mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 01:13:28 +08:00
Merge pull request #11104 from asciian:reading_from_stream
This commit is contained in:
commit
6c4f618db5
@ -644,6 +644,24 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
*/
|
||||
CV_EXPORTS_W Net readNetFromDarknet(const String &cfgFile, const String &darknetModel = String());
|
||||
|
||||
/** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
|
||||
* @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture.
|
||||
* @param bufferModel A buffer contains a content of .weights file with learned network.
|
||||
* @returns Net object.
|
||||
*/
|
||||
CV_EXPORTS_W Net readNetFromDarknet(const std::vector<uchar>& bufferCfg,
|
||||
const std::vector<uchar>& bufferModel = std::vector<uchar>());
|
||||
|
||||
/** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
|
||||
* @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture.
|
||||
* @param lenCfg Number of bytes to read from bufferCfg
|
||||
* @param bufferModel A buffer contains a content of .weights file with learned network.
|
||||
* @param lenModel Number of bytes to read from bufferModel
|
||||
* @returns Net object.
|
||||
*/
|
||||
CV_EXPORTS Net readNetFromDarknet(const char *bufferCfg, size_t lenCfg,
|
||||
const char *bufferModel = NULL, size_t lenModel = 0);
|
||||
|
||||
/** @brief Reads a network model stored in <a href="http://caffe.berkeleyvision.org">Caffe</a> framework's format.
|
||||
* @param prototxt path to the .prototxt file with text description of the network architecture.
|
||||
* @param caffeModel path to the .caffemodel file with learned network.
|
||||
@ -651,6 +669,14 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
*/
|
||||
CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String());
|
||||
|
||||
/** @brief Reads a network model stored in Caffe model in memory.
|
||||
* @param bufferProto buffer containing the content of the .prototxt file
|
||||
* @param bufferModel buffer containing the content of the .caffemodel file
|
||||
* @returns Net object.
|
||||
*/
|
||||
CV_EXPORTS_W Net readNetFromCaffe(const std::vector<uchar>& bufferProto,
|
||||
const std::vector<uchar>& bufferModel = std::vector<uchar>());
|
||||
|
||||
/** @brief Reads a network model stored in Caffe model in memory.
|
||||
* @details This is an overloaded member function, provided for convenience.
|
||||
* It differs from the above function only in what argument(s) it accepts.
|
||||
@ -672,6 +698,14 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
*/
|
||||
CV_EXPORTS_W Net readNetFromTensorflow(const String &model, const String &config = String());
|
||||
|
||||
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
|
||||
* @param bufferModel buffer containing the content of the pb file
|
||||
* @param bufferConfig buffer containing the content of the pbtxt file
|
||||
* @returns Net object.
|
||||
*/
|
||||
CV_EXPORTS_W Net readNetFromTensorflow(const std::vector<uchar>& bufferModel,
|
||||
const std::vector<uchar>& bufferConfig = std::vector<uchar>());
|
||||
|
||||
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
|
||||
* @details This is an overloaded member function, provided for convenience.
|
||||
* It differs from the above function only in what argument(s) it accepts.
|
||||
@ -735,6 +769,18 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
*/
|
||||
CV_EXPORTS_W Net readNet(const String& model, const String& config = "", const String& framework = "");
|
||||
|
||||
/**
|
||||
* @brief Read deep learning network represented in one of the supported formats.
|
||||
* @details This is an overloaded member function, provided for convenience.
|
||||
* It differs from the above function only in what argument(s) it accepts.
|
||||
* @param[in] framework Name of origin framework.
|
||||
* @param[in] bufferModel A buffer with a content of binary file with weights
|
||||
* @param[in] bufferConfig A buffer with a content of text file contains network configuration.
|
||||
* @returns Net object.
|
||||
*/
|
||||
CV_EXPORTS_W Net readNet(const String& framework, const std::vector<uchar>& bufferModel,
|
||||
const std::vector<uchar>& bufferConfig = std::vector<uchar>());
|
||||
|
||||
/** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework.
|
||||
* @warning This function has the same limitations as readNetFromTorch().
