cpu + ocl resize onnx done

- rebase to 4.x
- squash commit history due to so many conflicts
This commit is contained in:
Ginkgo 2024-06-01 16:04:36 +08:00
parent 3282954c2e
commit 6dd93a82ed
6 changed files with 2302 additions and 20 deletions

View File

@ -245,7 +245,7 @@ enum MorphShapes {
//! @{
//! interpolation algorithm
enum InterpolationFlags{
enum InterpolationFlags {
/** nearest neighbor interpolation */
INTER_NEAREST = 0,
/** bilinear interpolation */
@ -278,6 +278,55 @@ enum InterpolationFlags{
WARP_RELATIVE_MAP = 32
};
//! ONNX Resize Flags
enum ResizeONNXFlags
{
// static_assert((1 << INTER_COORDINATE_SHIFT) > INTER_MAX, "");
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Resize
INTER_SAMPLER_SHIFT = 0,
INTER_SAMPLER_BIT = 4,
INTER_SAMPLER_MASK = ((1 << INTER_SAMPLER_BIT) - 1) << INTER_SAMPLER_SHIFT,
INTER_COORDINATE_SHIFT = 4,
INTER_COORDINATE_BIT = 3,
INTER_COORDINATE_MASK = ((1 << INTER_COORDINATE_BIT) - 1) << INTER_COORDINATE_SHIFT,
/** x_original = (x_resized + 0.5) / scale - 0.5 */
INTER_HALF_PIXEL = 0 << INTER_COORDINATE_SHIFT,
/** adjustment = output_width_int / output_width
center = input_width / 2
offset = center * (1 - adjustment)
x_ori = offset + (x + 0.5) / scale - 0.5 */
INTER_HALF_PIXEL_SYMMETRIC = 1 << INTER_COORDINATE_SHIFT,
/** x_original = length_resized > 1 ? (x_resized + 0.5) / scale - 0.5 : 0 */
INTER_HALF_PIXEL_PYTORCH = 2 << INTER_COORDINATE_SHIFT,
/** x_original = x_resized * (length_original - 1) / (length_resized - 1) */
INTER_ALIGN_CORNERS = 3 << INTER_COORDINATE_SHIFT,
/** x_original = x_resized / scale */
INTER_ASYMMETRIC = 4 << INTER_COORDINATE_SHIFT,
/** x_original = length_resized > 1
* ? start_x * (length_original - 1) + x_resized * (end_x - start_x) * (length_original - 1) / (length_resized - 1)
* : 0.5 * (start_x + end_x) * (length_original - 1) */
INTER_TF_CROP_RESIZE = 5 << INTER_COORDINATE_SHIFT,
INTER_NEAREST_MODE_SHIFT = INTER_COORDINATE_SHIFT + INTER_COORDINATE_BIT,
INTER_NEAREST_MODE_BIT = 2,
INTER_NEAREST_MODE_MASK = ((1 << INTER_NEAREST_MODE_BIT) - 1) << INTER_NEAREST_MODE_SHIFT,
/** round half down: x = ceil(x - 0.5) */
INTER_NEAREST_PREFER_FLOOR = 0 << INTER_NEAREST_MODE_SHIFT,
/** round half up : x = floor(x + 0.5) */
INTER_NEAREST_PREFER_CEIL = 1 << INTER_NEAREST_MODE_SHIFT,
/** x = floor(x) */
INTER_NEAREST_FLOOR = 2 << INTER_NEAREST_MODE_SHIFT,
/** x = ceil(x) */
INTER_NEAREST_CEIL = 3 << INTER_NEAREST_MODE_SHIFT,
INTER_ANTIALIAS_SHIFT = INTER_NEAREST_MODE_SHIFT + INTER_NEAREST_MODE_BIT,
INTER_ANTIALIAS_BIT = 1,
INTER_ANTIALIAS_MASK = ((1 << INTER_ANTIALIAS_BIT) - 1) << INTER_ANTIALIAS_SHIFT,
INTER_ANTIALIAS = 1 << INTER_ANTIALIAS_SHIFT,
};
/** \brief Specify the polar mapping mode
@sa warpPolar
*/
@ -288,11 +337,11 @@ enum WarpPolarMode
};
enum InterpolationMasks {
INTER_BITS = 5,
INTER_BITS2 = INTER_BITS * 2,
INTER_TAB_SIZE = 1 << INTER_BITS,
INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE
};
INTER_BITS = 5,
INTER_BITS2 = INTER_BITS * 2,
INTER_TAB_SIZE = 1 << INTER_BITS,
INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE
};
//! @} imgproc_transform
@ -2418,6 +2467,34 @@ CV_EXPORTS_W void resize( InputArray src, OutputArray dst,
Size dsize, double fx = 0, double fy = 0,
int interpolation = INTER_LINEAR );
/** @brief onnx resize op
https://github.com/onnx/onnx/blob/main/docs/Operators.md#Resize
https://github.com/onnx/onnx/blob/main/onnx/reference/ops/op_resize.py
Not support `exclude_outside` and `extrapolation_value` yet.
To get a similar result to resize, give dsize and:
INTER_NEAREST : ASYMMETRIC + NEAREST_FLOOR
INTER_LINEAR : HALF_PIXEL
INTER_CUBIC : HALF_PIXEL + cubicCoeff(-0.75)
@param src input image.
@param dst output image; it has the size dsize (when it is non-zero) or the size computed from src.size(), scale; the type of dst is the same as of src.
@param dsize output image size; if it equals to zero, it is computed as:
\f[\texttt{dsize = Size(int(scale.x * src.cols), int(scale.y * src.rows))}\f]
Either dsize or scale must be non-zero.
@param scale scale factor; use same definition as ONNX, if scale > 1, it's upsampling.
