tegra integration

This commit is contained in:
Marina Kolpakova 2012-05-30 15:56:53 +00:00
parent bf27889f04
commit 6d498495d3

View File

@ -47,7 +47,7 @@
// */
#include "precomp.hpp"
namespace cv
{
@ -349,7 +349,7 @@ struct VResizeLinearVec_32s8u
{
if( !checkHardwareSupport(CV_CPU_SSE2) )
return 0;
const int** src = (const int**)_src;
const short* beta = (const short*)_beta;
const int *S0 = src[0], *S1 = src[1];
@ -432,7 +432,7 @@ template<int shiftval> struct VResizeLinearVec_32f16
{
if( !checkHardwareSupport(CV_CPU_SSE2) )
return 0;
const float** src = (const float**)_src;
const float* beta = (const float*)_beta;
const float *S0 = src[0], *S1 = src[1];
@ -522,7 +522,7 @@ template<int shiftval> struct VResizeLinearVec_32f16
};
typedef VResizeLinearVec_32f16<SHRT_MIN> VResizeLinearVec_32f16u;
typedef VResizeLinearVec_32f16<0> VResizeLinearVec_32f16s;
typedef VResizeLinearVec_32f16<0> VResizeLinearVec_32f16s;
struct VResizeLinearVec_32f
{
@ -530,7 +530,7 @@ struct VResizeLinearVec_32f
{
if( !checkHardwareSupport(CV_CPU_SSE) )
return 0;
const float** src = (const float**)_src;
const float* beta = (const float*)_beta;
const float *S0 = src[0], *S1 = src[1];
@ -581,7 +581,7 @@ struct VResizeCubicVec_32s8u
{
if( !checkHardwareSupport(CV_CPU_SSE2) )
return 0;
const int** src = (const int**)_src;
const short* beta = (const short*)_beta;
const int *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3];
@ -676,7 +676,7 @@ template<int shiftval> struct VResizeCubicVec_32f16
{
if( !checkHardwareSupport(CV_CPU_SSE2) )
return 0;
const float** src = (const float**)_src;
const float* beta = (const float*)_beta;
const float *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3];
@ -729,7 +729,7 @@ template<int shiftval> struct VResizeCubicVec_32f16
};
typedef VResizeCubicVec_32f16<SHRT_MIN> VResizeCubicVec_32f16u;
typedef VResizeCubicVec_32f16<0> VResizeCubicVec_32f16s;
typedef VResizeCubicVec_32f16<0> VResizeCubicVec_32f16s;
struct VResizeCubicVec_32f
{
@ -737,7 +737,7 @@ struct VResizeCubicVec_32f
{
if( !checkHardwareSupport(CV_CPU_SSE) )
return 0;
const float** src = (const float**)_src;
const float* beta = (const float*)_beta;
const float *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3];
@ -795,17 +795,17 @@ typedef HResizeNoVec HResizeLinearVec_8u32s;
typedef HResizeNoVec HResizeLinearVec_16u32f;
typedef HResizeNoVec HResizeLinearVec_16s32f;
typedef HResizeNoVec HResizeLinearVec_32f;
typedef VResizeNoVec VResizeLinearVec_32s8u;
typedef VResizeNoVec VResizeLinearVec_32f16u;
typedef VResizeNoVec VResizeLinearVec_32f16s;
typedef VResizeNoVec VResizeLinearVec_32f;
typedef VResizeNoVec VResizeCubicVec_32s8u;
typedef VResizeNoVec VResizeCubicVec_32f16u;
typedef VResizeNoVec VResizeCubicVec_32f16s;
typedef VResizeNoVec VResizeCubicVec_32f;
#endif
@ -869,7 +869,7 @@ struct VResizeLinear
typedef T value_type;
typedef WT buf_type;
typedef AT alpha_type;
void operator()(const WT** src, T* dst, const AT* beta, int width ) const
{
WT b0 = beta[0], b1 = beta[1];
@ -1035,7 +1035,7 @@ struct VResizeLanczos4
CastOp castOp;
VecOp vecOp;
