rewrote matrix operations with cudev module

This commit is contained in:
Vladislav Vinogradov 2013-07-22 13:07:07 +04:00
parent 2311b0b43b
commit 6dfd8f184c
5 changed files with 586 additions and 1135 deletions

View File

@ -1,9 +1,9 @@
set(the_description "The Core Functionality")
ocv_add_module(core ${ZLIB_LIBRARIES})
ocv_add_module(core ${ZLIB_LIBRARIES} OPTIONAL opencv_cudev)
ocv_module_include_directories(${ZLIB_INCLUDE_DIR})
if(HAVE_CUDA)
ocv_warnings_disable(CMAKE_CXX_FLAGS -Wundef)
ocv_warnings_disable(CMAKE_CXX_FLAGS -Wundef -Wenum-compare -Wunused-function)
endif()
file(GLOB lib_cuda_hdrs "include/opencv2/${name}/cuda/*.hpp" "include/opencv2/${name}/cuda/*.h")

View File

@ -0,0 +1,486 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/opencv_modules.hpp"
#ifndef HAVE_OPENCV_CUDEV
#error "opencv_cudev is required"
#else
#include "opencv2/core/gpu.hpp"
#include "opencv2/cudev.hpp"
using namespace cv;
using namespace cv::gpu;
using namespace cv::cudev;
/////////////////////////////////////////////////////
/// create
void cv::gpu::GpuMat::create(int _rows, int _cols, int _type)
{
CV_DbgAssert( _rows >= 0 && _cols >= 0 );
_type &= Mat::TYPE_MASK;
if (rows == _rows && cols == _cols && type() == _type && data)
return;
if (data)
release();
if (_rows > 0 && _cols > 0)
{
flags = Mat::MAGIC_VAL + _type;
rows = _rows;
cols = _cols;
size_t esz = elemSize();
void* devPtr;
if (rows > 1 && cols > 1)
{
CV_CUDEV_SAFE_CALL( cudaMallocPitch(&devPtr, &step, esz * cols, rows) );
}
else
{
// Single row or single column must be continuous
CV_CUDEV_SAFE_CALL( cudaMalloc(&devPtr, esz * cols * rows) );
step = esz * cols;
}
if (esz * cols == step)
flags |= Mat::CONTINUOUS_FLAG;
int64 _nettosize = static_cast<int64>(step) * rows;
size_t nettosize = static_cast<size_t>(_nettosize);
datastart = data = static_cast<uchar*>(devPtr);
dataend = data + nettosize;
refcount = static_cast<int*>(fastMalloc(sizeof(*refcount)));
*refcount = 1;
}
}
/////////////////////////////////////////////////////
/// release
void cv::gpu::GpuMat::release()
{
if (refcount && CV_XADD(refcount, -1) == 1)
{
cudaFree(datastart);
fastFree(refcount);
}
data = datastart = dataend = 0;
step = rows = cols = 0;
refcount = 0;
}
/////////////////////////////////////////////////////
/// upload
void cv::gpu::GpuMat::upload(InputArray arr)
{
Mat mat = arr.getMat();
CV_DbgAssert( !mat.empty() );
create(mat.size(), mat.type());
CV_CUDEV_SAFE_CALL( cudaMemcpy2D(data, step, mat.data, mat.step, cols * elemSize(), rows, cudaMemcpyHostToDevice) );
}
void cv::gpu::GpuMat::upload(InputArray arr, Stream& _stream)
{
Mat mat = arr.getMat();
CV_DbgAssert( !mat.empty() );
create(mat.size(), mat.type());
cudaStream_t stream = StreamAccessor::getStream(_stream);
CV_CUDEV_SAFE_CALL( cudaMemcpy2DAsync(data, step, mat.data, mat.step, cols * elemSize(), rows, cudaMemcpyHostToDevice, stream) );
}
/////////////////////////////////////////////////////
/// download
void cv::gpu::GpuMat::download(OutputArray _dst) const
{
CV_DbgAssert( !empty() );
_dst.create(size(), type());
Mat dst = _dst.getMat();
CV_CUDEV_SAFE_CALL( cudaMemcpy2D(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToHost) );
