Merge pull request #2014 from krodyush:pullreq/2.4-opt-131211-surf

This commit is contained in:
Andrey Pavlenko 2013-12-20 16:50:00 +04:00 committed by OpenCV Buildbot
commit 6b7d890f34
2 changed files with 238 additions and 198 deletions

View File

@ -12,6 +12,7 @@
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2013, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
@ -66,8 +67,8 @@ uint read_sumTex(IMAGE_INT32 img, sampler_t sam, int2 coord, int rows, int cols,
uchar read_imgTex(IMAGE_INT8 img, sampler_t sam, float2 coord, int rows, int cols, int elemPerRow)
{
#ifdef DISABLE_IMAGE2D
int x = clamp(convert_int_rte(coord.x), 0, cols - 1);
int y = clamp(convert_int_rte(coord.y), 0, rows - 1);
int x = clamp(round(coord.x), 0, cols - 1);
int y = clamp(round(coord.y), 0, rows - 1);
return img[elemPerRow * y + x];
#else
return (uchar)read_imageui(img, sam, coord).x;
@ -98,6 +99,7 @@ __constant sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAM
#define CV_PI_F 3.14159265f
#endif
// Use integral image to calculate haar wavelets.
// N = 2
// for simple haar paatern
@ -114,10 +116,10 @@ float icvCalcHaarPatternSum_2(
F d = 0;
int2 dx1 = convert_int2_rte(ratio * src[0]);
int2 dy1 = convert_int2_rte(ratio * src[1]);
int2 dx2 = convert_int2_rte(ratio * src[2]);
int2 dy2 = convert_int2_rte(ratio * src[3]);
int2 dx1 = convert_int2(round(ratio * src[0]));
int2 dy1 = convert_int2(round(ratio * src[1]));
int2 dx2 = convert_int2(round(ratio * src[2]));
int2 dy2 = convert_int2(round(ratio * src[3]));
F t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.x, y + dy1.x), rows, cols, elemPerRow );
@ -136,106 +138,9 @@ float icvCalcHaarPatternSum_2(
return (float)d;
}
// N = 3
float icvCalcHaarPatternSum_3(
IMAGE_INT32 sumTex,
__constant float4 *src,
int oldSize,
int newSize,
int y, int x,
int rows, int cols, int elemPerRow)
{
float ratio = (float)newSize / oldSize;
F d = 0;
int4 dx1 = convert_int4_rte(ratio * src[0]);
int4 dy1 = convert_int4_rte(ratio * src[1]);
int4 dx2 = convert_int4_rte(ratio * src[2]);
int4 dy2 = convert_int4_rte(ratio * src[3]);
F t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.x, y + dy1.x), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.x, y + dy2.x), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.x, y + dy1.x), rows, cols, elemPerRow );
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.x, y + dy2.x), rows, cols, elemPerRow );
d += t * src[4].x / ((dx2.x - dx1.x) * (dy2.x - dy1.x));
t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.y, y + dy1.y), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.y, y + dy2.y), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.y, y + dy1.y), rows, cols, elemPerRow );
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.y, y + dy2.y), rows, cols, elemPerRow );
d += t * src[4].y / ((dx2.y - dx1.y) * (dy2.y - dy1.y));
t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.z, y + dy1.z), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.z, y + dy2.z), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.z, y + dy1.z), rows, cols, elemPerRow );
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.z, y + dy2.z), rows, cols, elemPerRow );
d += t * src[4].z / ((dx2.z - dx1.z) * (dy2.z - dy1.z));
return (float)d;
}
// N = 4
float icvCalcHaarPatternSum_4(
IMAGE_INT32 sumTex,
__constant float4 *src,
int oldSize,
int newSize,
int y, int x,
int rows, int cols, int elemPerRow)
{
float ratio = (float)newSize / oldSize;
F d = 0;
int4 dx1 = convert_int4_rte(ratio * src[0]);
int4 dy1 = convert_int4_rte(ratio * src[1]);
int4 dx2 = convert_int4_rte(ratio * src[2]);
int4 dy2 = convert_int4_rte(ratio * src[3]);
F t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.x, y + dy1.x), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.x, y + dy2.x), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.x, y + dy1.x), rows, cols, elemPerRow );
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.x, y + dy2.x), rows, cols, elemPerRow );