int k, x = vecOp((const uchar**)src, (uchar*)dst, (const uchar*)beta, width);
#if CV_ENABLE_UNROLLED
#if CV_ENABLE_UNROLLED
for( ; x <= width - 4; x += 4 )
{
WT b = beta[0];
@ -1144,7 +1144,7 @@ static void resizeAreaFast_( const Mat& src, Mat& dst, const int* ofs, const int
int dy, dx, k = 0;
int area = scale_x*scale_y;
float scale = 1.f/(scale_x*scale_y);
int dwidth1 = (ssize.width/scale_x)*cn;
int dwidth1 = (ssize.width/scale_x)*cn;
dsize.width *= cn;
ssize.width *= cn;
@ -1158,7 +1158,7 @@ static void resizeAreaFast_( const Mat& src, Mat& dst, const int* ofs, const int
D[dx] = 0;
continue;
}
for( dx = 0; dx < w; dx++ )
{
const T* S = (const T*)(src.data + src.step*sy0) + xofs[dx];
@ -1173,14 +1173,14 @@ static void resizeAreaFast_( const Mat& src, Mat& dst, const int* ofs, const int
D[dx] = saturate_cast<T>(sum*scale);
}
for( ; dx < dsize.width; dx++ )
{
WT sum = 0;
int count = 0, sx0 = xofs[dx];
if( sx0 >= ssize.width )
D[dx] = 0;
for( int sy = 0; sy < scale_y; sy++ )
{
if( sy0 + sy >= ssize.height )
@ -1194,7 +1194,7 @@ static void resizeAreaFast_( const Mat& src, Mat& dst, const int* ofs, const int
count++;
}
}
D[dx] = saturate_cast<T>((float)sum/count);
}
}
@ -1318,7 +1318,7 @@ typedef void (*ResizeAreaFunc)( const Mat& src, Mat& dst,
const DecimateAlpha* xofs, int xofs_count );
}
//////////////////////////////////////////////////////////////////////////////////////////
void cv::resize( InputArray _src, OutputArray _dst, Size dsize,
@ -1428,7 +1428,7 @@ void cv::resize( InputArray _src, OutputArray _dst, Size dsize,
Mat src = _src.getMat();
Size ssize = src.size();
CV_Assert( ssize.area() > 0 );
CV_Assert( !(dsize == Size()) || (inv_scale_x > 0 && inv_scale_y > 0) );
if( dsize == Size() )
@ -2310,7 +2310,7 @@ static void remapLanczos4( const Mat& _src, Mat& _dst, const Mat& _xy,
int dx, dy;
CastOp castOp;
int borderType1 = borderType != BORDER_TRANSPARENT ? borderType : BORDER_REFLECT_101;
unsigned width1 = std::max(ssize.width-7, 0), height1 = std::max(ssize.height-7, 0);
if( _dst.isContinuous() && _xy.isContinuous() && _fxy.isContinuous() )
@ -2410,7 +2410,7 @@ typedef void (*RemapFunc)(const Mat& _src, Mat& _dst, const Mat& _xy,
int borderType, const Scalar& _borderValue);
}
void cv::remap( InputArray _src, OutputArray _dst,
InputArray _map1, InputArray _map2,
int interpolation, int borderType, const Scalar& borderValue )
@ -2449,9 +2449,9 @@ void cv::remap( InputArray _src, OutputArray _dst,
};
Mat src = _src.getMat(), map1 = _map1.getMat(), map2 = _map2.getMat();
CV_Assert( (!map2.data || map2.size() == map1.size()));
_dst.create( map1.size(), src.type() );
Mat dst = _dst.getMat();
if( dst.data == src.data )
@ -2703,7 +2703,7 @@ void cv::convertMaps( InputArray _map1, InputArray _map2,
CV_Assert( dstm1type == CV_16SC2 || dstm1type == CV_32FC1 || dstm1type == CV_32FC2 );
_dstmap1.create( size, dstm1type );
dstmap1 = _dstmap1.getMat();
if( !nninterpolate && dstm1type != CV_32FC2 )
{
_dstmap2.create( size, dstm1type == CV_16SC2 ? CV_16UC1 : CV_32FC1 );
@ -2852,8 +2852,19 @@ void cv::warpAffine( InputArray _src, OutputArray _dst,