@param interpolation interpolation / coordiante, see #InterpolationFlags and #ResizeONNXFlags
@param cubicCoeff cubic sampling coeff; range \f[[-1.0, 0)\f]
@param roi crop region; if provided, the rois' coordinates are normalized in the coordinate system of the input image; it only takes effect with INTER_TF_CROP_RESIZE (ONNX tf_crop_and_resize)
@sa resize
*/
CV_EXPORTS_W void resizeOnnx(
InputArray src, OutputArray dst, Size dsize, Point2d scale = Point2d(),
int interpolation = INTER_LINEAR | INTER_HALF_PIXEL,
float cubicCoeff = -0.75f, Rect2d const& roi = Rect2d());
/** @brief Applies an affine transformation to an image.
The function warpAffine transforms the source image using the specified matrix:

View File

@ -0,0 +1,360 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifdef DOUBLE_SUPPORT
# ifdef cl_amd_fp64
# pragma OPENCL EXTENSION cl_amd_fp64:enable
# elif defined (cl_khr_fp64)
# pragma OPENCL EXTENSION cl_khr_fp64:enable
# endif
#endif
#define noconvert(x) (x)
#ifndef T
# define INTER_NEAREST1
# define INTER_LINEAR1
# define INTER_CUBIC
# define INTER_ANTIALIAS1
# define T int
# define W double
# define CN 3
# define PIXEL_SIZE 12
# define VT int3
# define VW double3
# define TO_WORK convert_double
# define TO_VEC_WORK convert_double3
# define TO_TYPE convert_int_sat_rte
# define TO_VEC_TYPE convert_int3_sat_rte
#endif
// use parameter `channel' to reduce the number of kernels
#if CN != 3
# define loadpix(addr) *(__global const VT*)(addr)
# define storepix(val, addr) *(__global VT*)(addr) = val
#else
# define loadpix(addr) vload3(0, (__global const T*)(addr))
# define storepix(val, addr) vstore3(val, 0, (__global T*)(addr))
#endif
#if defined(INTER_NEAREST)
__kernel void resizeOnnx_nearest(
__global uchar const* srcptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
int pixel_size, float offset, float m00, float m01, float m10, float m11)
{
int dx = get_global_id(0);
int dy = get_global_id(1);
if (dx < dst_cols && dy < dst_rows)
{
float fx = fma(dx, m00 , m01), fy = fma(dy, m10, m11);
#if defined(INTER_NEAREST_PREFER_FLOOR) || defined(INTER_NEAREST_CEIL)
// x, y will >= 0, so `round toward positive infinity' is equivalent to ceil
int sx = convert_int_rtp(fx + offset);
int sy = convert_int_rtp(fy + offset);
#else
// x, y will >= 0, so `round toward negative infinity' is equivalent to floor
int sx = convert_int_rtn(fx + offset);
int sy = convert_int_rtn(fy + offset);
#endif
sx = clamp(sx, 0, src_cols - 1);
sy = clamp(sy, 0, src_rows - 1);
// maybe step >= 8M, so do not use `mad24' for y
__global uchar const* S = srcptr + (sy * src_step + mad24(sx, pixel_size, src_offset));
__global uchar * D = dstptr + (dy * dst_step + mad24(dx, pixel_size, dst_offset));
#if PIXEL_SIZE == 1
*D = *S;
#elif PIXEL_SIZE == 2 || PIXEL_SIZE == 4 || PIXEL_SIZE == 8 || PIXEL_SIZE == 16
*(__global VT*)(D) = *(__global const VT*)(S);
#elif PIXEL_SIZE == 3
vstore3(vload3(0, S), 0, D);
#elif PIXEL_SIZE == 6
vstore3(vload3(0, (__global ushort const*)(S)), 0, (__global ushort*)(D));
#elif PIXEL_SIZE == 12
vstore3(vload3(0, (__global const uint*)(S)), 0, (__global uint*)(D));
#elif PIXEL_SIZE == 24
vstore3(vload3(0, (__global ulong const*)(S)), 0, (__global ulong*)(D));
#elif PIXEL_SIZE == 32
*(__global uint8*)(D) = *(__global uint8 const*)(S);
#elif PIXEL_SIZE == 64
*(__global uint16*)(D) = *(__global uint16 const*)(S);
#elif PIXEL_SIZE == 128
*(__global ulong16*)(D) = *(__global ulong16 const*)(S);
#else
for (int i = 0; i < pixel_size; ++i)
D[i] = S[i];
#endif
}
}
#elif defined(INTER_LINEAR) && !defined(INTER_ANTIALIAS)
__kernel void resizeOnnx_linear(
__global uchar const* srcptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
int pixel_size, int channel, float m00, float m01, float m10, float m11)
{
int dx = get_global_id(0);
int dy = get_global_id(1);
if (dx < dst_cols && dy < dst_rows)
{
float fx = fma(dx, m00, m01), fy = fma(dy, m10, m11);
int ix = convert_int_rtn(fx), iy = convert_int_rtn(fy);
float u1 = fx - ix, v1 = fy - iy;
float u0 = 1.f - u1, v0 = 1.f - v1;
int x0 = max(ix, 0);
int y0 = max(iy, 0);
int x1 = min(ix + 1, src_cols - 1);
int y1 = min(iy + 1, src_rows - 1);
__global uchar const* S0 = srcptr + (y0 * src_step + mad24(x0, pixel_size, src_offset));
__global uchar const* S1 = srcptr + (y0 * src_step + mad24(x1, pixel_size, src_offset));
__global uchar const* S2 = srcptr + (y1 * src_step + mad24(x0, pixel_size, src_offset));
__global uchar const* S3 = srcptr + (y1 * src_step + mad24(x1, pixel_size, src_offset));
__global uchar * D = dstptr + (dy * dst_step + mad24(dx, pixel_size, dst_offset));
#if CN == 1 || CN == 2 || CN == 3 || CN == 4 || CN == 8 || CN == 16
VW s0 = TO_VEC_WORK(loadpix(S0)); VW s1 = TO_VEC_WORK(loadpix(S1));
VW s2 = TO_VEC_WORK(loadpix(S2)); VW s3 = TO_VEC_WORK(loadpix(S3));
VT d0 = TO_VEC_TYPE((u0 * v0) * s0 + (u1 * v0) * s1 + (u0 * v1) * s2 + (u1 * v1) * s3);
storepix(d0, D);
#else
for (int i = 0; i < channel; ++i)
{
W s0 = TO_WORK(((__global T const*)(S0))[i]);