d += t * src[4].x / ((dx2.x - dx1.x) * (dy2.x - dy1.x));
t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.y, y + dy1.y), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.y, y + dy2.y), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.y, y + dy1.y), rows, cols, elemPerRow );
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.y, y + dy2.y), rows, cols, elemPerRow );
d += t * src[4].y / ((dx2.y - dx1.y) * (dy2.y - dy1.y));
t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.z, y + dy1.z), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.z, y + dy2.z), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.z, y + dy1.z), rows, cols, elemPerRow );
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.z, y + dy2.z), rows, cols, elemPerRow );
d += t * src[4].z / ((dx2.z - dx1.z) * (dy2.z - dy1.z));
t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.w, y + dy1.w), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.w, y + dy2.w), rows, cols, elemPerRow );
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.w, y + dy1.w), rows, cols, elemPerRow );
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.w, y + dy2.w), rows, cols, elemPerRow );
d += t * src[4].w / ((dx2.w - dx1.w) * (dy2.w - dy1.w));
return (float)d;
}
////////////////////////////////////////////////////////////////////////
// Hessian
__constant float4 c_DX[5] = { (float4)(0, 3, 6, 0), (float4)(2, 2, 2, 0), (float4)(3, 6, 9, 0), (float4)(7, 7, 7, 0), (float4)(1, -2, 1, 0) };
__constant float4 c_DY[5] = { (float4)(2, 2, 2, 0), (float4)(0, 3, 6, 0), (float4)(7, 7, 7, 0), (float4)(3, 6, 9, 0), (float4)(1, -2, 1, 0) };
__constant float4 c_DXY[5] = { (float4)(1, 5, 1, 5), (float4)(1, 1, 5, 5), (float4)(4, 8, 4, 8), (float4)(4, 4, 8, 8), (float4)(1, -1, -1, 1) };// Use integral image to calculate haar wavelets.
__inline int calcSize(int octave, int layer)
{
/* Wavelet size at first layer of first octave. */
@ -250,6 +155,24 @@ __inline int calcSize(int octave, int layer)
return (HAAR_SIZE0 + HAAR_SIZE_INC * layer) << octave;
}
// Calculate a derivative in an axis-aligned direction (x or y). The "plus1"
// boxes contribute 1 * (area), and the "minus2" box contributes -2 * (area).
// So the final computation is plus1a + plus1b - 2 * minus2. The corners are
// labeled A, B, C, and D, with A being the top left, B being top right, C
// being bottom left, and D being bottom right.
F calcAxisAlignedDerivative(
int plus1a_A, int plus1a_B, int plus1a_C, int plus1a_D, F plus1a_scale,
int plus1b_A, int plus1b_B, int plus1b_C, int plus1b_D, F plus1b_scale,
int minus2_A, int minus2_B, int minus2_C, int minus2_D, F minus2_scale)
{
F plus1a = plus1a_A - plus1a_B - plus1a_C + plus1a_D;
F plus1b = plus1b_A - plus1b_B - plus1b_C + plus1b_D;
F minus2 = minus2_A - minus2_B - minus2_C + minus2_D;
return (plus1a / plus1a_scale -
2.0f * minus2 / minus2_scale +
plus1b / plus1b_scale);
}
//calculate targeted layer per-pixel determinant and trace with an integral image
__kernel void icvCalcLayerDetAndTrace(
@ -264,7 +187,7 @@ __kernel void icvCalcLayerDetAndTrace(
int c_octave,
int c_layer_rows,
int sumTex_step
)
)
{
det_step /= sizeof(*det);
trace_step /= sizeof(*trace);
@ -288,16 +211,103 @@ __kernel void icvCalcLayerDetAndTrace(
if (size <= c_img_rows && size <= c_img_cols && i < samples_i && j < samples_j)
{
const float dx = icvCalcHaarPatternSum_3(sumTex, c_DX , 9, size, i << c_octave, j << c_octave, c_img_rows, c_img_cols, sumTex_step);
const float dy = icvCalcHaarPatternSum_3(sumTex, c_DY , 9, size, i << c_octave, j << c_octave, c_img_rows, c_img_cols, sumTex_step);
const float dxy = icvCalcHaarPatternSum_4(sumTex, c_DXY, 9, size, i << c_octave, j << c_octave, c_img_rows, c_img_cols, sumTex_step);
int x = j << c_octave;
int y = i << c_octave;
float ratio = (float)size / 9;
// Precompute some commonly used values, which are used to offset
// texture coordinates in the integral image.
