mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
Merge pull request #1051 from pengx17:2.4_fback_ocl
This commit is contained in:
commit
6bf8f474fa
@ -1395,6 +1395,45 @@ namespace cv
|
||||
oclMat vPyr_[2];
|
||||
bool isDeviceArch11_;
|
||||
};
|
||||
|
||||
class CV_EXPORTS FarnebackOpticalFlow
|
||||
{
|
||||
public:
|
||||
FarnebackOpticalFlow();
|
||||
|
||||
int numLevels;
|
||||
double pyrScale;
|
||||
bool fastPyramids;
|
||||
int winSize;
|
||||
int numIters;
|
||||
int polyN;
|
||||
double polySigma;
|
||||
int flags;
|
||||
|
||||
void operator ()(const oclMat &frame0, const oclMat &frame1, oclMat &flowx, oclMat &flowy);
|
||||
|
||||
void releaseMemory();
|
||||
|
||||
private:
|
||||
void prepareGaussian(
|
||||
int n, double sigma, float *g, float *xg, float *xxg,
|
||||
double &ig11, double &ig03, double &ig33, double &ig55);
|
||||
|
||||
void setPolynomialExpansionConsts(int n, double sigma);
|
||||
|
||||
void updateFlow_boxFilter(
|
||||
const oclMat& R0, const oclMat& R1, oclMat& flowx, oclMat &flowy,
|
||||
oclMat& M, oclMat &bufM, int blockSize, bool updateMatrices);
|
||||
|
||||
void updateFlow_gaussianBlur(
|
||||
const oclMat& R0, const oclMat& R1, oclMat& flowx, oclMat& flowy,
|
||||
oclMat& M, oclMat &bufM, int blockSize, bool updateMatrices);
|
||||
|
||||
oclMat frames_[2];
|
||||
oclMat pyrLevel_[2], M_, bufM_, R_[2], blurredFrame_[2];
|
||||
std::vector<oclMat> pyramid0_, pyramid1_;
|
||||
};
|
||||
|
||||
//////////////// build warping maps ////////////////////
|
||||
//! builds plane warping maps
|
||||
CV_EXPORTS void buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat &R, const Mat &T, float scale, oclMat &map_x, oclMat &map_y);
|
||||
|
@ -136,11 +136,13 @@ PERFTEST(PyrLKOpticalFlow)
|
||||
size_t mismatch = 0;
|
||||
for (int i = 0; i < (int)nextPts.size(); ++i)
|
||||
{
|
||||
if(status[i] != ocl_status.at<unsigned char>(0, i)){
|
||||
if(status[i] != ocl_status.at<unsigned char>(0, i))
|
||||
{
|
||||
mismatch++;
|
||||
continue;
|
||||
}
|
||||
if(status[i]){
|
||||
if(status[i])
|
||||
{
|
||||
Point2f gpu_rst = ocl_nextPts.at<Point2f>(0, i);
|
||||
Point2f cpu_rst = nextPts[i];
|
||||
if(fabs(gpu_rst.x - cpu_rst.x) >= 1. || fabs(gpu_rst.y - cpu_rst.y) >= 1.)
|
||||
@ -193,24 +195,24 @@ PERFTEST(tvl1flow)
|
||||
WARMUP_ON;
|
||||
d_alg(d0, d1, d_flowx, d_flowy);
|
||||
WARMUP_OFF;
|
||||
/*
|
||||
double diff1 = 0.0, diff2 = 0.0;
|
||||
if(ExceptedMatSimilar(gold[0], cv::Mat(d_flowx), 3e-3, diff1) == 1
|
||||
&&ExceptedMatSimilar(gold[1], cv::Mat(d_flowy), 3e-3, diff2) == 1)
|
||||
TestSystem::instance().setAccurate(1);
|
||||
else
|
||||
TestSystem::instance().setAccurate(0);
|
||||
/*
|
||||
double diff1 = 0.0, diff2 = 0.0;
|
||||
if(ExceptedMatSimilar(gold[0], cv::Mat(d_flowx), 3e-3, diff1) == 1
|
||||
&&ExceptedMatSimilar(gold[1], cv::Mat(d_flowy), 3e-3, diff2) == 1)
|
||||
TestSystem::instance().setAccurate(1);
|
||||
else
|
||||
TestSystem::instance().setAccurate(0);
|
||||
|
||||
TestSystem::instance().setDiff(diff1);
|
||||
TestSystem::instance().setDiff(diff2);
|
||||
*/
|
||||
TestSystem::instance().setDiff(diff1);
|
||||
TestSystem::instance().setDiff(diff2);
|
||||
*/
|
||||
|
||||
|
||||
GPU_ON;
|
||||
d_alg(d0, d1, d_flowx, d_flowy);
|
||||
d_alg.collectGarbage();
|
||||
GPU_OFF;
|
||||
|
||||
|
||||
|
||||
cv::Mat flowx, flowy;
|
||||
|
||||
@ -225,4 +227,130 @@ PERFTEST(tvl1flow)
|
||||
|
||||
TestSystem::instance().ExceptedMatSimilar(gold[0], flowx, 3e-3);
|
||||
TestSystem::instance().ExceptedMatSimilar(gold[1], flowy, 3e-3);
|
||||
}
|
||||
}
|
||||
|
||||
///////////// FarnebackOpticalFlow ////////////////////////
|
||||
PERFTEST(FarnebackOpticalFlow)
|
||||
{
|
||||
cv::Mat frame0 = imread("rubberwhale1.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame0.empty());
|
||||
|
||||
cv::Mat frame1 = imread("rubberwhale2.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame1.empty());
|
||||
|
||||
cv::ocl::oclMat d_frame0(frame0), d_frame1(frame1);
|
||||
|
||||
int polyNs[2] = { 5, 7 };
|
||||
double polySigmas[2] = { 1.1, 1.5 };
|
||||
int farneFlags[2] = { 0, cv::OPTFLOW_FARNEBACK_GAUSSIAN };
|
||||
bool UseInitFlows[2] = { false, true };
|
||||
double pyrScale = 0.5;
|
||||
|
||||
string farneFlagStrs[2] = { "BoxFilter", "GaussianBlur" };
|
||||
string useInitFlowStrs[2] = { "", "UseInitFlow" };
|
||||
|
||||
for ( int i = 0; i < 2; ++i)
|
||||
{
|
||||
int polyN = polyNs[i];
|
||||
double polySigma = polySigmas[i];
|
||||
|
||||
for ( int j = 0; j < 2; ++j)
|
||||
{
|
||||
int flags = farneFlags[j];
|
||||
|
||||
for ( int k = 0; k < 2; ++k)
|
||||
{
|
||||
bool useInitFlow = UseInitFlows[k];
|
||||
SUBTEST << "polyN(" << polyN << "); " << farneFlagStrs[j] << "; " << useInitFlowStrs[k];
|
||||
|
||||
cv::ocl::FarnebackOpticalFlow farn;
|
||||
farn.pyrScale = pyrScale;
|
||||
farn.polyN = polyN;
|
||||
farn.polySigma = polySigma;
|
||||
farn.flags = flags;
|
||||
|
||||
cv::ocl::oclMat d_flowx, d_flowy;
|
||||
cv::Mat flow, flowBuf, flowxBuf, flowyBuf;
|
||||
|
||||
WARMUP_ON;
|
||||
farn(d_frame0, d_frame1, d_flowx, d_flowy);
|
||||
|
||||
if (useInitFlow)
|
