||
|
||||
for( i = 0; i < nkeypoints; i++ )
|
||||
{
|
||||
float scale = layerScale[allKeypoints[i].octave];
|
||||
allKeypoints[i].pt *= scale;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -728,8 +889,8 @@ static void computeDescriptors(const Mat& image, std::vector<KeyPoint>& keypoint
|
||||
* @param do_keypoints if true, the keypoints are computed, otherwise used as an input
|
||||
* @param do_descriptors if true, also computes the descriptors
|
||||
*/
|
||||
void ORB::operator()( InputArray _image, InputArray _mask, std::vector<KeyPoint>& _keypoints,
|
||||
OutputArray _descriptors, bool useProvidedKeypoints) const
|
||||
void ORB::operator()( InputArray _image, InputArray _mask, std::vector<KeyPoint>& keypoints,
|
||||
OutputArray _descriptors, bool useProvidedKeypoints ) const
|
||||
{
|
||||
CV_Assert(patchSize >= 2);
|
||||
|
||||
@ -744,11 +905,14 @@ void ORB::operator()( InputArray _image, InputArray _mask, std::vector<KeyPoint>
|
||||
int halfPatchSize = patchSize / 2;
|
||||
int border = std::max(edgeThreshold, std::max(halfPatchSize, HARRIS_BLOCK_SIZE/2))+1;
|
||||
|
||||
bool useOCL = ocl::useOpenCL();
|
||||
|
||||
Mat image = _image.getMat(), mask = _mask.getMat();
|
||||
if( image.type() != CV_8UC1 )
|
||||
cvtColor(_image, image, COLOR_BGR2GRAY);
|
||||
|
||||
int levelsNum = this->nlevels;
|
||||
int i, level, nLevels = this->nlevels, nkeypoints = (int)keypoints.size();
|
||||
bool sortedByLevel = true;
|
||||
|
||||
if( !do_keypoints )
|
||||
{
|
||||
@ -761,129 +925,145 @@ void ORB::operator()( InputArray _image, InputArray _mask, std::vector<KeyPoint>
|
||||
//
|
||||
// In short, ultimately the descriptor should
|
||||
// ignore octave parameter and deal only with the keypoint size.
|
||||
levelsNum = 0;
|
||||
for( size_t i = 0; i < _keypoints.size(); i++ )
|
||||
levelsNum = std::max(levelsNum, std::max(_keypoints[i].octave, 0));
|
||||
levelsNum++;
|
||||
nLevels = 0;
|
||||
for( i = 0; i < nkeypoints; i++ )
|
||||
{
|
||||
level = keypoints[i].octave;
|
||||
CV_Assert(level >= 0);
|
||||
if( i > 0 && level < keypoints[i-1].octave )
|
||||
sortedByLevel = false;
|
||||
nLevels = std::max(nLevels, level);
|
||||
}
|
||||
nLevels++;
|
||||
}
|
||||
|
||||
// Pre-compute the scale pyramids
|
||||
std::vector<Mat> imagePyramid(levelsNum), maskPyramid(levelsNum);
|
||||
for (int level = 0; level < levelsNum; ++level)
|
||||
std::vector<Rect> layerInfo(nLevels);
|
||||
std::vector<int> layerOfs(nLevels);
|
||||
std::vector<float> layerScale(nLevels);
|
||||
Mat imagePyramid, maskPyramid;
|
||||
UMat uimagePyramid, ulayerInfo;
|
||||
|
||||
int level_dy = image.rows + border*2;
|
||||
Point level_ofs(0,0);
|
||||
Size bufSize((image.cols + border*2 + 15) & -16, 0);
|
||||
|
||||
for( level = 0; level < nLevels; level++ )
|
||||
{
|
||||
float scale = 1/getScale(level, firstLevel, scaleFactor);
|
||||
Size sz(cvRound(image.cols*scale), cvRound(image.rows*scale));
|
||||
float scale = getScale(level, firstLevel, scaleFactor);
|
||||
layerScale[level] = scale;
|
||||
Size sz(cvRound(image.cols/scale), cvRound(image.rows/scale));
|
||||
Size wholeSize(sz.width + border*2, sz.height + border*2);
|