|
||||
*/
|
||||
|
@ -1,10 +1,14 @@
|
||||
package org.opencv.test.dnn;
|
||||
|
||||
import java.io.File;
|
||||
import java.io.FileInputStream;
|
||||
import java.io.IOException;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.MatOfFloat;
|
||||
import org.opencv.core.MatOfByte;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.core.Size;
|
||||
import org.opencv.dnn.DictValue;
|
||||
@ -26,6 +30,15 @@ public class DnnTensorFlowTest extends OpenCVTestCase {
|
||||
|
||||
Net net;
|
||||
|
||||
private static void normAssert(Mat ref, Mat test) {
|
||||
final double l1 = 1e-5;
|
||||
final double lInf = 1e-4;
|
||||
double normL1 = Core.norm(ref, test, Core.NORM_L1) / ref.total();
|
||||
double normLInf = Core.norm(ref, test, Core.NORM_INF) / ref.total();
|
||||
assertTrue(normL1 < l1);
|
||||
assertTrue(normLInf < lInf);
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void setUp() throws Exception {
|
||||
super.setUp();
|
||||
@ -46,7 +59,7 @@ public class DnnTensorFlowTest extends OpenCVTestCase {
|
||||
|
||||
File testDataPath = new File(envTestDataPath);
|
||||
|
||||
File f = new File(testDataPath, "dnn/space_shuttle.jpg");
|
||||
File f = new File(testDataPath, "dnn/grace_hopper_227.png");
|
||||
sourceImageFile = f.toString();
|
||||
if(!f.exists()) throw new Exception("Test image is missing: " + sourceImageFile);
|
||||
|
||||
@ -77,31 +90,55 @@ public class DnnTensorFlowTest extends OpenCVTestCase {
|
||||
|
||||
}
|
||||
|
||||
public void testTestNetForward() {
|
||||
Mat rawImage = Imgcodecs.imread(sourceImageFile);
|
||||
public void checkInceptionNet(Net net)
|
||||
{
|
||||
Mat image = Imgcodecs.imread(sourceImageFile);
|
||||
assertNotNull("Loading image from file failed!", image);
|
||||
|
||||
assertNotNull("Loading image from file failed!", rawImage);
|
||||
|
||||
Mat image = new Mat();
|
||||
Imgproc.resize(rawImage, image, new Size(224,224));
|
||||
|
||||
Mat inputBlob = Dnn.blobFromImage(image);
|
||||
Mat inputBlob = Dnn.blobFromImage(image, 1.0, new Size(224, 224), new Scalar(0), true, true);
|
||||
assertNotNull("Converting image to blob failed!", inputBlob);
|
||||
|
||||
Mat inputBlobP = new Mat();
|
||||
Core.subtract(inputBlob, new Scalar(117.0), inputBlobP);
|
||||
|
||||
net.setInput(inputBlobP, "input" );
|
||||
|
||||
Mat result = net.forward();
|
||||
net.setInput(inputBlob, "input");
|
||||
|
||||
Mat result = new Mat();
|
||||
try {
|
||||
net.setPreferableBackend(Dnn.DNN_BACKEND_OPENCV);
|
||||
result = net.forward("softmax2");
|
||||
}
|
||||
catch (Exception e) {
|
||||
fail("DNN forward failed: " + e.getMessage());
|
||||
}
|
||||
assertNotNull("Net returned no result!", result);
|
||||
|
||||
Core.MinMaxLocResult minmax = Core.minMaxLoc(result.reshape(1, 1));
|
||||
result = result.reshape(1, 1);
|
||||
Core.MinMaxLocResult minmax = Core.minMaxLoc(result);
|
||||
assertEquals("Wrong prediction", (int)minmax.maxLoc.x, 866);
|
||||
|
||||
assertTrue("No image recognized!", minmax.maxVal > 0.9);
|
||||
Mat top5RefScores = new MatOfFloat(new float[] {
|
||||
0.63032645f, 0.2561979f, 0.032181446f, 0.015721032f, 0.014785315f
|
||||
}).reshape(1, 1);
|
||||
|
||||
Core.sort(result, result, Core.SORT_DESCENDING);
|
||||
|
||||
normAssert(result.colRange(0, 5), top5RefScores);
|
||||
}
|
||||
|
||||
public void testTestNetForward() {
|
||||
checkInceptionNet(net);
|
||||
}
|
||||
|
||||
public void testReadFromBuffer() {
|
||||
File modelFile = new File(modelFileName);
|
||||
byte[] modelBuffer = new byte[ (int)modelFile.length() ];
|
||||
|