int r1 = round(ratio);
int r2 = round(ratio * 2.0f);
int r3 = round(ratio * 3.0f);
int r4 = round(ratio * 4.0f);
int r5 = round(ratio * 5.0f);
int r6 = round(ratio * 6.0f);
int r7 = round(ratio * 7.0f);
int r8 = round(ratio * 8.0f);
int r9 = round(ratio * 9.0f);
// Calculate the approximated derivative in the x-direction
F d = 0;
{
// Some of the pixels needed to compute the derivative are
// repeated, so we only don't duplicate the fetch here.
int t02 = read_sumTex( sumTex, sampler, (int2)(x, y + r2), c_img_rows, c_img_cols, sumTex_step );
int t07 = read_sumTex( sumTex, sampler, (int2)(x, y + r7), c_img_rows, c_img_cols, sumTex_step );
int t32 = read_sumTex( sumTex, sampler, (int2)(x + r3, y + r2), c_img_rows, c_img_cols, sumTex_step );
int t37 = read_sumTex( sumTex, sampler, (int2)(x + r3, y + r7), c_img_rows, c_img_cols, sumTex_step );
int t62 = read_sumTex( sumTex, sampler, (int2)(x + r6, y + r2), c_img_rows, c_img_cols, sumTex_step );
int t67 = read_sumTex( sumTex, sampler, (int2)(x + r6, y + r7), c_img_rows, c_img_cols, sumTex_step );
int t92 = read_sumTex( sumTex, sampler, (int2)(x + r9, y + r2), c_img_rows, c_img_cols, sumTex_step );
int t97 = read_sumTex( sumTex, sampler, (int2)(x + r9, y + r7), c_img_rows, c_img_cols, sumTex_step );
d = calcAxisAlignedDerivative(t02, t07, t32, t37, (r3) * (r7 - r2),
t62, t67, t92, t97, (r9 - r6) * (r7 - r2),
t32, t37, t62, t67, (r6 - r3) * (r7 - r2));
}
const float dx = (float)d;
// Calculate the approximated derivative in the y-direction
d = 0;
{
// Some of the pixels needed to compute the derivative are
// repeated, so we only don't duplicate the fetch here.