W s1 = TO_WORK(((__global T const*)(S1))[i]);
W s2 = TO_WORK(((__global T const*)(S2))[i]);
W s3 = TO_WORK(((__global T const*)(S3))[i]);
W d0 = (u0 * v0) * s0 + (u1 * v0) * s1 + (u0 * v1) * s2 + (u1 * v1) * s3;
((__global T*)(D))[i] = TO_TYPE(d0);
}
#endif
}
}
#elif defined(INTER_LINEAR) && defined(INTER_ANTIALIAS)
__kernel void resizeOnnx_linear_antialias(
__global uchar const* srcptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
int pixel_size, int channel, float m00, float m01, float m10, float m11,
float xscale, float yscale)
{
int dx = get_global_id(0);
int dy = get_global_id(1);
if (dx < dst_cols && dy < dst_rows)
{
int xstart = convert_int_rtn(-1.f / xscale) + 1;
int xend = 2 - xstart;
int ystart = convert_int_rtn(-1.f / yscale) + 1;
int yend = 2 - ystart;
float fx = fma(dx, m00, m01), fy = fma(dy, m10, m11);
int ix = convert_int_rtn(fx), iy = convert_int_rtn(fy);
float rx = fx - ix, ry = fy - iy;
__global uchar* D = dstptr + dy * dst_step + mad24(dx, pixel_size, dst_offset);
#if CN == 1 || CN == 2 || CN == 3 || CN == 4 || CN == 8 || CN == 16
VW sumval = (VW)(0);
float weight = 0;
for (int h = ystart; h < yend; ++h)
{
VW sline = (VW)(0);
float wline = 0;
int sy = clamp(iy + h, 0, src_rows - 1);
__global uchar const* S = srcptr + sy * src_step + src_offset;
for (int w = xstart; w < xend; ++w)
{
// the computation of linear's weights is trival, so do it in kernel
int sx = clamp(ix + w, 0, src_cols - 1);
float t = fabs(w - rx) * xscale;
t = clamp(1.f - t, 0.f, 1.f);
wline += t;
sline += t * TO_VEC_WORK(loadpix(S + sx * pixel_size));
}
float u = fabs(h - ry) * yscale;
u = clamp(1.f - u, 0.f, 1.f);
weight += u * wline;
sumval += u * sline;
}
VT d0 = TO_VEC_TYPE(sumval / weight);
storepix(d0, D);
#else
W sumval = 0;
float weight = 0;
for (int h = ystart; h < yend; ++h)
{
W sline = 0;
float wline = 0;
int sy = clamp(iy + h, 0, src_rows - 1);
__global uchar const* S = srcptr + sy * src_step + src_offset;
for (int w = xstart; w < xend; ++w)
{
int sx = clamp(ix + w, 0, src_cols - 1);
float t = fabs(w - rx) * xscale;
t = clamp(1.f - t, 0.f, 1.f);
wline += t;
sline += t * TO_WORK(((__global T const*)(S + sx * pixel_size))[0]);
}
float u = fabs(h - ry) * yscale;
u = clamp(1.f - u, 0.f, 1.f);
weight += u * wline;
sumval += u * sline;
}
((__global T*)(D))[0] = TO_TYPE(sumval / weight);
for (int i = 1; i < channel; ++i)
{
sumval = 0;
for (int h = ystart; h < yend; ++h)
{
W sline = 0;
int sy = clamp(iy + h, 0, src_rows - 1);
__global uchar const* S = srcptr + sy * src_step + src_offset;
for (int w = xstart; w < xend; ++w)
{
int sx = clamp(ix + w, 0, src_cols - 1);
float t = fabs(w - rx) * xscale;
t = clamp(1.f - t, 0.f, 1.f);
sline += t * TO_WORK(((__global T const*)(S + sx * pixel_size))[i]);
}
float u = fabs(h - ry) * yscale;
u = clamp(1.f - u, 0.f, 1.f);
sumval += u * sline;
}
((__global T*)(D))[i] = TO_TYPE(sumval / weight);
}
#endif
}
}
#elif defined(INTER_CUBIC) && !defined(INTER_ANTIALIAS)
float cubicCoeff(float A, float A2, float A3, float x)
{
x = fabs(x);
if (x <= 1)
x = (A2 * x - A3) * x * x + 1;
else if (x <= 2)
x = A * (((x - 5) * x + 8) * x - 4);
else
x = 0;
return x;
}
__kernel void resizeOnnx_cubic(
__global uchar const* srcptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
int pixel_size, int channel, float m00, float m01, float m10, float m11, float A)
{
int dx = get_global_id(0);
int dy = get_global_id(1);
float A2 = A + 2, A3 = A + 3;
if (dx < dst_cols && dy < dst_rows)
{
float fx = fma(dx, m00, m01), fy = fma(dy, m10, m11);
int xstart = convert_int_rtn(fx) - 1;
int ystart = convert_int_rtn(fy) - 1;
int xlimit = xstart + 3;
int ylimit = ystart + 3;
int xoffset[4];
float xcoeff[4];
for (int x = xstart; x <= xlimit; ++x)
{
xoffset[x - xstart] = clamp(x, 0, src_cols - 1) * pixel_size;
xcoeff [x - xstart] = cubicCoeff(A, A2, A3, x - fx);
}
__global uchar* D = dstptr + (dy * dst_step + mad24(dx, pixel_size, dst_offset));
#if CN == 1 || CN == 2 || CN == 3 || CN == 4 || CN == 8 || CN == 16
VW sum = (VW)(0);
for (int y = ystart; y <= ylimit; ++y)
{
int yoffset = clamp(y, 0, src_rows - 1) * src_step + src_offset;
VW line = (VW)(0);
for (int x = 0; x < 4; ++x)
line += (VW)(xcoeff[x]) * TO_VEC_WORK(loadpix(srcptr + yoffset + xoffset[x]));
sum += line * (VW)(cubicCoeff(A, A2, A3, y - fy));
}
storepix(TO_VEC_TYPE(sum), D);
#else
int yoffset[4];
float ycoeff[4];
for (int y = ystart; y <= ylimit; ++y)
{
yoffset[y - ystart] = clamp(y, 0, src_rows - 1) * src_step + src_offset;
ycoeff [y - ystart] = cubicCoeff(A, A2, A3, y - fy);
}
for (int i = 0; i < channel; ++i)
{
W sum = 0;
for (int y = 0; y < 4; ++y)
{
W line = 0;
for (int x = 0; x < 4; ++x)
line += xcoeff[x] * TO_WORK(((__global T const*)
(srcptr + yoffset[y] + xoffset[x]))[i]);
sum += line * ycoeff[y];
}
((__global T*)(D))[i] = TO_TYPE(sum);
}
#endif
}
}
#elif defined(INTER_CUBIC) && defined(INTER_ANTIALIAS)
// the computation of cubic's weight is heavy(?), so do it outside
// maybe it is also ok for linear antialias resize?