||||
try {
|
||||
FileInputStream fis = new FileInputStream(modelFile);
|
||||
fis.read(modelBuffer);
|
||||
fis.close();
|
||||
} catch (IOException e) {
|
||||
fail("Failed to read a model: " + e.getMessage());
|
||||
}
|
||||
net = Dnn.readNetFromTensorflow(new MatOfByte(modelBuffer));
|
||||
checkInceptionNet(net);
|
||||
}
|
||||
}
|
||||
|
@ -453,6 +453,15 @@ Net readNetFromCaffe(const char *bufferProto, size_t lenProto,
|
||||
return net;
|
||||
}
|
||||
|
||||
Net readNetFromCaffe(const std::vector<uchar>& bufferProto, const std::vector<uchar>& bufferModel)
|
||||
{
|
||||
const char* bufferProtoPtr = reinterpret_cast<const char*>(&bufferProto[0]);
|
||||
const char* bufferModelPtr = bufferModel.empty() ? NULL :
|
||||
reinterpret_cast<const char*>(&bufferModel[0]);
|
||||
return readNetFromCaffe(bufferProtoPtr, bufferProto.size(),
|
||||
bufferModelPtr, bufferModel.size());
|
||||
}
|
||||
|
||||
#endif //HAVE_PROTOBUF
|
||||
|
||||
CV__DNN_EXPERIMENTAL_NS_END
|
||||
|
@ -44,6 +44,7 @@
|
||||
#include "../precomp.hpp"
|
||||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
@ -66,14 +67,19 @@ public:
|
||||
|
||||
DarknetImporter() {}
|
||||
|
||||
DarknetImporter(const char *cfgFile, const char *darknetModel)
|
||||
DarknetImporter(std::istream &cfgStream, std::istream &darknetModelStream)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
ReadNetParamsFromCfgFileOrDie(cfgFile, &net);
|
||||
ReadNetParamsFromCfgStreamOrDie(cfgStream, &net);
|
||||
ReadNetParamsFromBinaryStreamOrDie(darknetModelStream, &net);
|
||||
}
|
||||
|
||||
if (darknetModel && darknetModel[0])
|
||||
ReadNetParamsFromBinaryFileOrDie(darknetModel, &net);
|
||||
DarknetImporter(std::istream &cfgStream)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
ReadNetParamsFromCfgStreamOrDie(cfgStream, &net);
|
||||
}
|
||||
|
||||
struct BlobNote
|
||||
@ -175,15 +181,75 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
Net readNetFromDarknet(const String &cfgFile, const String &darknetModel /*= String()*/)
|
||||
static Net readNetFromDarknet(std::istream &cfgFile, std::istream &darknetModel)
|
||||
{
|
||||
DarknetImporter darknetImporter(cfgFile.c_str(), darknetModel.c_str());
|
||||
Net net;
|
||||
DarknetImporter darknetImporter(cfgFile, darknetModel);
|
||||
darknetImporter.populateNet(net);
|
||||
return net;
|
||||
}
|
||||
|
||||
static Net readNetFromDarknet(std::istream &cfgFile)
|
||||
{
|
||||
Net net;
|
||||
DarknetImporter darknetImporter(cfgFile);
|
||||
darknetImporter.populateNet(net);
|
||||
return net;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
Net readNetFromDarknet(const String &cfgFile, const String &darknetModel /*= String()*/)
|
||||
{
|
||||
std::ifstream cfgStream(cfgFile.c_str());
|
||||
if (!cfgStream.is_open())
|
||||
{
|
||||
CV_Error(cv::Error::StsParseError, "Failed to parse NetParameter file: " + std::string(cfgFile));
|
||||
}
|
||||
if (darknetModel != String())
|
||||
{
|
||||
std::ifstream darknetModelStream(darknetModel.c_str(), std::ios::binary);
|
||||
if (!darknetModelStream.is_open())
|
||||
{
|
||||
CV_Error(cv::Error::StsParseError, "Failed to parse NetParameter file: " + std::string(darknetModel));
|
||||
}
|
||||
return readNetFromDarknet(cfgStream, darknetModelStream);
|
||||
}
|
||||
else
|
||||
return readNetFromDarknet(cfgStream);
|
||||
}
|
||||
|
||||
struct BufferStream : public std::streambuf
|
||||
{
|
||||
BufferStream(const char* s, std::size_t n)
|
||||
{
|
||||
char* ptr = const_cast<char*>(s);
|
||||
setg(ptr, ptr, ptr + n);
|
||||
}
|