}
void cv::gpu::GpuMat::download(OutputArray _dst, Stream& _stream) const
{
CV_DbgAssert( !empty() );
_dst.create(size(), type());
Mat dst = _dst.getMat();
cudaStream_t stream = StreamAccessor::getStream(_stream);
CV_CUDEV_SAFE_CALL( cudaMemcpy2DAsync(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToHost, stream) );
}
/////////////////////////////////////////////////////
/// copyTo
void cv::gpu::GpuMat::copyTo(OutputArray _dst) const
{
CV_DbgAssert( !empty() );
_dst.create(size(), type());
GpuMat dst = _dst.getGpuMat();
CV_CUDEV_SAFE_CALL( cudaMemcpy2D(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToDevice) );
}
void cv::gpu::GpuMat::copyTo(OutputArray _dst, Stream& _stream) const
{
CV_DbgAssert( !empty() );
_dst.create(size(), type());
GpuMat dst = _dst.getGpuMat();
cudaStream_t stream = StreamAccessor::getStream(_stream);
CV_CUDEV_SAFE_CALL( cudaMemcpy2DAsync(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToDevice, stream) );
}
namespace
{
template <size_t size> struct CopyToPolicy : DefaultTransformPolicy
{
};
template <> struct CopyToPolicy<4> : DefaultTransformPolicy
{
enum {
shift = 2
};
};
template <> struct CopyToPolicy<8> : DefaultTransformPolicy
{
enum {
shift = 1
};
};
template <typename T>
void copyWithMask(const GpuMat& src, const GpuMat& dst, const GpuMat& mask, Stream& stream)
{
gridTransform_< CopyToPolicy<sizeof(typename VecTraits<T>::elem_type)> >(globPtr<T>(src), globPtr<T>(dst), identity<T>(), globPtr<uchar>(mask), stream);
}
}
void cv::gpu::GpuMat::copyTo(OutputArray _dst, InputArray _mask, Stream& stream) const
{
CV_DbgAssert( !empty() );
CV_DbgAssert( depth() <= CV_64F && channels() <= 4 );
GpuMat mask = _mask.getGpuMat();
CV_DbgAssert( size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == channels()) );
_dst.create(size(), type());
GpuMat dst = _dst.getGpuMat();
typedef void (*func_t)(const GpuMat& src, const GpuMat& dst, const GpuMat& mask, Stream& stream);
static const func_t funcs[9][4] =
{
{0,0,0,0},
{copyWithMask<uchar>, copyWithMask<uchar2>, copyWithMask<uchar3>, copyWithMask<uchar4>},
{copyWithMask<ushort>, copyWithMask<ushort2>, copyWithMask<ushort3>, copyWithMask<ushort4>},
{0,0,0,0},
{copyWithMask<int>, copyWithMask<int2>, copyWithMask<int3>, copyWithMask<int4>},
{0,0,0,0},
{0,0,0,0},
{0,0,0,0},
{copyWithMask<double>, copyWithMask<double2>, copyWithMask<double3>, copyWithMask<double4>}
};
if (mask.channels() == channels())
{
const func_t func = funcs[elemSize1()][0];
CV_DbgAssert( func != 0 );
func(reshape(1), dst.reshape(1), mask.reshape(1), stream);
}
else
{
const func_t func = funcs[elemSize1()][channels() - 1];
CV_DbgAssert( func != 0 );
func(*this, dst, mask, stream);
}
}
/////////////////////////////////////////////////////
/// setTo
namespace
{
template <typename T>
void setToWithOutMask(const GpuMat& mat, Scalar _scalar, Stream& stream)
{
Scalar_<typename VecTraits<T>::elem_type> scalar = _scalar;
gridTransform(constantPtr(VecTraits<T>::make(scalar.val), mat.rows, mat.cols), globPtr<T>(mat), identity<T>(), stream);
}
template <typename T>
void setToWithMask(const GpuMat& mat, const GpuMat& mask, Scalar _scalar, Stream& stream)