__kernel void resizeOnnx_table(
__global uchar const* srcptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
int pixel_size, int channel, int xkanti, int ykanti, __global int const* table)
{
int dx = get_global_id(0);
int dy = get_global_id(1);
if (dx < dst_cols && dy < dst_rows)
{
int xstride = xkanti * dst_cols;
int ystride = ykanti * dst_rows;
__global uchar* D = dstptr + (dy * dst_step + mad24(dx, pixel_size, dst_offset));
__global int const* xoffset = table;
__global int const* yoffset = xoffset + xstride;
__global float const* xcoeff = (__global float const*)(yoffset + ystride);
__global float const* ycoeff = (__global float const*)(xcoeff + xstride);
#if CN == 1 || CN == 2 || CN == 3 || CN == 4 || CN == 8 || CN == 16
VW sum = (VW)(0);
// exact ykanti / xkanti loops
for (int y = dy; y < ystride; y += dst_rows)
{
// offset is already clamped. xoffset is given by uchar
__global const uchar* S = (srcptr + yoffset[y] * src_step + src_offset);
VW line = (VW)(0);
for (int x = dx; x < xstride; x += dst_cols)
line += xcoeff[x] * TO_VEC_WORK(loadpix(S + xoffset[x]));
sum += line * ycoeff[y];
}
storepix(TO_VEC_TYPE(sum), D);
#else
for (int i = 0; i < channel; ++i)
{
W sum = 0;
for (int y = dy; y < ystride; y += dst_rows)
{
__global const uchar* S = (srcptr + yoffset[y] * src_step + src_offset);
W line = 0;
for (int x = dx; x < xstride; x += dst_cols)
line += xcoeff[x] * TO_WORK(((__global T const*)(S + xoffset[x]))[i]);
sum += line * ycoeff[y];
}
((__global T*)(D))[i] = TO_TYPE(sum);
}
#endif
}
}
#else
#error "empty kernel"
#endif

File diff suppressed because it is too large Load Diff

View File

@ -160,11 +160,7 @@ PARAM_TEST_CASE(WarpTest_cols4_Base, MatType, Interpolation, bool, bool)
}
};
/////warpAffine
typedef WarpTestBase WarpAffine;
/////warpAffine
//// warpAffine
typedef WarpTestBase WarpAffine;
@ -340,6 +336,116 @@ OCL_TEST(Resize, overflow_21198)
EXPECT_LE(cv::norm(dst_u, dst, NORM_INF), 1.0f);
}
PARAM_TEST_CASE(ResizeOnnx, MatType, double, double, int, bool, int)
{
int type, interpolation;
int widthMultiple;
double fx, fy;
bool useRoi;
Mat middle;
TEST_DECLARE_INPUT_PARAMETER(src);
TEST_DECLARE_OUTPUT_PARAMETER(dst);
virtual void SetUp()
{
type = GET_PARAM(0);
fx = GET_PARAM(1);
fy = GET_PARAM(2);
interpolation = GET_PARAM(3);
useRoi = GET_PARAM(4);
widthMultiple = GET_PARAM(5);
}
void random_roi()
{
CV_Assert(fx > 0 && fy > 0);
Size srcRoiSize = randomSize(10, MAX_VALUE), dstRoiSize;
// Make sure the width is a multiple of the requested value, and no more
srcRoiSize.width += widthMultiple - 1 - (srcRoiSize.width - 1) % widthMultiple;
dstRoiSize.width = cvRound(srcRoiSize.width * fx);
dstRoiSize.height = cvRound(srcRoiSize.height * fy);
if (dstRoiSize.empty())
{
random_roi();
return;
}
Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
randomSubMat(src, src_roi, srcRoiSize, srcBorder, type, -MAX_VALUE, MAX_VALUE);
#if 0
// if nearest test failed, maybe the fma issue, try open this #if
// set pixels' value to their coordinate
if ((interpolation & INTER_SAMPLER_MASK) == INTER_NEAREST)
{
int channel = CV_MAT_CN(type);
middle.create(src.rows, src.cols, CV_16SC(channel));
for (int h = 0; h < src.rows; ++h)
{
for (int c = 0; c < channel; c += 2)
{
// even x; odd y
short* S = middle.ptr<short>(h) + c;
for (int w = 0; w < src.cols; ++w, S += channel)
S[0] = static_cast<short>(w);
}
for (int c = 1; c < channel; c += 2)
{
// even x; odd y
short* S = middle.ptr<short>(h) + c;
for (int w = 0; w < src.cols; ++w, S += channel)
S[0] = static_cast<short>(h);
}
}
middle.convertTo(src, type);
src_roi = src(Rect(srcBorder.lef, srcBorder.top, srcRoiSize.width, srcRoiSize.height));
}
#endif
Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
randomSubMat(dst, dst_roi, dstRoiSize, dstBorder, type, -MAX_VALUE, MAX_VALUE);
UMAT_UPLOAD_INPUT_PARAMETER(src);
UMAT_UPLOAD_OUTPUT_PARAMETER(dst);
}
};
OCL_TEST_P(ResizeOnnx, Mat)
{
Size whole;
Point offset;
Mat host, host_roi;
int cn = CV_MAT_CN(type);
int depth = CV_MAT_DEPTH(type);