||||
};
|
||||
|
||||
Net readNetFromDarknet(const char *bufferCfg, size_t lenCfg, const char *bufferModel, size_t lenModel)
|
||||
{
|
||||
BufferStream cfgBufferStream(bufferCfg, lenCfg);
|
||||
std::istream cfgStream(&cfgBufferStream);
|
||||
if (lenModel)
|
||||
{
|
||||
BufferStream weightsBufferStream(bufferModel, lenModel);
|
||||
std::istream weightsStream(&weightsBufferStream);
|
||||
return readNetFromDarknet(cfgStream, weightsStream);
|
||||
}
|
||||
else
|
||||
return readNetFromDarknet(cfgStream);
|
||||
}
|
||||
|
||||
Net readNetFromDarknet(const std::vector<uchar>& bufferCfg, const std::vector<uchar>& bufferModel)
|
||||
{
|
||||
const char* bufferCfgPtr = reinterpret_cast<const char*>(&bufferCfg[0]);
|
||||
const char* bufferModelPtr = bufferModel.empty() ? NULL :
|
||||
reinterpret_cast<const char*>(&bufferModel[0]);
|
||||
return readNetFromDarknet(bufferCfgPtr, bufferCfg.size(),
|
||||
bufferModelPtr, bufferModel.size());
|
||||
}
|
||||
|
||||
CV__DNN_EXPERIMENTAL_NS_END
|
||||
}} // namespace
|
||||
|
@ -476,68 +476,61 @@ namespace cv {
|
||||
return dst;
|
||||
}
|
||||
|
||||
bool ReadDarknetFromCfgFile(const char *cfgFile, NetParameter *net)
|
||||
bool ReadDarknetFromCfgStream(std::istream &ifile, NetParameter *net)
|
||||
{
|
||||
std::ifstream ifile;
|
||||
ifile.open(cfgFile);
|
||||
if (ifile.is_open())
|
||||
{
|
||||
bool read_net = false;
|
||||
int layers_counter = -1;
|
||||
for (std::string line; std::getline(ifile, line);) {
|
||||
line = escapeString(line);
|
||||
if (line.empty()) continue;
|
||||
switch (line[0]) {
|
||||
case '\0': break;
|
||||
case '#': break;
|
||||
case ';': break;
|
||||
case '[':
|
||||
if (line == "[net]") {
|
||||
read_net = true;
|
||||
}
|
||||
else {
|
||||
// read section
|
||||
read_net = false;
|
||||
++layers_counter;
|
||||
const size_t layer_type_size = line.find("]") - 1;
|
||||
CV_Assert(layer_type_size < line.size());
|
||||
std::string layer_type = line.substr(1, layer_type_size);
|
||||
net->layers_cfg[layers_counter]["type"] = layer_type;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
// read entry
|
||||
const size_t separator_index = line.find('=');
|
||||
CV_Assert(separator_index < line.size());
|
||||
if (separator_index != std::string::npos) {
|
||||
std::string name = line.substr(0, separator_index);
|
||||
std::string value = line.substr(separator_index + 1, line.size() - (separator_index + 1));
|
||||
name = escapeString(name);
|
||||
value = escapeString(value);
|
||||
if (name.empty() || value.empty()) continue;
|
||||
if (read_net)
|
||||
net->net_cfg[name] = value;
|
||||
else
|
||||
net->layers_cfg[layers_counter][name] = value;
|
||||
}
|
||||
bool read_net = false;
|
||||
int layers_counter = -1;
|
||||
for (std::string line; std::getline(ifile, line);) {
|
||||
line = escapeString(line);
|
||||
if (line.empty()) continue;
|
||||
switch (line[0]) {
|
||||
case '\0': break;
|
||||
case '#': break;
|
||||
case ';': break;
|
||||
case '[':
|
||||
if (line == "[net]") {
|
||||
read_net = true;
|
||||
}
|
||||
else {
|
||||
// read section
|
||||
read_net = false;
|
||||
++layers_counter;
|
||||
const size_t layer_type_size = line.find("]") - 1;
|
||||
CV_Assert(layer_type_size < line.size());
|
||||
std::string layer_type = line.substr(1, layer_type_size);
|
||||
net->layers_cfg[layers_counter]["type"] = layer_type;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
// read entry
|
||||
const size_t separator_index = line.find('=');
|
||||
CV_Assert(separator_index < line.size());
|
||||