int t20 = read_sumTex( sumTex, sampler, (int2)(x + r2, y), c_img_rows, c_img_cols, sumTex_step );
int t23 = read_sumTex( sumTex, sampler, (int2)(x + r2, y + r3), c_img_rows, c_img_cols, sumTex_step );
int t70 = read_sumTex( sumTex, sampler, (int2)(x + r7, y), c_img_rows, c_img_cols, sumTex_step );
int t73 = read_sumTex( sumTex, sampler, (int2)(x + r7, y + r3), c_img_rows, c_img_cols, sumTex_step );
int t26 = read_sumTex( sumTex, sampler, (int2)(x + r2, y + r6), c_img_rows, c_img_cols, sumTex_step );
int t76 = read_sumTex( sumTex, sampler, (int2)(x + r7, y + r6), c_img_rows, c_img_cols, sumTex_step );
int t29 = read_sumTex( sumTex, sampler, (int2)(x + r2, y + r9), c_img_rows, c_img_cols, sumTex_step );
int t79 = read_sumTex( sumTex, sampler, (int2)(x + r7, y + r9), c_img_rows, c_img_cols, sumTex_step );
d = calcAxisAlignedDerivative(t20, t23, t70, t73, (r7 - r2) * (r3),
t26, t29, t76, t79, (r7 - r2) * (r9 - r6),
t23, t26, t73, t76, (r7 - r2) * (r6 - r3));
}
const float dy = (float)d;
// Calculate the approximated derivative in the xy-direction
d = 0;
{
// There's no saving us here, we just have to get all of the pixels in
// separate fetches
F t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + r1, y + r1), c_img_rows, c_img_cols, sumTex_step );
t -= read_sumTex( sumTex, sampler, (int2)(x + r1, y + r4), c_img_rows, c_img_cols, sumTex_step );
t -= read_sumTex( sumTex, sampler, (int2)(x + r4, y + r1), c_img_rows, c_img_cols, sumTex_step );
t += read_sumTex( sumTex, sampler, (int2)(x + r4, y + r4), c_img_rows, c_img_cols, sumTex_step );
d += t / ((r4 - r1) * (r4 - r1));
t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + r5, y + r1), c_img_rows, c_img_cols, sumTex_step );
t -= read_sumTex( sumTex, sampler, (int2)(x + r5, y + r4), c_img_rows, c_img_cols, sumTex_step );
t -= read_sumTex( sumTex, sampler, (int2)(x + r8, y + r1), c_img_rows, c_img_cols, sumTex_step );
t += read_sumTex( sumTex, sampler, (int2)(x + r8, y + r4), c_img_rows, c_img_cols, sumTex_step );
d -= t / ((r8 - r5) * (r4 - r1));
t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + r1, y + r5), c_img_rows, c_img_cols, sumTex_step );
t -= read_sumTex( sumTex, sampler, (int2)(x + r1, y + r8), c_img_rows, c_img_cols, sumTex_step );
t -= read_sumTex( sumTex, sampler, (int2)(x + r4, y + r5), c_img_rows, c_img_cols, sumTex_step );
t += read_sumTex( sumTex, sampler, (int2)(x + r4, y + r8), c_img_rows, c_img_cols, sumTex_step );
d -= t / ((r4 - r1) * (r8 - r5));
t = 0;
t += read_sumTex( sumTex, sampler, (int2)(x + r5, y + r5), c_img_rows, c_img_cols, sumTex_step );
t -= read_sumTex( sumTex, sampler, (int2)(x + r5, y + r8), c_img_rows, c_img_cols, sumTex_step );
t -= read_sumTex( sumTex, sampler, (int2)(x + r8, y + r5), c_img_rows, c_img_cols, sumTex_step );
t += read_sumTex( sumTex, sampler, (int2)(x + r8, y + r8), c_img_rows, c_img_cols, sumTex_step );
d += t / ((r8 - r5) * (r8 - r5));
}
const float dxy = (float)d;
det [j + margin + det_step * (layer * c_layer_rows + i + margin)] = dx * dy - 0.81f * dxy * dxy;
trace[j + margin + trace_step * (layer * c_layer_rows + i + margin)] = dx + dy;
}
}
////////////////////////////////////////////////////////////////////////