{
Scalar_<typename VecTraits<T>::elem_type> scalar = _scalar;
gridTransform(constantPtr(VecTraits<T>::make(scalar.val), mat.rows, mat.cols), globPtr<T>(mat), identity<T>(), globPtr<uchar>(mask), stream);
}
}
GpuMat& cv::gpu::GpuMat::setTo(Scalar value, Stream& stream)
{
CV_DbgAssert( !empty() );
CV_DbgAssert( depth() <= CV_64F && channels() <= 4 );
if (value[0] == 0.0 && value[1] == 0.0 && value[2] == 0.0 && value[3] == 0.0)
{
// Zero fill
if (stream)
CV_CUDEV_SAFE_CALL( cudaMemset2DAsync(data, step, 0, cols * elemSize(), rows, StreamAccessor::getStream(stream)) );
else
CV_CUDEV_SAFE_CALL( cudaMemset2D(data, step, 0, cols * elemSize(), rows) );
return *this;
}
if (depth() == CV_8U)
{
const int cn = channels();
if (cn == 1
|| (cn == 2 && value[0] == value[1])
|| (cn == 3 && value[0] == value[1] && value[0] == value[2])
|| (cn == 4 && value[0] == value[1] && value[0] == value[2] && value[0] == value[3]))
{
const int val = cv::saturate_cast<uchar>(value[0]);
if (stream)
CV_CUDEV_SAFE_CALL( cudaMemset2DAsync(data, step, val, cols * elemSize(), rows, StreamAccessor::getStream(stream)) );
else
CV_CUDEV_SAFE_CALL( cudaMemset2D(data, step, val, cols * elemSize(), rows) );
return *this;
}
}
typedef void (*func_t)(const GpuMat& mat, Scalar scalar, Stream& stream);
static const func_t funcs[7][4] =
{
{setToWithOutMask<uchar>,setToWithOutMask<uchar2>,setToWithOutMask<uchar3>,setToWithOutMask<uchar4>},
{setToWithOutMask<schar>,setToWithOutMask<char2>,setToWithOutMask<char3>,setToWithOutMask<char4>},
{setToWithOutMask<ushort>,setToWithOutMask<ushort2>,setToWithOutMask<ushort3>,setToWithOutMask<ushort4>},
{setToWithOutMask<short>,setToWithOutMask<short2>,setToWithOutMask<short3>,setToWithOutMask<short4>},
{setToWithOutMask<int>,setToWithOutMask<int2>,setToWithOutMask<int3>,setToWithOutMask<int4>},
{setToWithOutMask<float>,setToWithOutMask<float2>,setToWithOutMask<float3>,setToWithOutMask<float4>},
{setToWithOutMask<double>,setToWithOutMask<double2>,setToWithOutMask<double3>,setToWithOutMask<double4>}
};
funcs[depth()][channels() - 1](*this, value, stream);
return *this;
}
GpuMat& cv::gpu::GpuMat::setTo(Scalar value, InputArray _mask, Stream& stream)
{
CV_DbgAssert( !empty() );
CV_DbgAssert( depth() <= CV_64F && channels() <= 4 );
GpuMat mask = _mask.getGpuMat();
CV_DbgAssert( size() == mask.size() && mask.type() == CV_8UC1 );
typedef void (*func_t)(const GpuMat& mat, const GpuMat& mask, Scalar scalar, Stream& stream);
static const func_t funcs[7][4] =
{
{setToWithMask<uchar>,setToWithMask<uchar2>,setToWithMask<uchar3>,setToWithMask<uchar4>},
{setToWithMask<schar>,setToWithMask<char2>,setToWithMask<char3>,setToWithMask<char4>},
{setToWithMask<ushort>,setToWithMask<ushort2>,setToWithMask<ushort3>,setToWithMask<ushort4>},
{setToWithMask<short>,setToWithMask<short2>,setToWithMask<short3>,setToWithMask<short4>},
{setToWithMask<int>,setToWithMask<int2>,setToWithMask<int3>,setToWithMask<int4>},
{setToWithMask<float>,setToWithMask<float2>,setToWithMask<float3>,setToWithMask<float4>},
{setToWithMask<double>,setToWithMask<double2>,setToWithMask<double3>,setToWithMask<double4>}
};