||||
Mat temp(wholeSize, image.type()), masktemp;
|
||||
imagePyramid[level] = temp(Rect(border, border, sz.width, sz.height));
|
||||
if( level_ofs.x + wholeSize.width > bufSize.width )
|
||||
{
|
||||
level_ofs = Point(0, level_ofs.y + level_dy);
|
||||
level_dy = wholeSize.height;
|
||||
}
|
||||
|
||||
Rect linfo(level_ofs.x + border, level_ofs.y + border, sz.width, sz.height);
|
||||
layerInfo[level] = linfo;
|
||||
layerOfs[level] = linfo.y*bufSize.width + linfo.x;
|
||||
level_ofs.x += wholeSize.width;
|
||||
}
|
||||
bufSize.height = level_ofs.y + level_dy;
|
||||
|
||||
imagePyramid.create(bufSize, CV_8U);
|
||||
if( !mask.empty() )
|
||||
maskPyramid.create(bufSize, CV_8U);
|
||||
|
||||
Mat prevImg = image, prevMask = mask;
|
||||
|
||||
// Pre-compute the scale pyramids
|
||||
for (level = 0; level < nLevels; ++level)
|
||||
{
|
||||
Rect linfo = layerInfo[level];
|
||||
Size sz(linfo.width, linfo.height);
|
||||
Size wholeSize(sz.width + border*2, sz.height + border*2);
|
||||
Rect wholeLinfo = Rect(linfo.x - border, linfo.y - border, wholeSize.width, wholeSize.height);
|
||||
Mat extImg = imagePyramid(wholeLinfo), extMask;
|
||||
Mat currImg = extImg(Rect(border, border, sz.width, sz.height)), currMask;
|
||||
|
||||
if( !mask.empty() )
|
||||
{
|
||||
masktemp = Mat(wholeSize, mask.type());
|
||||
maskPyramid[level] = masktemp(Rect(border, border, sz.width, sz.height));
|
||||
extMask = maskPyramid(wholeLinfo);
|
||||
currMask = extMask(Rect(border, border, sz.width, sz.height));
|
||||
}
|
||||
|
||||
// Compute the resized image
|
||||
if( level != firstLevel )
|
||||
{
|
||||
if( level < firstLevel )
|
||||
resize(prevImg, currImg, sz, 0, 0, INTER_LINEAR);
|
||||
if( !mask.empty() )
|
||||
{
|
||||
resize(image, imagePyramid[level], sz, 0, 0, INTER_LINEAR);
|
||||
if (!mask.empty())
|
||||
resize(mask, maskPyramid[level], sz, 0, 0, INTER_LINEAR);
|
||||
}
|
||||
else
|
||||
{
|
||||
resize(imagePyramid[level-1], imagePyramid[level], sz, 0, 0, INTER_LINEAR);
|
||||
if (!mask.empty())
|
||||
{
|
||||
resize(maskPyramid[level-1], maskPyramid[level], sz, 0, 0, INTER_LINEAR);
|
||||
threshold(maskPyramid[level], maskPyramid[level], 254, 0, THRESH_TOZERO);
|
||||
}
|
||||
resize(prevMask, currMask, sz, 0, 0, INTER_LINEAR);
|
||||
if( level > firstLevel )
|
||||
threshold(currMask, currMask, 254, 0, THRESH_TOZERO);
|
||||
}
|
||||
|
||||
copyMakeBorder(imagePyramid[level], temp, border, border, border, border,
|
||||
copyMakeBorder(currImg, extImg, border, border, border, border,
|
||||
BORDER_REFLECT_101+BORDER_ISOLATED);
|
||||
if (!mask.empty())
|
||||
copyMakeBorder(maskPyramid[level], masktemp, border, border, border, border,
|
||||
copyMakeBorder(currMask, extMask, border, border, border, border,
|
||||
BORDER_CONSTANT+BORDER_ISOLATED);
|
||||
}
|
||||
else
|
||||
{
|
||||
copyMakeBorder(image, temp, border, border, border, border,
|
||||
copyMakeBorder(image, extImg, border, border, border, border,
|
||||
BORDER_REFLECT_101);
|
||||
if( !mask.empty() )
|
||||
copyMakeBorder(mask, masktemp, border, border, border, border,
|
||||
copyMakeBorder(mask, extMask, border, border, border, border,
|
||||