// NONMAX
@ -309,10 +319,10 @@ bool within_check(IMAGE_INT32 maskSumTex, int sum_i, int sum_j, int size, int ro
float d = 0;
int dx1 = convert_int_rte(ratio * c_DM[0]);
int dy1 = convert_int_rte(ratio * c_DM[1]);
int dx2 = convert_int_rte(ratio * c_DM[2]);
int dy2 = convert_int_rte(ratio * c_DM[3]);
int dx1 = round(ratio * c_DM[0]);
int dy1 = round(ratio * c_DM[1]);
int dx2 = round(ratio * c_DM[2]);
int dy2 = round(ratio * c_DM[3]);
float t = 0;
@ -572,7 +582,7 @@ void icvFindMaximaInLayer(
}
// solve 3x3 linear system Ax=b for floating point input
inline bool solve3x3_float(volatile __local const float4 *A, volatile __local const float *b, volatile __local float *x)
inline bool solve3x3_float(const float4 *A, const float *b, float *x)
{
float det = A[0].x * (A[1].y * A[2].z - A[1].z * A[2].y)
- A[0].y * (A[1].x * A[2].z - A[1].z * A[2].x)
@ -651,7 +661,7 @@ void icvInterpolateKeypoint(
if (get_local_id(0) == 0 && get_local_id(1) == 0 && get_local_id(2) == 0)
{
volatile __local float dD[3];
float dD[3];
//dx
dD[0] = -0.5f * (N9[1][1][2] - N9[1][1][0]);
@ -660,7 +670,7 @@ void icvInterpolateKeypoint(
//ds
dD[2] = -0.5f * (N9[2][1][1] - N9[0][1][1]);
volatile __local float4 H[3];
float4 H[3];
//dxx
H[0].x = N9[1][1][0] - 2.0f * N9[1][1][1] + N9[1][1][2];
@ -681,7 +691,7 @@ void icvInterpolateKeypoint(
//dss
H[2].z = N9[0][1][1] - 2.0f * N9[1][1][1] + N9[2][1][1];
volatile __local float x[3];
float x[3];
if (solve3x3_float(H, dD, x))
{
@ -711,7 +721,7 @@ void icvInterpolateKeypoint(
sampled in a circle of radius 6s using wavelets of size 4s.
We ensure the gradient wavelet size is even to ensure the
wavelet pattern is balanced and symmetric around its center */
const int grad_wav_size = 2 * convert_int_rte(2.0f * s);
const int grad_wav_size = 2 * round(2.0f * s);
// check when grad_wav_size is too big
if ((c_img_rows + 1) >= grad_wav_size && (c_img_cols + 1) >= grad_wav_size)
@ -737,9 +747,12 @@ void icvInterpolateKeypoint(
////////////////////////////////////////////////////////////////////////
// Orientation
#define ORI_SEARCH_INC 5
#define ORI_WIN 60
#define ORI_SAMPLES 113
#define ORI_WIN 60
#define ORI_SAMPLES 113
// The distance between samples in the beginning of the the reduction
#define ORI_RESPONSE_REDUCTION_WIDTH 48
#define ORI_RESPONSE_ARRAY_SIZE (ORI_RESPONSE_REDUCTION_WIDTH * 2)
__constant float c_aptX[ORI_SAMPLES] = {-6, -5, -5, -5, -5, -5, -5, -5, -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6};
__constant float c_aptY[ORI_SAMPLES] = {0, -3, -2, -1, 0, 1, 2, 3, -4, -3, -2, -1, 0, 1, 2, 3, 4, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, -3, -2, -1, 0, 1, 2, 3, 0};
@ -833,12 +846,15 @@ void icvCalcOrientation(
__global float* featureDir = keypoints + ANGLE_ROW * keypoints_step;
volatile __local float s_X[128];
volatile __local float s_Y[128];
volatile __local float s_angle[128];
__local float s_X[ORI_SAMPLES];
__local float s_Y[ORI_SAMPLES];
__local float s_angle[ORI_SAMPLES];
volatile __local float s_sumx[32 * 4];
volatile __local float s_sumy[32 * 4];
// Need to allocate enough to make the reduction work without accessing
// past the end of the array.