||||
{
|
||||
cv::Mat flowxy[] = {cv::Mat(d_flowx), cv::Mat(d_flowy)};
|
||||
cv::merge(flowxy, 2, flow);
|
||||
flow.copyTo(flowBuf);
|
||||
flowxy[0].copyTo(flowxBuf);
|
||||
flowxy[1].copyTo(flowyBuf);
|
||||
|
||||
farn.flags |= cv::OPTFLOW_USE_INITIAL_FLOW;
|
||||
farn(d_frame0, d_frame1, d_flowx, d_flowy);
|
||||
}
|
||||
WARMUP_OFF;
|
||||
|
||||
cv::calcOpticalFlowFarneback(
|
||||
frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize,
|
||||
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
|
||||
|
||||
std::vector<cv::Mat> flowxy;
|
||||
cv::split(flow, flowxy);
|
||||
|
||||
Mat md_flowx = cv::Mat(d_flowx);
|
||||
Mat md_flowy = cv::Mat(d_flowy);
|
||||
TestSystem::instance().ExceptedMatSimilar(flowxy[0], md_flowx, 0.1);
|
||||
TestSystem::instance().ExceptedMatSimilar(flowxy[1], md_flowy, 0.1);
|
||||
|
||||
if (useInitFlow)
|
||||
{
|
||||
cv::Mat flowx, flowy;
|
||||
farn.flags = (flags | cv::OPTFLOW_USE_INITIAL_FLOW);
|
||||
|
||||
CPU_ON;
|
||||
cv::calcOpticalFlowFarneback(
|
||||
frame0, frame1, flowBuf, farn.pyrScale, farn.numLevels, farn.winSize,
|
||||
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
|
||||
CPU_OFF;
|
||||
|
||||
GPU_ON;
|
||||
farn(d_frame0, d_frame1, d_flowx, d_flowy);
|
||||
GPU_OFF;
|
||||
|
||||
GPU_FULL_ON;
|
||||
d_frame0.upload(frame0);
|
||||
d_frame1.upload(frame1);
|
||||
d_flowx.upload(flowxBuf);
|
||||
d_flowy.upload(flowyBuf);
|
||||
farn(d_frame0, d_frame1, d_flowx, d_flowy);
|
||||
d_flowx.download(flowx);
|
||||
d_flowy.download(flowy);
|
||||
GPU_FULL_OFF;
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::Mat flow, flowx, flowy;
|
||||
cv::ocl::oclMat d_flowx, d_flowy;
|
||||
|
||||
farn.flags = flags;
|
||||
|
||||
CPU_ON;
|
||||
cv::calcOpticalFlowFarneback(
|
||||
frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize,
|
||||
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
|
||||
CPU_OFF;
|
||||
|
||||
GPU_ON;
|
||||
farn(d_frame0, d_frame1, d_flowx, d_flowy);
|
||||
GPU_OFF;
|
||||
|
||||
GPU_FULL_ON;
|
||||
d_frame0.upload(frame0);
|
||||
d_frame1.upload(frame1);
|
||||
farn(d_frame0, d_frame1, d_flowx, d_flowy);
|
||||
d_flowx.download(flowx);
|
||||
d_flowy.download(flowy);
|
||||
GPU_FULL_OFF;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
450
modules/ocl/src/opencl/optical_flow_farneback.cl
Normal file
450
modules/ocl/src/opencl/optical_flow_farneback.cl
Normal file
@ -0,0 +1,450 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Sen Liu, swjtuls1987@126.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
|
||||
#define tx get_local_id(0)
|
||||
#define ty get_local_id(1)
|
||||
#define bx get_group_id(0)
|
||||
#define bdx get_local_size(0)
|
||||
|
||||
#define BORDER_SIZE 5
|
||||
#define MAX_KSIZE_HALF 100
|
||||
|
||||
#ifndef polyN
|
||||
#define polyN 5
|
||||
#endif
|
||||
|
||||
__kernel void polynomialExpansion(__global float * dst,
|
||||
__global __const float * src,
|
||||
__global __const float * c_g,
|
||||
__global __const float * c_xg,
|
||||
__global __const float * c_xxg,
|
||||
__local float * smem,
|
||||
const float4 ig,
|
||||
const int height, const int width,
|
||||
int dstStep, int srcStep)
|
||||
{
|
||||
const int y = get_global_id(1);
|
||||
const int x = bx * (bdx - 2*polyN) + tx - polyN;
|
||||
|
||||
dstStep /= sizeof(*dst);
|
||||
srcStep /= sizeof(*src);
|
||||
|
||||
int xWarped;
|
||||
__local float *row = smem + tx;
|
||||
|
||||
if (y < height && y >= 0)
|
||||
{
|
||||
xWarped = min(max(x, 0), width - 1);
|
||||
|
||||
row[0] = src[mad24(y, srcStep, xWarped)] * c_g[0];
|
||||
row[bdx] = 0.f;
|
||||
row[2*bdx] = 0.f;
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 1; k <= polyN; ++k)
|
||||
{
|
||||
float t0 = src[mad24(max(y - k, 0), srcStep, xWarped)];
|
||||
float t1 = src[mad24(min(y + k, height - 1), srcStep, xWarped)];
|
||||
|
||||
row[0] += c_g[k] * (t0 + t1);
|
||||
row[bdx] += c_xg[k] * (t1 - t0);
|
||||
row[2*bdx] += c_xxg[k] * (t0 + t1);
|
||||
}
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (y < height && y >= 0 && tx >= polyN && tx + polyN < bdx && x < width)
|
||||
{
|
||||
float b1 = c_g[0] * row[0];
|
||||
float b3 = c_g[0] * row[bdx];
|
||||
float b5 = c_g[0] * row[2*bdx];
|
||||
float b2 = 0, b4 = 0, b6 = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 1; k <= polyN; ++k)
|
||||
{
|
||||
b1 += (row[k] + row[-k]) * c_g[k];
|
||||
b4 += (row[k] + row[-k]) * c_xxg[k];
|
||||
b2 += (row[k] - row[-k]) * c_xg[k];
|
||||
b3 += (row[k + bdx] + row[-k + bdx]) * c_g[k];
|
||||
b6 += (row[k + bdx] - row[-k + bdx]) * c_xg[k];
|
||||
b5 += (row[k + 2*bdx] + row[-k + 2*bdx]) * c_g[k];
|
||||
}
|
||||
|
||||
dst[mad24(y, dstStep, xWarped)] = b3*ig.s0;
|
||||
dst[mad24(height + y, dstStep, xWarped)] = b2*ig.s0;
|
||||
dst[mad24(2*height + y, dstStep, xWarped)] = b1*ig.s1 + b5*ig.s2;
|
||||
dst[mad24(3*height + y, dstStep, xWarped)] = b1*ig.s1 + b4*ig.s2;
|
||||
dst[mad24(4*height + y, dstStep, xWarped)] = b6*ig.s3;
|
||||
}
|
||||
}
|
||||
|
||||
inline int idx_row_low(const int y, const int last_row)
|
||||
{
|
||||
return abs(y) % (last_row + 1);
|
||||
}
|
||||
|
||||