funcs[depth()][channels() - 1](*this, mask, value, stream);
return *this;
}
/////////////////////////////////////////////////////
/// convertTo
namespace
{
template <typename T> struct ConvertToPolicy : DefaultTransformPolicy
{
};
template <> struct ConvertToPolicy<double> : DefaultTransformPolicy
{
enum {
shift = 1
};
};
template <typename T, typename D>
void convertToNoScale(const GpuMat& src, const GpuMat& dst, Stream& stream)
{
typedef typename VecTraits<T>::elem_type src_elem_type;
typedef typename VecTraits<D>::elem_type dst_elem_type;
typedef typename LargerType<src_elem_type, float>::type larger_elem_type;
typedef typename LargerType<float, dst_elem_type>::type scalar_type;
gridTransform_< ConvertToPolicy<scalar_type> >(globPtr<T>(src), globPtr<D>(dst), saturate_cast_func<T, D>(), stream);
}
template <typename T, typename D, typename S> struct Convertor : unary_function<T, D>
{
S alpha;
S beta;
__device__ __forceinline__ D operator ()(typename TypeTraits<T>::parameter_type src) const
{
return cudev::saturate_cast<D>(alpha * src + beta);
}
};
template <typename T, typename D>
void convertToScale(const GpuMat& src, const GpuMat& dst, double alpha, double beta, Stream& stream)
{
typedef typename VecTraits<T>::elem_type src_elem_type;
typedef typename VecTraits<D>::elem_type dst_elem_type;
typedef typename LargerType<src_elem_type, float>::type larger_elem_type;
typedef typename LargerType<float, dst_elem_type>::type scalar_type;
Convertor<T, D, scalar_type> op;
op.alpha = cv::saturate_cast<scalar_type>(alpha);
op.beta = cv::saturate_cast<scalar_type>(beta);
gridTransform_< ConvertToPolicy<scalar_type> >(globPtr<T>(src), globPtr<D>(dst), op, stream);
}
}
void cv::gpu::GpuMat::convertTo(OutputArray _dst, int rtype, Stream& stream) const
{
if (rtype < 0)
rtype = type();
else
rtype = CV_MAKE_TYPE(CV_MAT_DEPTH(rtype), channels());
const int sdepth = depth();
const int ddepth = CV_MAT_DEPTH(rtype);
if (sdepth == ddepth)
{
if (stream)
copyTo(_dst, stream);
else
copyTo(_dst);
return;
}
CV_DbgAssert( sdepth <= CV_64F && ddepth <= CV_64F );
GpuMat src = *this;
_dst.create(size(), rtype);
GpuMat dst = _dst.getGpuMat();
typedef void (*func_t)(const GpuMat& src, const GpuMat& dst, Stream& stream);
static const func_t funcs[7][7] =
{
{0, convertToNoScale<uchar, schar>, convertToNoScale<uchar, ushort>, convertToNoScale<uchar, short>, convertToNoScale<uchar, int>, convertToNoScale<uchar, float>, convertToNoScale<uchar, double>},
{convertToNoScale<schar, uchar>, 0, convertToNoScale<schar, ushort>, convertToNoScale<schar, short>, convertToNoScale<schar, int>, convertToNoScale<schar, float>, convertToNoScale<schar, double>},
{convertToNoScale<ushort, uchar>, convertToNoScale<ushort, schar>, 0, convertToNoScale<ushort, short>, convertToNoScale<ushort, int>, convertToNoScale<ushort, float>, convertToNoScale<ushort, double>},
{convertToNoScale<short, uchar>, convertToNoScale<short, schar>, convertToNoScale<short, ushort>, 0, convertToNoScale<short, int>, convertToNoScale<short, float>, convertToNoScale<short, double>},
{convertToNoScale<int, uchar>, convertToNoScale<int, schar>, convertToNoScale<int, ushort>, convertToNoScale<int, short>, 0, convertToNoScale<int, float>, convertToNoScale<int, double>},