if (separator_index != std::string::npos) {
|
||||
std::string name = line.substr(0, separator_index);
|
||||
std::string value = line.substr(separator_index + 1, line.size() - (separator_index + 1));
|
||||
name = escapeString(name);
|
||||
value = escapeString(value);
|
||||
if (name.empty() || value.empty()) continue;
|
||||
if (read_net)
|
||||
net->net_cfg[name] = value;
|
||||
else
|
||||
net->layers_cfg[layers_counter][name] = value;
|
||||
}
|
||||
}
|
||||
|
||||
std::string anchors = net->layers_cfg[net->layers_cfg.size() - 1]["anchors"];
|
||||
std::vector<float> vec = getNumbers<float>(anchors);
|
||||
std::map<std::string, std::string> &net_params = net->net_cfg;
|
||||
net->width = getParam(net_params, "width", 416);
|
||||
net->height = getParam(net_params, "height", 416);
|
||||
net->channels = getParam(net_params, "channels", 3);
|
||||
CV_Assert(net->width > 0 && net->height > 0 && net->channels > 0);
|
||||
}
|
||||
else
|
||||
return false;
|
||||
|
||||
std::string anchors = net->layers_cfg[net->layers_cfg.size() - 1]["anchors"];
|
||||
std::vector<float> vec = getNumbers<float>(anchors);
|
||||
std::map<std::string, std::string> &net_params = net->net_cfg;
|
||||
net->width = getParam(net_params, "width", 416);
|
||||
net->height = getParam(net_params, "height", 416);
|
||||
net->channels = getParam(net_params, "channels", 3);
|
||||
CV_Assert(net->width > 0 && net->height > 0 && net->channels > 0);
|
||||
|
||||
int current_channels = net->channels;
|
||||
net->out_channels_vec.resize(net->layers_cfg.size());
|
||||
|
||||
int layers_counter = -1;
|
||||
layers_counter = -1;
|
||||
|
||||
setLayersParams setParams(net);
|
||||
|
||||
@ -676,13 +669,8 @@ namespace cv {
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool ReadDarknetFromWeightsFile(const char *darknetModel, NetParameter *net)
|
||||
bool ReadDarknetFromWeightsStream(std::istream &ifile, NetParameter *net)
|
||||
{
|
||||
std::ifstream ifile;
|
||||
ifile.open(darknetModel, std::ios::binary);
|
||||
CV_Assert(ifile.is_open());
|
||||
|
||||
int32_t major_ver, minor_ver, revision;
|
||||
ifile.read(reinterpret_cast<char *>(&major_ver), sizeof(int32_t));
|
||||
ifile.read(reinterpret_cast<char *>(&minor_ver), sizeof(int32_t));
|
||||
@ -778,19 +766,18 @@ namespace cv {
|
||||
}
|
||||
|
||||
|
||||
void ReadNetParamsFromCfgFileOrDie(const char *cfgFile, darknet::NetParameter *net)
|
||||
void ReadNetParamsFromCfgStreamOrDie(std::istream &ifile, darknet::NetParameter *net)
|
||||
{
|
||||
if (!darknet::ReadDarknetFromCfgFile(cfgFile, net)) {
|
||||
CV_Error(cv::Error::StsParseError, "Failed to parse NetParameter file: " + std::string(cfgFile));
|
||||
if (!darknet::ReadDarknetFromCfgStream(ifile, net)) {
|
||||
CV_Error(cv::Error::StsParseError, "Failed to parse NetParameter stream");
|
||||
}
|
||||
}
|
||||
|
||||
void ReadNetParamsFromBinaryFileOrDie(const char *darknetModel, darknet::NetParameter *net)
|
||||
void ReadNetParamsFromBinaryStreamOrDie(std::istream &ifile, darknet::NetParameter *net)
|
||||
{
|
||||
if (!darknet::ReadDarknetFromWeightsFile(darknetModel, net)) {
|
||||
CV_Error(cv::Error::StsParseError, "Failed to parse NetParameter file: " + std::string(darknetModel));
|
||||
if (!darknet::ReadDarknetFromWeightsStream(ifile, net)) {
|
||||
CV_Error(cv::Error::StsParseError, "Failed to parse NetParameter stream");
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
@ -109,10 +109,9 @@ namespace cv {
|
||||
};
|
||||
}
|
||||
|
||||
// Read parameters from a file into a NetParameter message.