__local float s_sumx[ORI_RESPONSE_ARRAY_SIZE];
__local float s_sumy[ORI_RESPONSE_ARRAY_SIZE];
__local float s_mod[ORI_RESPONSE_ARRAY_SIZE];
/* The sampling intervals and wavelet sized for selecting an orientation
and building the keypoint descriptor are defined relative to 's' */
@ -849,28 +865,60 @@ void icvCalcOrientation(
sampled in a circle of radius 6s using wavelets of size 4s.
We ensure the gradient wavelet size is even to ensure the
wavelet pattern is balanced and symmetric around its center */
const int grad_wav_size = 2 * convert_int_rte(2.0f * s);
const int grad_wav_size = 2 * round(2.0f * s);
// check when grad_wav_size is too big
if ((c_img_rows + 1) < grad_wav_size || (c_img_cols + 1) < grad_wav_size)
return;
// Calc X, Y, angle and store it to shared memory
const int tid = get_local_id(1) * get_local_size(0) + get_local_id(0);
const int tid = get_local_id(0);
// Initialize values that are only used as part of the reduction later.
if (tid < ORI_RESPONSE_ARRAY_SIZE - ORI_LOCAL_SIZE) {
s_mod[tid + ORI_LOCAL_SIZE] = 0.0f;
}
float X = 0.0f, Y = 0.0f, angle = 0.0f;
float ratio = (float)grad_wav_size / 4;
if (tid < ORI_SAMPLES)
int r2 = round(ratio * 2.0);
int r4 = round(ratio * 4.0);
for (int i = tid; i < ORI_SAMPLES; i += ORI_LOCAL_SIZE )
{
float X = 0.0f, Y = 0.0f, angle = 0.0f;
const float margin = (float)(grad_wav_size - 1) / 2.0f;
const int x = convert_int_rte(featureX[get_group_id(0)] + c_aptX[tid] * s - margin);
const int y = convert_int_rte(featureY[get_group_id(0)] + c_aptY[tid] * s - margin);
const int x = round(featureX[get_group_id(0)] + c_aptX[i] * s - margin);
const int y = round(featureY[get_group_id(0)] + c_aptY[i] * s - margin);
if (y >= 0 && y < (c_img_rows + 1) - grad_wav_size &&
x >= 0 && x < (c_img_cols + 1) - grad_wav_size)
x >= 0 && x < (c_img_cols + 1) - grad_wav_size)
{
X = c_aptW[tid] * icvCalcHaarPatternSum_2(sumTex, c_NX, 4, grad_wav_size, y, x, c_img_rows, c_img_cols, sum_step);
Y = c_aptW[tid] * icvCalcHaarPatternSum_2(sumTex, c_NY, 4, grad_wav_size, y, x, c_img_rows, c_img_cols, sum_step);
float apt = c_aptW[i];
// Compute the haar sum without fetching duplicate pixels.
float t00 = read_sumTex( sumTex, sampler, (int2)(x, y), c_img_rows, c_img_cols, sum_step);
float t02 = read_sumTex( sumTex, sampler, (int2)(x, y + r2), c_img_rows, c_img_cols, sum_step);
float t04 = read_sumTex( sumTex, sampler, (int2)(x, y + r4), c_img_rows, c_img_cols, sum_step);
float t20 = read_sumTex( sumTex, sampler, (int2)(x + r2, y), c_img_rows, c_img_cols, sum_step);
float t24 = read_sumTex( sumTex, sampler, (int2)(x + r2, y + r4), c_img_rows, c_img_cols, sum_step);
float t40 = read_sumTex( sumTex, sampler, (int2)(x + r4, y), c_img_rows, c_img_cols, sum_step);
float t42 = read_sumTex( sumTex, sampler, (int2)(x + r4, y + r2), c_img_rows, c_img_cols, sum_step);
float t44 = read_sumTex( sumTex, sampler, (int2)(x + r4, y + r4), c_img_rows, c_img_cols, sum_step);