inline int idx_row_high(const int y, const int last_row)
|
||||
{
|
||||
return abs(last_row - abs(last_row - y)) % (last_row + 1);
|
||||
}
|
||||
|
||||
inline int idx_row(const int y, const int last_row)
|
||||
{
|
||||
return idx_row_low(idx_row_high(y, last_row), last_row);
|
||||
}
|
||||
|
||||
inline int idx_col_low(const int x, const int last_col)
|
||||
{
|
||||
return abs(x) % (last_col + 1);
|
||||
}
|
||||
|
||||
inline int idx_col_high(const int x, const int last_col)
|
||||
{
|
||||
return abs(last_col - abs(last_col - x)) % (last_col + 1);
|
||||
}
|
||||
|
||||
inline int idx_col(const int x, const int last_col)
|
||||
{
|
||||
return idx_col_low(idx_col_high(x, last_col), last_col);
|
||||
}
|
||||
|
||||
__kernel void gaussianBlur(__global float * dst,
|
||||
__global const float * src,
|
||||
__global const float * c_gKer,
|
||||
__local float * smem,
|
||||
const int height, const int width,
|
||||
int dstStep, int srcStep,
|
||||
const int ksizeHalf)
|
||||
{
|
||||
const int y = get_global_id(1);
|
||||
const int x = get_global_id(0);
|
||||
|
||||
dstStep /= sizeof(*dst);
|
||||
srcStep /= sizeof(*src);
|
||||
|
||||
__local float *row = smem + ty * (bdx + 2*ksizeHalf);
|
||||
|
||||
if (y < height)
|
||||
{
|
||||
// Vertical pass
|
||||
for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx)
|
||||
{
|
||||
int xExt = (int)(bx * bdx) + i - ksizeHalf;
|
||||
xExt = idx_col(xExt, width - 1);
|
||||
row[i] = src[mad24(y, srcStep, xExt)] * c_gKer[0];
|
||||
for (int j = 1; j <= ksizeHalf; ++j)
|
||||
row[i] += (src[mad24(idx_row_low(y - j, height - 1), srcStep, xExt)]
|
||||
+ src[mad24(idx_row_high(y + j, height - 1), srcStep, xExt)]) * c_gKer[j];
|
||||
}
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (y < height && y >= 0 && x < width && x >= 0)
|
||||
{
|
||||
// Horizontal pass
|
||||
row += tx + ksizeHalf;
|
||||
float res = row[0] * c_gKer[0];
|
||||
for (int i = 1; i <= ksizeHalf; ++i)
|
||||
res += (row[-i] + row[i]) * c_gKer[i];
|
||||
|
||||
dst[mad24(y, dstStep, x)] = res;
|
||||
}
|
||||
}
|
||||
|
||||
__constant float c_border[BORDER_SIZE + 1] = { 0.14f, 0.14f, 0.4472f, 0.4472f, 0.4472f, 1.f };
|
||||
|
||||
__kernel void updateMatrices(__global float * M,
|
||||
__global const float * flowx, __global const float * flowy,
|
||||
__global const float * R0, __global const float * R1,
|
||||
const int height, const int width,
|
||||
int mStep, int xStep, int yStep, int R0Step, int R1Step)
|
||||
{
|
||||
const int y = get_global_id(1);
|
||||
const int x = get_global_id(0);
|
||||
|
||||
mStep /= sizeof(*M);
|
||||
xStep /= sizeof(*flowx);
|
||||
yStep /= sizeof(*flowy);
|
||||
R0Step /= sizeof(*R0);
|
||||
R1Step /= sizeof(*R1);
|
||||
|
||||
if (y < height && y >= 0 && x < width && x >= 0)
|
||||
{
|
||||
float dx = flowx[mad24(y, xStep, x)];
|
||||
float dy = flowy[mad24(y, yStep, x)];
|
||||
float fx = x + dx;
|
||||
float fy = y + dy;
|
||||
|
||||
int x1 = convert_int(floor(fx));
|
||||
int y1 = convert_int(floor(fy));
|
||||
fx -= x1;
|
||||
fy -= y1;
|
||||
|
||||
float r2, r3, r4, r5, r6;
|
||||
|
||||
if (x1 >= 0 && y1 >= 0 && x1 < width - 1 && y1 < height - 1)
|
||||
{
|
||||
float a00 = (1.f - fx) * (1.f - fy);
|
||||
float a01 = fx * (1.f - fy);
|
||||
float a10 = (1.f - fx) * fy;
|
||||
float a11 = fx * fy;
|
||||
|
||||
r2 = a00 * R1[mad24(y1, R1Step, x1)] +
|
||||
a01 * R1[mad24(y1, R1Step, x1 + 1)] +
|
||||
a10 * R1[mad24(y1 + 1, R1Step, x1)] +
|
||||
a11 * R1[mad24(y1 + 1, R1Step, x1 + 1)];
|
||||
|
||||
r3 = a00 * R1[mad24(height + y1, R1Step, x1)] +
|
||||
a01 * R1[mad24(height + y1, R1Step, x1 + 1)] +
|
||||
a10 * R1[mad24(height + y1 + 1, R1Step, x1)] +
|
||||
a11 * R1[mad24(height + y1 + 1, R1Step, x1 + 1)];
|
||||
|
||||
r4 = a00 * R1[mad24(2*height + y1, R1Step, x1)] +
|
||||
a01 * R1[mad24(2*height + y1, R1Step, x1 + 1)] +
|
||||
a10 * R1[mad24(2*height + y1 + 1, R1Step, x1)] +
|
||||
a11 * R1[mad24(2*height + y1 + 1, R1Step, x1 + 1)];
|
||||
|
||||
r5 = a00 * R1[mad24(3*height + y1, R1Step, x1)] +
|
||||
a01 * R1[mad24(3*height + y1, R1Step, x1 + 1)] +
|
||||
a10 * R1[mad24(3*height + y1 + 1, R1Step, x1)] +
|
||||
a11 * R1[mad24(3*height + y1 + 1, R1Step, x1 + 1)];
|
||||
|
||||
r6 = a00 * R1[mad24(4*height + y1, R1Step, x1)] +
|
||||
a01 * R1[mad24(4*height + y1, R1Step, x1 + 1)] +
|
||||
a10 * R1[mad24(4*height + y1 + 1, R1Step, x1)] +
|
||||
a11 * R1[mad24(4*height + y1 + 1, R1Step, x1 + 1)];
|
||||
|
||||
r4 = (R0[mad24(2*height + y, R0Step, x)] + r4) * 0.5f;
|
||||
r5 = (R0[mad24(3*height + y, R0Step, x)] + r5) * 0.5f;
|
||||
r6 = (R0[mad24(4*height + y, R0Step, x)] + r6) * 0.25f;
|
||||
}
|
||||
else
|
||||
{
|
||||
r2 = r3 = 0.f;
|
||||
r4 = R0[mad24(2*height + y, R0Step, x)];
|
||||
r5 = R0[mad24(3*height + y, R0Step, x)];
|
||||
r6 = R0[mad24(4*height + y, R0Step, x)] * 0.5f;
|
||||
}
|
||||
|
||||
r2 = (R0[mad24(y, R0Step, x)] - r2) * 0.5f;
|
||||
r3 = (R0[mad24(height + y, R0Step, x)] - r3) * 0.5f;
|
||||
|
||||
r2 += r4*dy + r6*dx;
|
||||
r3 += r6*dy + r5*dx;
|
||||
|
||||
float scale =
|
||||
c_border[min(x, BORDER_SIZE)] *
|
||||
c_border[min(y, BORDER_SIZE)] *
|
||||