double eps = depth <= CV_32S ? integerEps : 5e-2;
for (int j = 0; j < test_loop_times; j++)
{
random_roi();
OCL_OFF(cv::resizeOnnx(src_roi, dst_roi,
dst_roi.size(), Point2d(fx, fy), interpolation));
OCL_ON(cv::resizeOnnx(usrc_roi, udst_roi,
dst_roi.size(), Point2d(fx, fy), interpolation));
dst_roi.locateROI(whole, offset);
udst.copyTo(host);
host_roi = host(Rect(offset, dst_roi.size()));
if (cn <= 4 && depth != CV_8S && depth != CV_32S)
OCL_EXPECT_MAT_N_DIFF(dst, eps);
else
{
// more strict than OCL_EXPECT_MAT_N_DIFF
double dif = cv::norm(dst_roi, host_roi, NORM_INF);
EXPECT_LE(dif, eps)
<< "Size: " << src_roi.size()
<< ", NormInf: " << dif << std::endl;
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
// remap
@ -583,6 +689,44 @@ OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarpResizeArea, Resize, Combine(
Bool(),
Values(1, 16)));
OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarpAlias, ResizeOnnx, Combine(
Values(
CV_8UC1, CV_8SC2, CV_8UC(5), CV_8SC(7),
CV_16UC1, CV_16SC3, CV_16UC(9), CV_16SC(10),
CV_32FC1, CV_32FC4, CV_32FC(11)),
Values(0.5, 0.31, 1.4),
Values(0.5, 0.73, 3.7),
Values((int)(INTER_LINEAR), (int)(INTER_CUBIC)),
Bool(),
Values(1, 16)));
OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarpAntiAlias, ResizeOnnx, Combine(
Values(
CV_8UC1, CV_8SC2, CV_8UC(5), CV_8SC(7),
CV_16UC1, CV_16SC3, CV_16UC(9), CV_16SC(10),
CV_32FC1, CV_32FC4, CV_32FC(11)),
Values(0.5, 0.27, 2.6),
Values(0.5, 0.71, 4.1),
Values(
(int)(INTER_ANTIALIAS | INTER_LINEAR),
(int)(INTER_ANTIALIAS | INTER_CUBIC )),
Bool(),
Values(1, 16)));
OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarpNearest, ResizeOnnx, Combine(
Values(
CV_8UC1, CV_8SC2, CV_8UC4, CV_8SC(7),
CV_16UC1, CV_16SC3, CV_16UC(9), CV_32SC(10),
CV_32FC1, CV_32FC4, CV_32FC(11)),
Values(0.5, 0.27, 2.6),
Values(0.5, 0.71, 4.1),
Values(
(int)(INTER_NEAREST | INTER_NEAREST_PREFER_FLOOR),
(int)(INTER_NEAREST | INTER_NEAREST_PREFER_CEIL),
(int)(INTER_NEAREST | INTER_NEAREST_CEIL),
(int)(INTER_NEAREST | INTER_NEAREST_FLOOR)),
Bool(),
Values(1, 16)));
OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarp, Remap_INTER_LINEAR, Combine(
Values(CV_8U, CV_16U, CV_32F),
Values(1, 3, 4),

View File

@ -0,0 +1,498 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
namespace opencv_test { namespace {
struct ResizeOnnx
{
int interpolate;
Size szsrc, szref, szdst;
Point2d scale;
float cubic;
Rect2d roi;
/* make sure insrc is:
* (1) integer
* (2) range [-127, 127]
* (3) all non-positive or non-negative */
vector<double> insrc, inref;
void rand_roi(RNG& rng, Mat& src, Size size, int type)
{
int const border = 16;
int t = rng.next() % border;
int b = rng.next() % border;
int l = rng.next() % border;
int r = rng.next() % border;
if (rng.next() & 1)
{
src.create(size.height + t + b, size.width + l + r, type);
src.setTo(127);
src = src(Rect(l, t, size.width, size.height));
}
else
src.create(size, type);
}
void run()
{
CV_CheckGE(static_cast<int>(insrc.size()), szsrc.area(), "unexpected src size");
CV_CheckEQ(static_cast<int>(inref.size()), szref.area(), "unexpected ref size");
Mat iS(szsrc, CV_64F, insrc.data());
Mat iR(szref, CV_64F, inref.data());
Mat S = iS, R = iR, nS, nR;
double alpha[6] = {1, 1, 5, 5, -1, -3};
double beta[6] = {0, 7, 0, 7, +0, -7};
RNG rng;
for (int cn = 1; cn <= 6; ++cn)
{
if (cn > 1)
{
iS.convertTo(nS, -1, alpha[cn - 1], beta[cn - 1]);
iR.convertTo(nR, -1, alpha[cn - 1], beta[cn - 1]);
merge(vector<Mat>{S, nS}, S);
merge(vector<Mat>{R, nR}, R);
}
for (int depth = CV_8U; depth <= CV_64F; ++depth)
{
double eps = (depth <= CV_32S) ? 1.0 : 1e-3;
int type = CV_MAKETYPE(depth, cn);
string errinfo = "failed on type " + typeToString(type);
Mat src, ref, dst;
rand_roi(rng, src, szsrc, type);
if (szdst.area())
rand_roi(rng, dst, szdst, type);
S.convertTo(src, type);
R.convertTo(ref, type);
resizeOnnx(src, dst, szdst, scale, interpolate, cubic, roi);
EXPECT_EQ(ref.size(), dst.size()) << errinfo;
// nearest must give bit-same result