BORDER_CONSTANT+BORDER_ISOLATED);
|
||||
}
|
||||
prevImg = currImg;
|
||||
prevMask = currMask;
|
||||
}
|
||||
|
||||
// Pre-compute the keypoints (we keep the best over all scales, so this has to be done beforehand
|
||||
std::vector < std::vector<KeyPoint> > allKeypoints;
|
||||
if( useOCL )
|
||||
copyVectorToUMat(layerOfs, ulayerInfo);
|
||||
|
||||
if( do_keypoints )
|
||||
{
|
||||
if( useOCL )
|
||||
imagePyramid.copyTo(uimagePyramid);
|
||||
|
||||
// Get keypoints, those will be far enough from the border that no check will be required for the descriptor
|
||||
computeKeyPoints(imagePyramid, maskPyramid, allKeypoints,
|
||||
nfeatures, firstLevel, scaleFactor,
|
||||
edgeThreshold, patchSize, scoreType);
|
||||
|
||||
// make sure we have the right number of keypoints keypoints
|
||||
/*std::vector<KeyPoint> temp;
|
||||
|
||||
for (int level = 0; level < n_levels; ++level)
|
||||
{
|
||||
std::vector<KeyPoint>& keypoints = all_keypoints[level];
|
||||
temp.insert(temp.end(), keypoints.begin(), keypoints.end());
|
||||
keypoints.clear();
|
||||
}
|
||||
|
||||
KeyPoint::retainBest(temp, n_features_);
|
||||
|
||||
for (std::vector<KeyPoint>::iterator keypoint = temp.begin(),
|
||||
keypoint_end = temp.end(); keypoint != keypoint_end; ++keypoint)
|
||||
all_keypoints[keypoint->octave].push_back(*keypoint);*/
|
||||
computeKeyPoints(imagePyramid, uimagePyramid, maskPyramid,
|
||||
layerInfo, ulayerInfo, layerScale, keypoints,
|
||||
nfeatures, scaleFactor, edgeThreshold, patchSize, scoreType, useOCL);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Remove keypoints very close to the border
|
||||
KeyPointsFilter::runByImageBorder(_keypoints, image.size(), edgeThreshold);
|
||||
KeyPointsFilter::runByImageBorder(keypoints, image.size(), edgeThreshold);
|
||||
|
||||
// Cluster the input keypoints depending on the level they were computed at
|
||||
allKeypoints.resize(levelsNum);
|
||||
for (std::vector<KeyPoint>::iterator keypoint = _keypoints.begin(),
|
||||
keypointEnd = _keypoints.end(); keypoint != keypointEnd; ++keypoint)
|
||||
allKeypoints[keypoint->octave].push_back(*keypoint);
|
||||
|
||||
// Make sure we rescale the coordinates
|
||||
for (int level = 0; level < levelsNum; ++level)
|
||||
if( !sortedByLevel )
|
||||
{
|
||||
if (level == firstLevel)
|
||||
continue;
|
||||
|
||||
std::vector<KeyPoint> & keypoints = allKeypoints[level];
|
||||
float scale = 1/getScale(level, firstLevel, scaleFactor);
|
||||
for (std::vector<KeyPoint>::iterator keypoint = keypoints.begin(),
|
||||
keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
|
||||
keypoint->pt *= scale;
|
||||
std::vector<std::vector<KeyPoint> > allKeypoints(nLevels);
|
||||
nkeypoints = (int)keypoints.size();
|
||||
for( i = 0; i < nkeypoints; i++ )
|
||||
{
|
||||
level = keypoints[i].octave;
|
||||
CV_Assert(0 <= level);
|
||||
allKeypoints[level].push_back(keypoints[i]);
|
||||
}
|
||||
keypoints.clear();
|
||||
for( level = 0; level < nLevels; level++ )
|
||||
std::copy(allKeypoints[level].begin(), allKeypoints[level].end(), std::back_inserter(keypoints));
|
||||
}
|
||||
}
|
||||
|
||||
Mat descriptors;
|
||||
std::vector<Point> pattern;
|
||||