c_border[min(width - x - 1, BORDER_SIZE)] *
|
||||
c_border[min(height - y - 1, BORDER_SIZE)];
|
||||
|
||||
r2 *= scale;
|
||||
r3 *= scale;
|
||||
r4 *= scale;
|
||||
r5 *= scale;
|
||||
r6 *= scale;
|
||||
|
||||
M[mad24(y, mStep, x)] = r4*r4 + r6*r6;
|
||||
M[mad24(height + y, mStep, x)] = (r4 + r5)*r6;
|
||||
M[mad24(2*height + y, mStep, x)] = r5*r5 + r6*r6;
|
||||
M[mad24(3*height + y, mStep, x)] = r4*r2 + r6*r3;
|
||||
M[mad24(4*height + y, mStep, x)] = r6*r2 + r5*r3;
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void boxFilter5(__global float * dst,
|
||||
__global const float * src,
|
||||
__local float * smem,
|
||||
const int height, const int width,
|
||||
int dstStep, int srcStep,
|
||||
const int ksizeHalf)
|
||||
{
|
||||
const int y = get_global_id(1);
|
||||
const int x = get_global_id(0);
|
||||
|
||||
const float boxAreaInv = 1.f / ((1 + 2*ksizeHalf) * (1 + 2*ksizeHalf));
|
||||
const int smw = bdx + 2*ksizeHalf; // shared memory "width"
|
||||
__local float *row = smem + 5 * ty * smw;
|
||||
|
||||
dstStep /= sizeof(*dst);
|
||||
srcStep /= sizeof(*src);
|
||||
|
||||
if (y < height)
|
||||
{
|
||||
// Vertical pass
|
||||
for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx)
|
||||
{
|
||||
int xExt = (int)(bx * bdx) + i - ksizeHalf;
|
||||
xExt = min(max(xExt, 0), width - 1);
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 0; k < 5; ++k)
|
||||
row[k*smw + i] = src[mad24(k*height + y, srcStep, xExt)];
|
||||
|
||||
for (int j = 1; j <= ksizeHalf; ++j)
|
||||
#pragma unroll
|
||||
for (int k = 0; k < 5; ++k)
|
||||
row[k*smw + i] +=
|
||||
src[mad24(k*height + max(y - j, 0), srcStep, xExt)] +
|
||||
src[mad24(k*height + min(y + j, height - 1), srcStep, xExt)];
|
||||
}
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (y < height && y >= 0 && x < width && x >= 0)
|
||||
{
|
||||
// Horizontal pass
|
||||
|
||||
row += tx + ksizeHalf;
|
||||
float res[5];
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 0; k < 5; ++k)
|
||||
res[k] = row[k*smw];
|
||||
|
||||
for (int i = 1; i <= ksizeHalf; ++i)
|
||||
#pragma unroll
|
||||
for (int k = 0; k < 5; ++k)
|
||||
res[k] += row[k*smw - i] + row[k*smw + i];
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 0; k < 5; ++k)
|
||||
dst[mad24(k*height + y, dstStep, x)] = res[k] * boxAreaInv;
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void updateFlow(__global float4 * flowx, __global float4 * flowy,
|
||||
__global const float4 * M,
|
||||
const int height, const int width,
|
||||
int xStep, int yStep, int mStep)
|
||||
{
|
||||
const int y = get_global_id(1);
|
||||
const int x = get_global_id(0);
|
||||
|
||||
xStep /= sizeof(*flowx);
|
||||
yStep /= sizeof(*flowy);
|
||||
mStep /= sizeof(*M);
|
||||
|
||||
if (y < height && y >= 0 && x < width && x >= 0)
|
||||
{
|
||||
float4 g11 = M[mad24(y, mStep, x)];
|
||||
float4 g12 = M[mad24(height + y, mStep, x)];
|
||||
float4 g22 = M[mad24(2*height + y, mStep, x)];
|
||||
float4 h1 = M[mad24(3*height + y, mStep, x)];
|
||||
float4 h2 = M[mad24(4*height + y, mStep, x)];
|
||||
|
||||
float4 detInv = (float4)(1.f) / (g11*g22 - g12*g12 + (float4)(1e-3f));
|
||||
|
||||
flowx[mad24(y, xStep, x)] = (g11*h2 - g12*h1) * detInv;
|
||||
flowy[mad24(y, yStep, x)] = (g22*h1 - g12*h2) * detInv;
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void gaussianBlur5(__global float * dst,
|
||||
__global const float * src,
|
||||
__global const float * c_gKer,
|
||||
__local float * smem,
|
||||
const int height, const int width,
|
||||
int dstStep, int srcStep,
|
||||
const int ksizeHalf)
|
||||
{
|
||||
const int y = get_global_id(1);
|
||||
const int x = get_global_id(0);
|
||||
|
||||
const int smw = bdx + 2*ksizeHalf; // shared memory "width"
|
||||
__local volatile float *row = smem + 5 * ty * smw;
|
||||
|
||||
dstStep /= sizeof(*dst);
|
||||
srcStep /= sizeof(*src);
|
||||
|
||||
if (y < height)
|
||||
{
|
||||
// Vertical pass
|
||||
for (int i = tx; i < bdx + 2*ksizeHalf; i += bdx)
|
||||
{
|
||||
int xExt = (int)(bx * bdx) + i - ksizeHalf;
|
||||
xExt = idx_col(xExt, width - 1);
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 0; k < 5; ++k)
|
||||
row[k*smw + i] = src[mad24(k*height + y, srcStep, xExt)] * c_gKer[0];
|
||||
|
||||
for (int j = 1; j <= ksizeHalf; ++j)
|
||||
#pragma unroll
|
||||
for (int k = 0; k < 5; ++k)
|
||||
row[k*smw + i] +=
|
||||
(src[mad24(k*height + idx_row_low(y - j, height - 1), srcStep, xExt)] +
|
||||
src[mad24(k*height + idx_row_high(y + j, height - 1), srcStep, xExt)]) * c_gKer[j];
|
||||
}
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (y < height && y >= 0 && x < width && x >= 0)
|
||||
{
|
||||
// Horizontal pass
|
||||
|
||||
row += tx + ksizeHalf;
|
||||
float res[5];
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 0; k < 5; ++k)
|
||||
res[k] = row[k*smw] * c_gKer[0];
|
||||
|
||||
for (int i = 1; i <= ksizeHalf; ++i)
|
||||
#pragma unroll
|
||||
for (int k = 0; k < 5; ++k)
|
||||
res[k] += (row[k*smw - i] + row[k*smw + i]) * c_gKer[i];
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 0; k < 5; ++k)
|
||||
dst[mad24(k*height + y, dstStep, x)] = res[k];