|
||||
void ReadNetParamsFromCfgFileOrDie(const char *cfgFile, darknet::NetParameter *net);
|
||||
void ReadNetParamsFromBinaryFileOrDie(const char *darknetModel, darknet::NetParameter *net);
|
||||
|
||||
// Read parameters from a stream into a NetParameter message.
|
||||
void ReadNetParamsFromCfgStreamOrDie(std::istream &ifile, darknet::NetParameter *net);
|
||||
void ReadNetParamsFromBinaryStreamOrDie(std::istream &ifile, darknet::NetParameter *net);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
@ -3126,6 +3126,23 @@ Net readNet(const String& _model, const String& _config, const String& _framewor
|
||||
model + (config.empty() ? "" : ", " + config));
|
||||
}
|
||||
|
||||
Net readNet(const String& _framework, const std::vector<uchar>& bufferModel,
|
||||
const std::vector<uchar>& bufferConfig)
|
||||
{
|
||||
String framework = _framework.toLowerCase();
|
||||
if (framework == "caffe")
|
||||
return readNetFromCaffe(bufferConfig, bufferModel);
|
||||
else if (framework == "tensorflow")
|
||||
return readNetFromTensorflow(bufferModel, bufferConfig);
|
||||
else if (framework == "darknet")
|
||||
return readNetFromDarknet(bufferConfig, bufferModel);
|
||||
else if (framework == "torch")
|
||||
CV_Error(Error::StsNotImplemented, "Reading Torch models from buffers");
|
||||
else if (framework == "dldt")
|
||||
CV_Error(Error::StsNotImplemented, "Reading Intel's Model Optimizer models from buffers");
|
||||
CV_Error(Error::StsError, "Cannot determine an origin framework with a name " + framework);
|
||||
}
|
||||
|
||||
Net readNetFromModelOptimizer(const String &xml, const String &bin)
|
||||
{
|
||||
return Net::readFromModelOptimizer(xml, bin);
|
||||
|
@ -1856,5 +1856,14 @@ Net readNetFromTensorflow(const char* bufferModel, size_t lenModel,
|
||||
return net;
|
||||
}
|
||||
|
||||
Net readNetFromTensorflow(const std::vector<uchar>& bufferModel, const std::vector<uchar>& bufferConfig)
|
||||
{
|
||||
const char* bufferModelPtr = reinterpret_cast<const char*>(&bufferModel[0]);
|
||||
const char* bufferConfigPtr = bufferConfig.empty() ? NULL :
|
||||
reinterpret_cast<const char*>(&bufferConfig[0]);
|
||||
return readNetFromTensorflow(bufferModelPtr, bufferModel.size(),
|
||||
bufferConfigPtr, bufferConfig.size());
|
||||
}
|
||||
|
||||
CV__DNN_EXPERIMENTAL_NS_END
|
||||
}} // namespace
|
||||
|
@ -65,6 +65,34 @@ TEST(Test_Darknet, read_yolo_voc)
|
||||
ASSERT_FALSE(net.empty());
|
||||
}
|
||||
|
||||
TEST(Test_Darknet, read_yolo_voc_stream)
|
||||
{
|
||||
Mat ref;
|
||||
Mat sample = imread(_tf("dog416.png"));
|
||||
Mat inp = blobFromImage(sample, 1.0/255, Size(416, 416), Scalar(), true, false);
|
||||
const std::string cfgFile = findDataFile("dnn/yolo-voc.cfg", false);
|
||||
const std::string weightsFile = findDataFile("dnn/yolo-voc.weights", false);
|
||||
// Import by paths.
|
||||
{
|
||||
Net net = readNetFromDarknet(cfgFile, weightsFile);
|
||||
net.setInput(inp);
|
||||
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
||||
ref = net.forward();
|
||||
}
|
||||
// Import from bytes array.
|
||||
{
|
||||
std::string cfg, weights;
|
||||
readFileInMemory(cfgFile, cfg);
|
||||
readFileInMemory(weightsFile, weights);
|
||||
|
||||
Net net = readNetFromDarknet(&cfg[0], cfg.size(), &weights[0], weights.size());
|
||||
net.setInput(inp);
|
||||
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
||||
Mat out = net.forward();
|
||||
normAssert(ref, out);
|
||||
}
|
||||
}
|
||||
|
||||
class Test_Darknet_layers : public DNNTestLayer
|
||||
{
|
||||
public:
|
||||
|
Loading…
Reference in New Issue
Block a user