if ((interpolate & INTER_SAMPLER_MASK) == INTER_NEAREST)
EXPECT_EQ(cv::norm(ref, dst, NORM_INF), 0.0) << errinfo;
// cvRound(4.5) = 4, but when doing resize with int, we may get 5
else
EXPECT_LE(cv::norm(ref, dst, NORM_INF), eps) << errinfo;
}
}
}
};
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-128
TEST(ResizeOnnx, downsample_scales_cubic)
{
ResizeOnnx{
INTER_CUBIC,
Size(4, 4), Size(3, 3), Size(), Point2d(0.8, 0.8),
-0.75f, Rect2d(),
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{
1.47119141, 2.78125 , 4.08251953,
6.71142578, 8.02148438, 9.32275391,
11.91650391, 13.2265625, 14.52783203,
}
}.run();
}
TEST(ResizeOnnx, downsample_scales_cubic_align_corners)
{
ResizeOnnx{
INTER_CUBIC | INTER_ALIGN_CORNERS,
Size(4, 4), Size(3, 3), Size(), Point2d(0.8, 0.8),
-0.75f, Rect2d(),
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{
1.0 , 2.39519159, 3.79038317,
6.58076634, 7.97595793, 9.37114951,
12.16153268, 13.55672427, 14.95191585,
}
}.run();
}
TEST(ResizeOnnx, downsample_scales_cubic_antialias)
{
ResizeOnnx{
INTER_CUBIC | INTER_ANTIALIAS,
Size(4, 4), Size(2, 2), Size(), Point2d(0.6, 0.6),
-0.75f, Rect2d(),
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{
2.5180721, 4.2858863,
9.589329 , 11.357142 ,
}
}.run();
}
TEST(ResizeOnnx, downsample_scales_linear)
{
ResizeOnnx{
INTER_LINEAR,
Size(4, 2), Size(2, 1), Size(), Point2d(0.6, 0.6),
-0.75f, Rect2d(),
{1, 2, 3, 4, 5, 6, 7, 8},
{2.6666665, 4.3333331}
}.run();
}
TEST(ResizeOnnx, downsample_scales_linear_align_corners)
{
ResizeOnnx{
INTER_LINEAR | INTER_ALIGN_CORNERS,
Size(4, 2), Size(2, 1), Size(), Point2d(0.6, 0.6),
-0.75f, Rect2d(),
{1, 2, 3, 4, 5, 6, 7, 8},
{1.0, 3.142857}
}.run();
}
TEST(ResizeOnnx, downsample_scales_linear_antialias)
{
ResizeOnnx{
INTER_LINEAR | INTER_ANTIALIAS,
Size(4, 4), Size(2, 2), Size(), Point2d(0.6, 0.6),
-0.75f, Rect2d(),
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{
2.875, 4.5,
9.375, 11.0,
}
}.run();
}
TEST(ResizeOnnx, downsample_scales_linear_half_pixel_symmetric)
{
ResizeOnnx{
INTER_LINEAR | INTER_HALF_PIXEL_SYMMETRIC,
Size(4, 1), Size(2, 1), Size(), Point2d(0.6, 1.0),
-0.75f, Rect2d(),
{1, 2, 3, 4},
{1.6666667, 3.3333333}
}.run();
}
TEST(ResizeOnnx, downsample_scales_nearest)
{
ResizeOnnx{
INTER_NEAREST,
Size(4, 2), Size(2, 1), Size(), Point2d(0.6, 0.6),
-0.75f, Rect2d(),
{1, 2, 3, 4, 5, 6, 7, 8},
{1, 3}
}.run();
}
TEST(ResizeOnnx, downsample_sizes_cubic)
{
ResizeOnnx{
INTER_CUBIC,
Size(4, 4), Size(3, 3), Size(3, 3), Point2d(),
-0.75f, Rect2d(),
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{
1.63078704, 3.00462963, 4.37847222,
7.12615741, 8.5 , 9.87384259,
12.62152778, 13.99537037, 15.36921296,
}
}.run();
}
TEST(ResizeOnnx, downsample_sizes_cubic_antialias)
{
ResizeOnnx{
INTER_CUBIC | INTER_ANTIALIAS,
Size(4, 4), Size(3, 3), Size(3, 3), Point2d(),
-0.75f, Rect2d(),
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{
1.7750092, 3.1200073, 4.4650054,
7.1550016, 8.5 , 9.844998 ,
12.534994, 13.8799925, 15.224991 ,
}
}.run();
}
TEST(ResizeOnnx, downsample_sizes_linear_antialias)
{
ResizeOnnx{
INTER_LINEAR | INTER_ANTIALIAS,
Size(4, 4), Size(3, 3), Size(3, 3), Point2d(),
-0.75f, Rect2d(),
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{
2.3636363, 3.590909, 4.818182,
7.2727275, 8.5 , 9.727273,
12.181818 , 13.409091, 14.636364,
}
}.run();
}
TEST(ResizeOnnx, downsample_sizes_linear_pytorch_half_pixel)
{
ResizeOnnx{
INTER_LINEAR | INTER_HALF_PIXEL_PYTORCH,
Size(4, 4), Size(1, 3), Size(1, 3), Point2d(),
-0.75f, Rect2d(),
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{
1.6666666,
7.0 ,
12.333333,
}
}.run();
}
TEST(ResizeOnnx, downsample_sizes_nearest)
{
ResizeOnnx{
INTER_NEAREST,
Size(4, 2), Size(3, 1), Size(3, 1), Point2d(),
-0.75f, Rect2d(),
{1, 2, 3, 4, 5, 6, 7, 8},
{1, 2, 4}
}.run();
}
TEST(ResizeOnnx, tf_crop_and_resize)
{
// Note: for some rois, the result may be different with that of TF for inaccurate floating point
ResizeOnnx{
INTER_LINEAR | INTER_TF_CROP_RESIZE,