|
||||
}
|
||||
}
|
540
modules/ocl/src/optical_flow_farneback.cpp
Normal file
540
modules/ocl/src/optical_flow_farneback.cpp
Normal file
@ -0,0 +1,540 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Sen Liu, swjtuls1987@126.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/video/tracking.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::ocl;
|
||||
|
||||
#define MIN_SIZE 32
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace ocl
|
||||
{
|
||||
///////////////////////////OpenCL kernel strings///////////////////////////
|
||||
extern const char *optical_flow_farneback;
|
||||
}
|
||||
}
|
||||
|
||||
namespace cv {
|
||||
namespace ocl {
|
||||
namespace optflow_farneback
|
||||
{
|
||||
oclMat g;
|
||||
oclMat xg;
|
||||
oclMat xxg;
|
||||
oclMat gKer;
|
||||
|
||||
float ig[4];
|
||||
|
||||
inline int divUp(int total, int grain)
|
||||
{
|
||||
return (total + grain - 1) / grain;
|
||||
}
|
||||
|
||||
inline void setGaussianBlurKernel(const float *c_gKer, int ksizeHalf)
|
||||
{
|
||||
cv::Mat t_gKer(1, ksizeHalf + 1, CV_32FC1, const_cast<float *>(c_gKer));
|
||||
gKer.upload(t_gKer);
|
||||
}
|
||||
|
||||
static void gaussianBlurOcl(const oclMat &src, int ksizeHalf, oclMat &dst)
|
||||
{
|
||||
string kernelName("gaussianBlur");
|
||||
size_t localThreads[3] = { 256, 1, 1 };
|
||||
size_t globalThreads[3] = { divUp(src.cols, localThreads[0]) * localThreads[0], src.rows, 1 };
|
||||
int smem_size = (localThreads[0] + 2*ksizeHalf) * sizeof(float);
|
||||
|
||||
CV_Assert(dst.size() == src.size());
|
||||
std::vector< std::pair<size_t, const void *> > args;
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&dst.data));
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&src.data));
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&gKer.data));
|
||||
args.push_back(std::make_pair(smem_size, (void *)NULL));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.rows));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.cols));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.step));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.step));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&ksizeHalf));
|
||||
|
||||
openCLExecuteKernel(Context::getContext(), &optical_flow_farneback, kernelName,
|
||||
globalThreads, localThreads, args, -1, -1);
|
||||
}
|
||||
|
||||
static void polynomialExpansionOcl(const oclMat &src, int polyN, oclMat &dst)
|
||||
{
|
||||
string kernelName("polynomialExpansion");
|
||||
size_t localThreads[3] = { 256, 1, 1 };
|
||||
size_t globalThreads[3] = { divUp(src.cols, localThreads[0] - 2*polyN) * localThreads[0], src.rows, 1 };
|
||||
int smem_size = 3 * localThreads[0] * sizeof(float);
|
||||
|
||||
std::vector< std::pair<size_t, const void *> > args;
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&dst.data));
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&src.data));
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&g.data));
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&xg.data));
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&xxg.data));
|
||||
args.push_back(std::make_pair(smem_size, (void *)NULL));
|
||||
args.push_back(std::make_pair(sizeof(cl_float4), (void *)&ig));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.rows));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.cols));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.step));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.step));
|
||||
|
||||
char opt [128];
|
||||
sprintf(opt, "-D polyN=%d", polyN);
|
||||
|
||||
openCLExecuteKernel(Context::getContext(), &optical_flow_farneback, kernelName,
|
||||
globalThreads, localThreads, args, -1, -1, opt);
|
||||
}
|
||||
|
||||
static void updateMatricesOcl(const oclMat &flowx, const oclMat &flowy, const oclMat &R0, const oclMat &R1, oclMat &M)
|
||||
{
|
||||
string kernelName("updateMatrices");
|
||||
size_t localThreads[3] = { 32, 8, 1 };
|
||||
size_t globalThreads[3] = { divUp(flowx.cols, localThreads[0]) * localThreads[0],
|
||||
divUp(flowx.rows, localThreads[1]) * localThreads[1],
|
||||
1
|
||||
};
|
||||
|
||||
std::vector< std::pair<size_t, const void *> > args;
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&M.data));
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&flowx.data));
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&flowy.data));
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&R0.data));
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&R1.data));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&flowx.rows));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&flowx.cols));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&M.step));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&flowx.step));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&flowy.step));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&R0.step));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&R1.step));
|
||||
|
||||
openCLExecuteKernel(Context::getContext(), &optical_flow_farneback, kernelName,
|
||||
globalThreads, localThreads, args, -1, -1);
|
||||
}
|
||||
|
||||