|
||||
if( do_descriptors )
|
||||
{
|
||||
int nkeypoints = 0;
|
||||
for (int level = 0; level < levelsNum; ++level)
|
||||
nkeypoints += (int)allKeypoints[level].size();
|
||||
int dsize = descriptorSize();
|
||||
|
||||
nkeypoints = (int)keypoints.size();
|
||||
if( nkeypoints == 0 )
|
||||
_descriptors.release();
|
||||
else
|
||||
{
|
||||
_descriptors.create(nkeypoints, descriptorSize(), CV_8U);
|
||||
descriptors = _descriptors.getMat();
|
||||
_descriptors.release();
|
||||
return;
|
||||
}
|
||||
|
||||
_descriptors.create(nkeypoints, dsize, CV_8U);
|
||||
std::vector<Point> pattern;
|
||||
|
||||
const int npoints = 512;
|
||||
Point patternbuf[npoints];
|
||||
const Point* pattern0 = (const Point*)bit_pattern_31_;
|
||||
@ -903,43 +1083,36 @@ void ORB::operator()( InputArray _image, InputArray _mask, std::vector<KeyPoint>
|
||||
int ntuples = descriptorSize()*4;
|
||||
initializeOrbPattern(pattern0, pattern, ntuples, WTA_K, npoints);
|
||||
}
|
||||
}
|
||||
|
||||
_keypoints.clear();
|
||||
int offset = 0;
|
||||
for (int level = 0; level < levelsNum; ++level)
|
||||
{
|
||||
// Get the features and compute their orientation
|
||||
std::vector<KeyPoint>& keypoints = allKeypoints[level];
|
||||
int nkeypoints = (int)keypoints.size();
|
||||
|
||||
// Compute the descriptors
|
||||
if (do_descriptors)
|
||||
for( level = 0; level < nLevels; level++ )
|
||||
{
|
||||
Mat desc;
|
||||
if (!descriptors.empty())
|
||||
{
|
||||
desc = descriptors.rowRange(offset, offset + nkeypoints);
|
||||
}
|
||||
|
||||
offset += nkeypoints;
|
||||
// preprocess the resized image
|
||||
Mat& workingMat = imagePyramid[level];
|
||||
Mat workingMat = imagePyramid(layerInfo[level]);
|
||||
|
||||
//boxFilter(working_mat, working_mat, working_mat.depth(), Size(5,5), Point(-1,-1), true, BORDER_REFLECT_101);
|
||||
GaussianBlur(workingMat, workingMat, Size(7, 7), 2, 2, BORDER_REFLECT_101);
|
||||
computeDescriptors(workingMat, keypoints, desc, pattern, descriptorSize(), WTA_K);
|
||||
}
|
||||
|
||||
// Copy to the output data
|
||||
if (level != firstLevel)
|
||||
if( useOCL )
|
||||
{
|
||||
float scale = getScale(level, firstLevel, scaleFactor);
|
||||
for (std::vector<KeyPoint>::iterator keypoint = keypoints.begin(),
|
||||
keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
|
||||
keypoint->pt *= scale;
|
||||
imagePyramid.copyTo(uimagePyramid);
|
||||
std::vector<Vec4i> kptbuf;
|
||||
UMat ukeypoints, upattern;
|
||||
copyVectorToUMat(pattern, upattern);
|
||||
uploadORBKeypoints(keypoints, layerScale, kptbuf, ukeypoints);
|
||||
|
||||
UMat udescriptors = _descriptors.getUMat();
|
||||
useOCL = ocl_computeOrbDescriptors(uimagePyramid, ulayerInfo,
|
||||
ukeypoints, udescriptors, upattern,
|
||||
nkeypoints, dsize, WTA_K);
|
||||
}
|
||||
|
||||
if( !useOCL )
|
||||
{
|
||||
Mat descriptors = _descriptors.getMat();
|
||||
computeOrbDescriptors(imagePyramid, layerInfo, layerScale,
|
||||
keypoints, descriptors, pattern, dsize, WTA_K);
|
||||
}
|
||||
// And add the keypoints to the output
|
||||
_keypoints.insert(_keypoints.end(), keypoints.begin(), keypoints.end());
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user