Size(4, 4), Size(3, 3), Size(3, 3), Point2d(),
-0.75f, Rect2d(0.6, 0.4, 0.2, 0.2),
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{
7.6000004, 7.9, 8.2 ,
8.8 , 9.1, 9.400001,
10.0 , 10.3, 10.6 ,
}
}.run();
}
TEST(ResizeOnnx, upsample_scales_cubic)
{
ResizeOnnx{
INTER_CUBIC,
Size(4, 4), Size(8, 8), Size(), Point2d(2.0, 2.0),
-0.75f, Rect2d(),
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{
0.47265625, 0.76953125, 1.24609375, 1.875, 2.28125, 2.91015625, 3.38671875, 3.68359375,
1.66015625, 1.95703125, 2.43359375, 3.0625, 3.46875, 4.09765625, 4.57421875, 4.87109375,
3.56640625, 3.86328125, 4.33984375, 4.96875, 5.375, 6.00390625, 6.48046875, 6.77734375,
6.08203125, 6.37890625, 6.85546875, 7.484375, 7.890625, 8.51953125, 8.99609375, 9.29296875,
7.70703125, 8.00390625, 8.48046875, 9.109375, 9.515625, 10.14453125, 10.62109375, 10.91796875,
10.22265625, 10.51953125, 10.99609375, 11.625, 12.03125, 12.66015625, 13.13671875, 13.43359375,
12.12890625, 12.42578125, 12.90234375, 13.53125, 13.9375, 14.56640625, 15.04296875, 15.33984375,
13.31640625, 13.61328125, 14.08984375, 14.71875, 15.125, 15.75390625, 16.23046875, 16.52734375,
}
}.run();
}
TEST(ResizeOnnx, upsample_scales_cubic_align_corners)
{
ResizeOnnx{
INTER_CUBIC | INTER_ALIGN_CORNERS,
Size(4, 4), Size(8, 8), Size(), Point2d(2.0, 2.0),
-0.75f, Rect2d(),
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{
1.0, 1.34110787, 1.80029155, 2.32944606, 2.67055394, 3.19970845, 3.65889213, 4.0,
2.36443149, 2.70553936, 3.16472303, 3.69387755, 4.03498542, 4.56413994, 5.02332362, 5.36443149,
4.20116618, 4.54227405, 5.00145773, 5.53061224, 5.87172012, 6.40087464, 6.86005831, 7.20116618,
6.31778426, 6.65889213, 7.1180758, 7.64723032, 7.98833819, 8.51749271, 8.97667638, 9.31778426,
7.68221574, 8.02332362, 8.48250729, 9.01166181, 9.35276968, 9.8819242, 10.34110787, 10.68221574,
9.79883382, 10.13994169, 10.59912536, 11.12827988, 11.46938776, 11.99854227, 12.45772595, 12.79883382,
11.63556851, 11.97667638, 12.43586006, 12.96501458, 13.30612245, 13.83527697, 14.29446064, 14.63556851,
13.0, 13.34110787, 13.80029155, 14.32944606, 14.67055394, 15.19970845, 15.65889213, 16.0,
}
}.run();
}
TEST(ResizeOnnx, upsample_scales_cubic_asymmetric)
{
ResizeOnnx{
INTER_CUBIC | INTER_ASYMMETRIC,
Size(4, 4), Size(8, 8), Size(), Point2d(2.0, 2.0),
-0.75f, Rect2d(),
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{
1.0, 1.40625, 2.0, 2.5, 3.0, 3.59375, 4.0, 4.09375,
2.625, 3.03125, 3.625, 4.125, 4.625, 5.21875, 5.625, 5.71875,
5.0, 5.40625, 6.0, 6.5, 7.0, 7.59375, 8.0, 8.09375,
7.0, 7.40625, 8.0, 8.5, 9.0, 9.59375, 10.0, 10.09375,
9.0, 9.40625, 10.0, 10.5, 11.0, 11.59375, 12.0, 12.09375,
11.375, 11.78125, 12.375, 12.875, 13.375, 13.96875, 14.375, 14.46875,
13.0, 13.40625, 14.0, 14.5, 15.0, 15.59375, 16.0, 16.09375,
13.375, 13.78125, 14.375, 14.875, 15.375, 15.96875, 16.375, 16.46875,
}
}.run();
}
TEST(ResizeOnnx, upsample_scales_linear)
{
ResizeOnnx{
INTER_LINEAR,
Size(2, 2), Size(4, 4), Size(), Point2d(2.0, 2.0),
-0.75f, Rect2d(),
{1, 2, 3, 4},
{
1.0, 1.25, 1.75, 2.0,
1.5, 1.75, 2.25, 2.5,
2.5, 2.75, 3.25, 3.5,
3.0, 3.25, 3.75, 4.0,
}
}.run();
}
TEST(ResizeOnnx, upsample_scales_linear_align_corners)
{
ResizeOnnx{
INTER_LINEAR | INTER_ALIGN_CORNERS,
Size(2, 2), Size(4, 4), Size(), Point2d(2.0, 2.0),
-0.75f, Rect2d(),
{1, 2, 3, 4},
{
1.0, 1.33333333, 1.66666667, 2.0,
1.66666667, 2.0, 2.33333333, 2.66666667,
2.33333333, 2.66666667, 3.0, 3.33333333,
3.0, 3.33333333, 3.66666667, 4.0,
}
}.run();
}
TEST(ResizeOnnx, upsample_scales_linear_half_pixel_symmetric)
{
ResizeOnnx{
INTER_LINEAR | INTER_HALF_PIXEL_SYMMETRIC,
Size(2, 2), Size(5, 4), Size(), Point2d(2.94, 2.3),
-0.75f, Rect2d(),
{1, 2, 3, 4},
{
1.0 , 1.15986395, 1.5 , 1.84013605, 2.0 ,
1.56521738, 1.72508133, 2.06521738, 2.40535343, 2.56521738,
2.43478262, 2.59464657, 2.93478262, 3.27491867, 3.43478262,
3.0 , 3.15986395, 3.5 , 3.84013605, 4.0 ,
}
}.run();
}
TEST(ResizeOnnx, upsample_scales_nearest)
{
ResizeOnnx{
INTER_NEAREST,
Size(2, 2), Size(6, 4), Size(), Point2d(3.0, 2.0),