static void boxFilter5Ocl(const oclMat &src, int ksizeHalf, oclMat &dst)
|
||||
{
|
||||
string kernelName("boxFilter5");
|
||||
int height = src.rows / 5;
|
||||
size_t localThreads[3] = { 256, 1, 1 };
|
||||
size_t globalThreads[3] = { divUp(src.cols, localThreads[0]) * localThreads[0], height, 1 };
|
||||
int smem_size = (localThreads[0] + 2*ksizeHalf) * 5 * sizeof(float);
|
||||
|
||||
std::vector< std::pair<size_t, const void *> > args;
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&dst.data));
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&src.data));
|
||||
args.push_back(std::make_pair(smem_size, (void *)NULL));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&height));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.cols));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.step));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.step));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&ksizeHalf));
|
||||
|
||||
openCLExecuteKernel(Context::getContext(), &optical_flow_farneback, kernelName,
|
||||
globalThreads, localThreads, args, -1, -1);
|
||||
}
|
||||
|
||||
static void updateFlowOcl(const oclMat &M, oclMat &flowx, oclMat &flowy)
|
||||
{
|
||||
string kernelName("updateFlow");
|
||||
int cols = divUp(flowx.cols, 4);
|
||||
size_t localThreads[3] = { 32, 8, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) * localThreads[0],
|
||||
divUp(flowx.rows, localThreads[1]) * localThreads[0],
|
||||
1
|
||||
};
|
||||
|
||||
std::vector< std::pair<size_t, const void *> > args;
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&flowx.data));
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&flowy.data));
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&M.data));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&flowx.rows));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&cols));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&flowx.step));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&flowy.step));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&M.step));
|
||||
|
||||
openCLExecuteKernel(Context::getContext(), &optical_flow_farneback, kernelName,
|
||||
globalThreads, localThreads, args, -1, -1);
|
||||
}
|
||||
|
||||
static void gaussianBlur5Ocl(const oclMat &src, int ksizeHalf, oclMat &dst)
|
||||
{
|
||||
string kernelName("gaussianBlur5");
|
||||
int height = src.rows / 5;
|
||||
int width = src.cols;
|
||||
size_t localThreads[3] = { 256, 1, 1 };
|
||||
size_t globalThreads[3] = { divUp(width, localThreads[0]) * localThreads[0], height, 1 };
|
||||
int smem_size = (localThreads[0] + 2*ksizeHalf) * 5 * sizeof(float);
|
||||
|
||||
std::vector< std::pair<size_t, const void *> > args;
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&dst.data));
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&src.data));
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&gKer.data));
|
||||
args.push_back(std::make_pair(smem_size, (void *)NULL));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&height));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&width));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.step));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.step));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&ksizeHalf));
|
||||
|
||||
openCLExecuteKernel(Context::getContext(), &optical_flow_farneback, kernelName,
|
||||
globalThreads, localThreads, args, -1, -1);
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace cv { namespace ocl { namespace optflow_farneback
|
||||
|
||||
static oclMat allocMatFromBuf(int rows, int cols, int type, oclMat &mat)
|
||||
{
|
||||
if (!mat.empty() && mat.type() == type && mat.rows >= rows && mat.cols >= cols)
|
||||
return mat(Rect(0, 0, cols, rows));
|
||||
return mat = oclMat(rows, cols, type);
|
||||
}
|
||||
|
||||
cv::ocl::FarnebackOpticalFlow::FarnebackOpticalFlow()
|
||||
{
|
||||
numLevels = 5;
|
||||
pyrScale = 0.5;
|
||||
fastPyramids = false;
|
||||
winSize = 13;
|
||||
numIters = 10;
|
||||
polyN = 5;
|
||||
polySigma = 1.1;
|
||||
flags = 0;
|
||||
}
|
||||
|
||||
void cv::ocl::FarnebackOpticalFlow::releaseMemory()
|
||||
{
|
||||
frames_[0].release();
|
||||
frames_[1].release();
|
||||
pyrLevel_[0].release();
|
||||
pyrLevel_[1].release();
|
||||
M_.release();
|
||||
bufM_.release();
|
||||
R_[0].release();
|
||||
R_[1].release();
|
||||
blurredFrame_[0].release();
|
||||
blurredFrame_[1].release();
|
||||
pyramid0_.clear();
|
||||
pyramid1_.clear();
|
||||
}
|
||||
|
||||
void cv::ocl::FarnebackOpticalFlow::prepareGaussian(
|
||||
int n, double sigma, float *g, float *xg, float *xxg,
|
||||
double &ig11, double &ig03, double &ig33, double &ig55)
|
||||
{
|
||||
double s = 0.;
|
||||
for (int x = -n; x <= n; x++)
|
||||
{
|
||||
g[x] = (float)std::exp(-x*x/(2*sigma*sigma));
|
||||
s += g[x];
|
||||
}
|
||||
|
||||
s = 1./s;
|
||||
for (int x = -n; x <= n; x++)
|
||||
{
|
||||
g[x] = (float)(g[x]*s);
|
||||
xg[x] = (float)(x*g[x]);
|
||||
xxg[x] = (float)(x*x*g[x]);
|
||||
}
|
||||
|
||||
Mat_<double> G(6, 6);
|
||||
G.setTo(0);
|
||||
|
||||
for (int y = -n; y <= n; y++)
|
||||