F t = t00 - t04 - t20 + t24;
X -= t / ((r2) * (r4));
t = t20 - t24 - t40 + t44;
X += t / ((r4 - r2) * (r4));
t = t00 - t02 - t40 + t42;
Y += t / ((r2) * (r4));
t = t02 - t04 - t42 + t44;
Y -= t / ((r4) * (r4 - r2));
X = apt*X;
Y = apt*Y;
angle = atan2(Y, X);
@ -879,76 +927,61 @@ void icvCalcOrientation(
angle *= 180.0f / CV_PI_F;
}
s_X[i] = X;
s_Y[i] = Y;
s_angle[i] = angle;
}
s_X[tid] = X;
s_Y[tid] = Y;
s_angle[tid] = angle;
barrier(CLK_LOCAL_MEM_FENCE);
float bestx = 0, besty = 0, best_mod = 0;
float sumx = 0.0f, sumy = 0.0f;
const int dir = tid * ORI_SEARCH_INC;
#pragma unroll
for (int i = 0; i < ORI_SAMPLES; ++i) {
int angle = round(s_angle[i]);
#pragma unroll
for (int i = 0; i < 18; ++i)
{
const int dir = (i * 4 + get_local_id(1)) * ORI_SEARCH_INC;
int d = abs(angle - dir);
if (d < ORI_WIN / 2 || d > 360 - ORI_WIN / 2)
{
sumx += s_X[i];
sumy += s_Y[i];
}
}
s_sumx[tid] = sumx;
s_sumy[tid] = sumy;
s_mod[tid] = sumx*sumx + sumy*sumy;
barrier(CLK_LOCAL_MEM_FENCE);
volatile float sumx = 0.0f, sumy = 0.0f;
int d = abs(convert_int_rte(s_angle[get_local_id(0)]) - dir);
if (d < ORI_WIN / 2 || d > 360 - ORI_WIN / 2)
{
sumx = s_X[get_local_id(0)];
sumy = s_Y[get_local_id(0)];
}
d = abs(convert_int_rte(s_angle[get_local_id(0) + 32]) - dir);
if (d < ORI_WIN / 2 || d > 360 - ORI_WIN / 2)
{
sumx += s_X[get_local_id(0) + 32];
sumy += s_Y[get_local_id(0) + 32];
}
d = abs(convert_int_rte(s_angle[get_local_id(0) + 64]) - dir);
if (d < ORI_WIN / 2 || d > 360 - ORI_WIN / 2)
{
sumx += s_X[get_local_id(0) + 64];
sumy += s_Y[get_local_id(0) + 64];
}
d = abs(convert_int_rte(s_angle[get_local_id(0) + 96]) - dir);
if (d < ORI_WIN / 2 || d > 360 - ORI_WIN / 2)
{
sumx += s_X[get_local_id(0) + 96];
sumy += s_Y[get_local_id(0) + 96];
}
reduce_32_sum(s_sumx + get_local_id(1) * 32, &sumx, get_local_id(0));
reduce_32_sum(s_sumy + get_local_id(1) * 32, &sumy, get_local_id(0));
const float temp_mod = sumx * sumx + sumy * sumy;
if (temp_mod > best_mod)
{
best_mod = temp_mod;
bestx = sumx;
besty = sumy;
// This reduction searches for the longest wavelet response vector. The first
// step uses all of the work items in the workgroup to narrow the search
// down to the three candidates. It requires s_mod to have a few more
// elements alocated past the work-group size, which are pre-initialized to
// 0.0f above.
for(int t = ORI_RESPONSE_REDUCTION_WIDTH; t >= 3; t /= 2) {
if (tid < t) {
if (s_mod[tid] < s_mod[tid + t]) {
s_mod[tid] = s_mod[tid + t];
s_sumx[tid] = s_sumx[tid + t];
s_sumy[tid] = s_sumy[tid + t];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if (get_local_id(0) == 0)
{
s_X[get_local_id(1)] = bestx;
s_Y[get_local_id(1)] = besty;
s_angle[get_local_id(1)] = best_mod;
}
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(1) == 0 && get_local_id(0) == 0)
// Do the final reduction and write out the result.