-0.75f, Rect2d(),
{1, 2, 3, 4},
{
1, 1, 1, 2, 2, 2,
1, 1, 1, 2, 2, 2,
3, 3, 3, 4, 4, 4,
3, 3, 3, 4, 4, 4,
}
}.run();
}
TEST(ResizeOnnx, upsample_sizes_cubic)
{
ResizeOnnx{
INTER_CUBIC,
Size(4, 4), Size(10, 9), Size(10, 9), Point2d(),
-0.75f, Rect2d(),
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{
0.45507922, 0.64057922, 0.97157922, 1.42257922, 1.90732922, 2.22332922, 2.70807922, 3.15907922, 3.49007922, 3.67557922,
1.39437963, 1.57987963, 1.91087963, 2.36187963, 2.84662963, 3.16262963, 3.64737963, 4.09837963, 4.42937963, 4.61487963,
2.95130693, 3.13680693, 3.46780693, 3.91880693, 4.40355693, 4.71955693, 5.20430693, 5.65530693, 5.98630693, 6.17180693,
5.20525069, 5.39075069, 5.72175069, 6.17275069, 6.65750069, 6.97350069, 7.45825069, 7.90925069, 8.24025069, 8.42575069,
6.88975, 7.07525, 7.40625, 7.85725, 8.342, 8.658, 9.14275, 9.59375, 9.92475, 10.11025,
8.57424931, 8.75974931, 9.09074931, 9.54174931, 10.02649931, 10.34249931, 10.82724931, 11.27824931, 11.60924931, 11.79474931,
10.82819307, 11.01369307, 11.34469307, 11.79569307, 12.28044307, 12.59644307, 13.08119307, 13.53219307, 13.86319307, 14.04869307,
12.38512037, 12.57062037, 12.90162037, 13.35262037, 13.83737037, 14.15337037, 14.63812037, 15.08912037, 15.42012037, 15.60562037,
13.32442078, 13.50992078, 13.84092078, 14.29192078, 14.77667078, 15.09267078, 15.57742078, 16.02842078, 16.35942078, 16.54492078,
}
}.run();
}
TEST(ResizeOnnx, upsample_sizes_nearest)
{
ResizeOnnx{
INTER_NEAREST,
Size(2, 2), Size(8, 7), Size(8, 7), Point2d(),
-0.75f, Rect2d(),
{1, 2, 3, 4},
{
1, 1, 1, 1, 2, 2, 2, 2,
1, 1, 1, 1, 2, 2, 2, 2,
1, 1, 1, 1, 2, 2, 2, 2,
1, 1, 1, 1, 2, 2, 2, 2,
3, 3, 3, 3, 4, 4, 4, 4,
3, 3, 3, 3, 4, 4, 4, 4,
3, 3, 3, 3, 4, 4, 4, 4,
}
}.run();
}
TEST(ResizeOnnx, upsample_sizes_nearest_ceil_half_pixel)
{
ResizeOnnx{
INTER_NEAREST | INTER_NEAREST_CEIL,
Size(4, 4), Size(8, 8), Size(8, 8), Point2d(),
-0.75f, Rect2d(),
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{
1, 2, 2, 3, 3, 4, 4, 4,
5, 6, 6, 7, 7, 8, 8, 8,
5, 6, 6, 7, 7, 8, 8, 8,
9, 10, 10, 11, 11, 12, 12, 12,
9, 10, 10, 11, 11, 12, 12, 12,
13, 14, 14, 15, 15, 16, 16, 16,
13, 14, 14, 15, 15, 16, 16, 16,
13, 14, 14, 15, 15, 16, 16, 16,
}
}.run();
}
TEST(ResizeOnnx, upsample_sizes_nearest_floor_align_corners)
{
ResizeOnnx{
INTER_NEAREST | INTER_NEAREST_FLOOR | INTER_ALIGN_CORNERS,
Size(4, 4), Size(8, 8), Size(8, 8), Point2d(),
-0.75f, Rect2d(),
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{
1, 1, 1, 2, 2, 3, 3, 4,
1, 1, 1, 2, 2, 3, 3, 4,
1, 1, 1, 2, 2, 3, 3, 4,
5, 5, 5, 6, 6, 7, 7, 8,
5, 5, 5, 6, 6, 7, 7, 8,
9, 9, 9, 10, 10, 11, 11, 12,
9, 9, 9, 10, 10, 11, 11, 12,
13, 13, 13, 14, 14, 15, 15, 16,
}
}.run();
}
TEST(ResizeOnnx, upsample_sizes_nearest_round_prefer_ceil_asymmetric)
{
ResizeOnnx{
INTER_NEAREST | INTER_NEAREST_PREFER_CEIL | INTER_ASYMMETRIC,
Size(4, 4), Size(8, 8), Size(8, 8), Point2d(),
-0.75f, Rect2d(),
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{
1, 2, 2, 3, 3, 4, 4, 4,
5, 6, 6, 7, 7, 8, 8, 8,
5, 6, 6, 7, 7, 8, 8, 8,
9, 10, 10, 11, 11, 12, 12, 12,
9, 10, 10, 11, 11, 12, 12, 12,
13, 14, 14, 15, 15, 16, 16, 16,
13, 14, 14, 15, 15, 16, 16, 16,
13, 14, 14, 15, 15, 16, 16, 16,
}
}.run();
}
}}

View File

@ -134,11 +134,11 @@ do \
mask(cv::Rect(1, 1, mask.cols - 2, mask.rows - 2)).setTo(0); \
cv::threshold(diff, binary, (double)eps, 255, cv::THRESH_BINARY); \
EXPECT_LE(countNonZero(binary.reshape(1)), (int)(binary.cols*binary.rows*5/1000)) \
<< "Size: " << name ## _roi.size() << std::endl; \
<< "Size: " << name ## _roi.size() << ", NormInf: " << cv::norm(diff, NORM_INF) << std::endl; \
binary.convertTo(binary_8, mask.type()); \
binary_8 = binary_8 & mask; \
EXPECT_LE(countNonZero(binary_8.reshape(1)), (int)((binary_8.cols+binary_8.rows)/100)) \
<< "Size: " << name ## _roi.size() << std::endl; \
<< "Size: " << name ## _roi.size() << ", NormInf: " << cv::norm(diff, NORM_INF) << std::endl; \
} while ((void)0, 0)
#define OCL_EXPECT_MATS_NEAR(name, eps) \