{
|
||||
for (int x = -n; x <= n; x++)
|
||||
{
|
||||
G(0,0) += g[y]*g[x];
|
||||
G(1,1) += g[y]*g[x]*x*x;
|
||||
G(3,3) += g[y]*g[x]*x*x*x*x;
|
||||
G(5,5) += g[y]*g[x]*x*x*y*y;
|
||||
}
|
||||
}
|
||||
|
||||
//G[0][0] = 1.;
|
||||
G(2,2) = G(0,3) = G(0,4) = G(3,0) = G(4,0) = G(1,1);
|
||||
G(4,4) = G(3,3);
|
||||
G(3,4) = G(4,3) = G(5,5);
|
||||
|
||||
// invG:
|
||||
// [ x e e ]
|
||||
// [ y ]
|
||||
// [ y ]
|
||||
// [ e z ]
|
||||
// [ e z ]
|
||||
// [ u ]
|
||||
Mat_<double> invG = G.inv(DECOMP_CHOLESKY);
|
||||
|
||||
ig11 = invG(1,1);
|
||||
ig03 = invG(0,3);
|
||||
ig33 = invG(3,3);
|
||||
ig55 = invG(5,5);
|
||||
}
|
||||
|
||||
void cv::ocl::FarnebackOpticalFlow::setPolynomialExpansionConsts(int n, double sigma)
|
||||
{
|
||||
vector<float> buf(n*6 + 3);
|
||||
float* g = &buf[0] + n;
|
||||
float* xg = g + n*2 + 1;
|
||||
float* xxg = xg + n*2 + 1;
|
||||
|
||||
if (sigma < FLT_EPSILON)
|
||||
sigma = n*0.3;
|
||||
|
||||
double ig11, ig03, ig33, ig55;
|
||||
prepareGaussian(n, sigma, g, xg, xxg, ig11, ig03, ig33, ig55);
|
||||
|
||||
cv::Mat t_g(1, n + 1, CV_32FC1, g);
|
||||
cv::Mat t_xg(1, n + 1, CV_32FC1, xg);
|
||||
cv::Mat t_xxg(1, n + 1, CV_32FC1, xxg);
|
||||
|
||||
optflow_farneback::g.upload(t_g);
|
||||
optflow_farneback::xg.upload(t_xg);
|
||||
optflow_farneback::xxg.upload(t_xxg);
|
||||
|
||||
optflow_farneback::ig[0] = static_cast<float>(ig11);
|
||||
optflow_farneback::ig[1] = static_cast<float>(ig03);
|
||||
optflow_farneback::ig[2] = static_cast<float>(ig33);
|
||||
optflow_farneback::ig[3] = static_cast<float>(ig55);
|
||||
}
|
||||
|
||||
void cv::ocl::FarnebackOpticalFlow::updateFlow_boxFilter(
|
||||
const oclMat& R0, const oclMat& R1, oclMat& flowx, oclMat &flowy,
|
||||
oclMat& M, oclMat &bufM, int blockSize, bool updateMatrices)
|
||||
{
|
||||
optflow_farneback::boxFilter5Ocl(M, blockSize/2, bufM);
|
||||
|
||||
swap(M, bufM);
|
||||
|
||||
finish();
|
||||
|
||||
optflow_farneback::updateFlowOcl(M, flowx, flowy);
|
||||
|
||||
if (updateMatrices)
|
||||
optflow_farneback::updateMatricesOcl(flowx, flowy, R0, R1, M);
|
||||
}
|
||||
|
||||
|
||||
void cv::ocl::FarnebackOpticalFlow::updateFlow_gaussianBlur(
|
||||
const oclMat& R0, const oclMat& R1, oclMat& flowx, oclMat& flowy,
|
||||
oclMat& M, oclMat &bufM, int blockSize, bool updateMatrices)
|
||||
{
|
||||
optflow_farneback::gaussianBlur5Ocl(M, blockSize/2, bufM);
|
||||
|
||||
swap(M, bufM);
|
||||
|
||||
optflow_farneback::updateFlowOcl(M, flowx, flowy);
|
||||
|
||||
if (updateMatrices)
|
||||
optflow_farneback::updateMatricesOcl(flowx, flowy, R0, R1, M);
|
||||
}
|
||||
|
||||
|
||||
void cv::ocl::FarnebackOpticalFlow::operator ()(
|
||||
const oclMat &frame0, const oclMat &frame1, oclMat &flowx, oclMat &flowy)
|
||||
{
|
||||
CV_Assert(frame0.channels() == 1 && frame1.channels() == 1);
|
||||
CV_Assert(frame0.size() == frame1.size());
|
||||
CV_Assert(polyN == 5 || polyN == 7);
|
||||
CV_Assert(!fastPyramids || std::abs(pyrScale - 0.5) < 1e-6);
|
||||
|
||||
Size size = frame0.size();
|
||||
oclMat prevFlowX, prevFlowY, curFlowX, curFlowY;
|
||||
|
||||
flowx.create(size, CV_32F);
|
||||
flowy.create(size, CV_32F);
|
||||
oclMat flowx0 = flowx;
|
||||
oclMat flowy0 = flowy;
|
||||
|
||||
// Crop unnecessary levels
|
||||
double scale = 1;
|
||||
int numLevelsCropped = 0;
|
||||
for (; numLevelsCropped < numLevels; numLevelsCropped++)
|
||||
{
|
||||
scale *= pyrScale;
|
||||
if (size.width*scale < MIN_SIZE || size.height*scale < MIN_SIZE)
|
||||
break;
|
||||
}
|
||||
|
||||
frame0.convertTo(frames_[0], CV_32F);
|
||||
frame1.convertTo(frames_[1], CV_32F);
|
||||
|
||||
if (fastPyramids)
|
||||
{
|
||||
// Build Gaussian pyramids using pyrDown()
|
||||
pyramid0_.resize(numLevelsCropped + 1);
|
||||
pyramid1_.resize(numLevelsCropped + 1);
|
||||
pyramid0_[0] = frames_[0];
|
||||
pyramid1_[0] = frames_[1];
|
||||
for (int i = 1; i <= numLevelsCropped; ++i)
|
||||
{
|
||||
pyrDown(pyramid0_[i - 1], pyramid0_[i]);
|
||||
pyrDown(pyramid1_[i - 1], pyramid1_[i]);
|
||||
}
|
||||
}
|
||||
|
||||
setPolynomialExpansionConsts(polyN, polySigma);
|
||||
|
||||
for (int k = numLevelsCropped; k >= 0; k--)
|
||||
{
|
||||
scale = 1;
|
||||
for (int i = 0; i < k; i++)
|
||||
scale *= pyrScale;
|
||||
|
||||
double sigma = (1./scale - 1) * 0.5;
|
||||
int smoothSize = cvRound(sigma*5) | 1;
|
||||
smoothSize = std::max(smoothSize, 3);
|
||||
|
||||
int width = cvRound(size.width*scale);
|
||||
int height = cvRound(size.height*scale);
|
||||
|
||||
if (fastPyramids)
|
||||
{
|
||||
width = pyramid0_[k].cols;
|
||||
height = pyramid0_[k].rows;
|
||||
}
|
||||
|
||||
if (k > 0)
|
||||
{
|
||||
curFlowX.create(height, width, CV_32F);
|
||||
curFlowY.create(height, width, CV_32F);
|
||||
}
|
||||
else
|
||||
{
|
||||
curFlowX = flowx0;
|
||||
curFlowY = flowy0;
|
||||
}
|
||||
|
||||
if (!prevFlowX.data)
|
||||
{
|
||||
if (flags & cv::OPTFLOW_USE_INITIAL_FLOW)
|
||||
{
|
||||
resize(flowx0, curFlowX, Size(width, height), 0, 0, INTER_LINEAR);
|
||||
resize(flowy0, curFlowY, Size(width, height), 0, 0, INTER_LINEAR);
|
||||
multiply(scale, curFlowX, curFlowX);
|