if (tid == 0)
{
int bestIdx = 0;
if (s_angle[1] > s_angle[bestIdx])
// The loop above narrowed the search of the longest vector to three
// possibilities. Pick the best here.
if (s_mod[1] > s_mod[bestIdx])
bestIdx = 1;
if (s_angle[2] > s_angle[bestIdx])
if (s_mod[2] > s_mod[bestIdx])
bestIdx = 2;
if (s_angle[3] > s_angle[bestIdx])
bestIdx = 3;
float kp_dir = atan2(s_Y[bestIdx], s_X[bestIdx]);
float kp_dir = atan2(s_sumy[bestIdx], s_sumx[bestIdx]);
if (kp_dir < 0)
kp_dir += 2.0f * CV_PI_F;
kp_dir *= 180.0f / CV_PI_F;
@ -961,7 +994,6 @@ void icvCalcOrientation(
}
}
__kernel
void icvSetUpright(
__global float * keypoints,
@ -1035,8 +1067,8 @@ inline float linearFilter(
float out = 0.0f;
const int x1 = convert_int_rtn(x);
const int y1 = convert_int_rtn(y);
const int x1 = round(x);
const int y1 = round(y);
const int x2 = x1 + 1;
const int y2 = y1 + 1;

View File

@ -46,6 +46,7 @@
#ifdef HAVE_OPENCV_OCL
#include <cstdio>
#include <sstream>
#include "opencl_kernels.hpp"
using namespace cv;
@ -55,18 +56,25 @@ namespace cv
{
namespace ocl
{
// The number of degrees between orientation samples in calcOrientation
const static int ORI_SEARCH_INC = 5;
// The local size of the calcOrientation kernel
const static int ORI_LOCAL_SIZE = (360 / ORI_SEARCH_INC);
static void openCLExecuteKernelSURF(Context *clCxt, const cv::ocl::ProgramEntry* source, string kernelName, size_t globalThreads[3],
size_t localThreads[3], std::vector< std::pair<size_t, const void *> > &args, int channels, int depth)
{
char optBuf [100] = {0};
char * optBufPtr = optBuf;
std::stringstream optsStr;
optsStr << "-D ORI_LOCAL_SIZE=" << ORI_LOCAL_SIZE << " ";
optsStr << "-D ORI_SEARCH_INC=" << ORI_SEARCH_INC << " ";
cl_kernel kernel;
kernel = openCLGetKernelFromSource(clCxt, source, kernelName, optBufPtr);
kernel = openCLGetKernelFromSource(clCxt, source, kernelName, optsStr.str().c_str());
size_t wave_size = queryWaveFrontSize(kernel);
CV_Assert(clReleaseKernel(kernel) == CL_SUCCESS);
sprintf(optBufPtr, "-D WAVE_SIZE=%d", static_cast<int>(wave_size));
openCLExecuteKernel(clCxt, source, kernelName, globalThreads, localThreads, args, channels, depth, optBufPtr);
optsStr << "-D WAVE_SIZE=" << wave_size;
openCLExecuteKernel(clCxt, source, kernelName, globalThreads, localThreads, args, channels, depth, optsStr.str().c_str());
}
}
}
@ -594,8 +602,8 @@ void SURF_OCL_Invoker::icvCalcOrientation_gpu(const oclMat &keypoints, int nFeat
args.push_back( std::make_pair( sizeof(cl_int), (void *)&img_cols));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&surf_.sum.step));
size_t localThreads[3] = {32, 4, 1};
size_t globalThreads[3] = {nFeatures *localThreads[0], localThreads[1], 1};
size_t localThreads[3] = {ORI_LOCAL_SIZE, 1, 1};
size_t globalThreads[3] = {nFeatures * localThreads[0], 1, 1};
openCLExecuteKernelSURF(clCxt, &surf, kernelName, globalThreads, localThreads, args, -1, -1);
}