}
#ifdef HAVE_TEGRA_OPTIMIZATION
if( tegra::warpAffine(src, dst, M, interpolation, borderType, borderValue) )
if (borderType == BORDER_REPLICATE)
{
if( tegra::warpAffine(src, dst, M, interpolation, borderType, borderValue) )
return;
}
else
{
double warp_mat[6];
Mat warp_m(2, 3, CV_64F, warp_mat);
M0.convertTo(warp_m, warp_m.type());
if( tegra::warpAffine(src, dst, warp_mat, interpolation, borderType, borderValue) )
return;
}
#endif
int x, y, x1, y1, width = dst.cols, height = dst.rows;
@ -2968,7 +2979,7 @@ void cv::warpPerspective( InputArray _src, OutputArray _dst, InputArray _M0,
Mat src = _src.getMat(), M0 = _M0.getMat();
_dst.create( dsize.area() == 0 ? src.size() : dsize, src.type() );
Mat dst = _dst.getMat();
CV_Assert( src.cols > 0 && src.rows > 0 );
if( dst.data == src.data )
src = src.clone();
@ -3024,7 +3035,7 @@ void cv::warpPerspective( InputArray _src, OutputArray _dst, InputArray _M0,
double fY = std::max((double)INT_MIN, std::min((double)INT_MAX, (Y0 + M[3]*x1)*W));
int X = saturate_cast<int>(fX);
int Y = saturate_cast<int>(fY);
xy[x1*2] = saturate_cast<short>(X);
xy[x1*2+1] = saturate_cast<short>(Y);
}
@ -3039,7 +3050,7 @@ void cv::warpPerspective( InputArray _src, OutputArray _dst, InputArray _M0,
double fY = std::max((double)INT_MIN, std::min((double)INT_MAX, (Y0 + M[3]*x1)*W));
int X = saturate_cast<int>(fX);
int Y = saturate_cast<int>(fY);
xy[x1*2] = saturate_cast<short>(X >> INTER_BITS);
xy[x1*2+1] = saturate_cast<short>(Y >> INTER_BITS);
alpha[x1] = (short)((Y & (INTER_TAB_SIZE-1))*INTER_TAB_SIZE +
@ -3171,26 +3182,26 @@ cv::Mat cv::getAffineTransform( const Point2f src[], const Point2f dst[] )
solve( A, B, X );
return M;
}
void cv::invertAffineTransform(InputArray _matM, OutputArray __iM)
{
Mat matM = _matM.getMat();
CV_Assert(matM.rows == 2 && matM.cols == 3);
__iM.create(2, 3, matM.type());
Mat _iM = __iM.getMat();
if( matM.type() == CV_32F )
{
const float* M = (const float*)matM.data;
float* iM = (float*)_iM.data;
int step = (int)(matM.step/sizeof(M[0])), istep = (int)(_iM.step/sizeof(iM[0]));
double D = M[0]*M[step+1] - M[1]*M[step];
D = D != 0 ? 1./D : 0;
double A11 = M[step+1]*D, A22 = M[0]*D, A12 = -M[1]*D, A21 = -M[step]*D;
double b1 = -A11*M[2] - A12*M[step+2];
double b2 = -A21*M[2] - A22*M[step+2];
iM[0] = (float)A11; iM[1] = (float)A12; iM[2] = (float)b1;
iM[istep] = (float)A21; iM[istep+1] = (float)A22; iM[istep+2] = (float)b2;
}
@ -3199,19 +3210,19 @@ void cv::invertAffineTransform(InputArray _matM, OutputArray __iM)
const double* M = (const double*)matM.data;
double* iM = (double*)_iM.data;
int step = (int)(matM.step/sizeof(M[0])), istep = (int)(_iM.step/sizeof(iM[0]));
double D = M[0]*M[step+1] - M[1]*M[step];
D = D != 0 ? 1./D : 0;
double A11 = M[step+1]*D, A22 = M[0]*D, A12 = -M[1]*D, A21 = -M[step]*D;
double b1 = -A11*M[2] - A12*M[step+2];
double b2 = -A21*M[2] - A22*M[step+2];
iM[0] = A11; iM[1] = A12; iM[2] = b1;
iM[istep] = A21; iM[istep+1] = A22; iM[istep+2] = b2;
}
else
CV_Error( CV_StsUnsupportedFormat, "" );
}
}
cv::Mat cv::getPerspectiveTransform(InputArray _src, InputArray _dst)
{