||||
multiply(scale, curFlowY, curFlowY);
|
||||
}
|
||||
else
|
||||
{
|
||||
curFlowX.setTo(0);
|
||||
curFlowY.setTo(0);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
resize(prevFlowX, curFlowX, Size(width, height), 0, 0, INTER_LINEAR);
|
||||
resize(prevFlowY, curFlowY, Size(width, height), 0, 0, INTER_LINEAR);
|
||||
multiply(1./pyrScale, curFlowX, curFlowX);
|
||||
multiply(1./pyrScale, curFlowY, curFlowY);
|
||||
}
|
||||
|
||||
oclMat M = allocMatFromBuf(5*height, width, CV_32F, M_);
|
||||
oclMat bufM = allocMatFromBuf(5*height, width, CV_32F, bufM_);
|
||||
oclMat R[2] =
|
||||
{
|
||||
allocMatFromBuf(5*height, width, CV_32F, R_[0]),
|
||||
allocMatFromBuf(5*height, width, CV_32F, R_[1])
|
||||
};
|
||||
|
||||
if (fastPyramids)
|
||||
{
|
||||
optflow_farneback::polynomialExpansionOcl(pyramid0_[k], polyN, R[0]);
|
||||
optflow_farneback::polynomialExpansionOcl(pyramid1_[k], polyN, R[1]);
|
||||
}
|
||||
else
|
||||
{
|
||||
oclMat blurredFrame[2] =
|
||||
{
|
||||
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[0]),
|
||||
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[1])
|
||||
};
|
||||
oclMat pyrLevel[2] =
|
||||
{
|
||||
allocMatFromBuf(height, width, CV_32F, pyrLevel_[0]),
|
||||
allocMatFromBuf(height, width, CV_32F, pyrLevel_[1])
|
||||
};
|
||||
|
||||
Mat g = getGaussianKernel(smoothSize, sigma, CV_32F);
|
||||
optflow_farneback::setGaussianBlurKernel(g.ptr<float>(smoothSize/2), smoothSize/2);
|
||||
|
||||
for (int i = 0; i < 2; i++)
|
||||
{
|
||||
optflow_farneback::gaussianBlurOcl(frames_[i], smoothSize/2, blurredFrame[i]);
|
||||
resize(blurredFrame[i], pyrLevel[i], Size(width, height), INTER_LINEAR);
|
||||
optflow_farneback::polynomialExpansionOcl(pyrLevel[i], polyN, R[i]);
|
||||
}
|
||||
}
|
||||
|
||||
optflow_farneback::updateMatricesOcl(curFlowX, curFlowY, R[0], R[1], M);
|
||||
|
||||
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN)
|
||||
{
|
||||
Mat g = getGaussianKernel(winSize, winSize/2*0.3f, CV_32F);
|
||||
optflow_farneback::setGaussianBlurKernel(g.ptr<float>(winSize/2), winSize/2);
|
||||
}
|
||||
for (int i = 0; i < numIters; i++)
|
||||
{
|
||||
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN)
|
||||
updateFlow_gaussianBlur(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1);
|
||||
else
|
||||
updateFlow_boxFilter(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1);
|
||||
}
|
||||
|
||||
prevFlowX = curFlowX;
|
||||
prevFlowY = curFlowY;
|
||||
}
|
||||
|
||||
flowx = curFlowX;
|
||||
flowy = curFlowY;
|
||||
}
|
@ -272,6 +272,78 @@ TEST_P(Sparse, Mat)
|
||||
INSTANTIATE_TEST_CASE_P(OCL_Video, Sparse, Combine(
|
||||
Values(false, true),
|
||||
Values(false, true)));
|
||||
//////////////////////////////////////////////////////
|
||||
// FarnebackOpticalFlow
|
||||
|
||||
namespace
|
||||
{
|
||||
IMPLEMENT_PARAM_CLASS(PyrScale, double)
|
||||
IMPLEMENT_PARAM_CLASS(PolyN, int)
|
||||
CV_FLAGS(FarnebackOptFlowFlags, 0, OPTFLOW_FARNEBACK_GAUSSIAN)
|
||||
IMPLEMENT_PARAM_CLASS(UseInitFlow, bool)
|
||||
}
|
||||
|
||||
PARAM_TEST_CASE(Farneback, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow)
|
||||
{
|
||||
double pyrScale;
|
||||
int polyN;
|
||||
int flags;
|
||||
bool useInitFlow;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
pyrScale = GET_PARAM(0);
|
||||
polyN = GET_PARAM(1);
|
||||
flags = GET_PARAM(2);
|
||||
useInitFlow = GET_PARAM(3);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(Farneback, Accuracy)
|
||||
{
|
||||
cv::Mat frame0 = imread(workdir + "/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame0.empty());
|
||||
|
||||
cv::Mat frame1 = imread(workdir + "/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame1.empty());
|
||||
|
||||
double polySigma = polyN <= 5 ? 1.1 : 1.5;
|
||||
|
||||
cv::ocl::FarnebackOpticalFlow farn;
|
||||
farn.pyrScale = pyrScale;
|
||||
farn.polyN = polyN;
|
||||
farn.polySigma = polySigma;
|
||||
farn.flags = flags;
|
||||
|
||||
cv::ocl::oclMat d_flowx, d_flowy;
|
||||
farn(oclMat(frame0), oclMat(frame1), d_flowx, d_flowy);
|
||||
|
||||
cv::Mat flow;
|
||||
if (useInitFlow)
|
||||
{
|
||||
cv::Mat flowxy[] = {cv::Mat(d_flowx), cv::Mat(d_flowy)};
|
||||
cv::merge(flowxy, 2, flow);
|
||||
|
||||
farn.flags |= cv::OPTFLOW_USE_INITIAL_FLOW;
|
||||
farn(oclMat(frame0), oclMat(frame1), d_flowx, d_flowy);
|
||||
}
|
||||
|
||||
cv::calcOpticalFlowFarneback(
|
||||
frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize,
|
||||
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
|
||||
|
||||
std::vector<cv::Mat> flowxy;
|
||||
cv::split(flow, flowxy);
|
||||
|
||||
EXPECT_MAT_SIMILAR(flowxy[0], d_flowx, 0.1);
|
||||
EXPECT_MAT_SIMILAR(flowxy[1], d_flowy, 0.1);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(OCL_Video, Farneback, testing::Combine(
|
||||
testing::Values(PyrScale(0.3), PyrScale(0.5), PyrScale(0.8)),
|
||||
testing::Values(PolyN(5), PolyN(7)),
|
||||
testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)),
|
||||
testing::Values(UseInitFlow(false), UseInitFlow(true))));
|
||||
|
||||
#endif // HAVE_OPENCL
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user