{convertToNoScale<float, uchar>, convertToNoScale<float, schar>, convertToNoScale<float, ushort>, convertToNoScale<float, short>, convertToNoScale<float, int>, 0, convertToNoScale<float, double>},
{convertToNoScale<double, uchar>, convertToNoScale<double, schar>, convertToNoScale<double, ushort>, convertToNoScale<double, short>, convertToNoScale<double, int>, convertToNoScale<double, float>, 0}
};
funcs[sdepth][ddepth](reshape(1), dst.reshape(1), stream);
}
void cv::gpu::GpuMat::convertTo(OutputArray _dst, int rtype, double alpha, double beta, Stream& stream) const
{
if (rtype < 0)
rtype = type();
else
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels());
const int sdepth = depth();
const int ddepth = CV_MAT_DEPTH(rtype);
GpuMat src = *this;
_dst.create(size(), rtype);
GpuMat dst = _dst.getGpuMat();
typedef void (*func_t)(const GpuMat& src, const GpuMat& dst, double alpha, double beta, Stream& stream);
static const func_t funcs[7][7] =
{
{convertToScale<uchar, uchar>, convertToScale<uchar, schar>, convertToScale<uchar, ushort>, convertToScale<uchar, short>, convertToScale<uchar, int>, convertToScale<uchar, float>, convertToScale<uchar, double>},
{convertToScale<schar, uchar>, convertToScale<schar, schar>, convertToScale<schar, ushort>, convertToScale<schar, short>, convertToScale<schar, int>, convertToScale<schar, float>, convertToScale<schar, double>},
{convertToScale<ushort, uchar>, convertToScale<ushort, schar>, convertToScale<ushort, ushort>, convertToScale<ushort, short>, convertToScale<ushort, int>, convertToScale<ushort, float>, convertToScale<ushort, double>},
{convertToScale<short, uchar>, convertToScale<short, schar>, convertToScale<short, ushort>, convertToScale<short, short>, convertToScale<short, int>, convertToScale<short, float>, convertToScale<short, double>},
{convertToScale<int, uchar>, convertToScale<int, schar>, convertToScale<int, ushort>, convertToScale<int, short>, convertToScale<int, int>, convertToScale<int, float>, convertToScale<int, double>},
{convertToScale<float, uchar>, convertToScale<float, schar>, convertToScale<float, ushort>, convertToScale<float, short>, convertToScale<float, int>, convertToScale<float, float>, convertToScale<float, double>},
{convertToScale<double, uchar>, convertToScale<double, schar>, convertToScale<double, ushort>, convertToScale<double, short>, convertToScale<double, int>, convertToScale<double, float>, convertToScale<double, double>}
};
funcs[sdepth][ddepth](reshape(1), dst.reshape(1), alpha, beta, stream);
}
#endif

View File

@ -1,296 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/core/cuda/saturate_cast.hpp"
#include "opencv2/core/cuda/transform.hpp"
#include "opencv2/core/cuda/functional.hpp"
#include "opencv2/core/cuda/type_traits.hpp"
#include "opencv2/core/cuda/vec_traits.hpp"
#include "matrix_operations.hpp"
namespace cv { namespace gpu { namespace cudev
{
///////////////////////////////////////////////////////////////////////////
// copyWithMask
template <typename T>
void copyWithMask(PtrStepSzb src, PtrStepSzb dst, int cn, PtrStepSzb mask, bool multiChannelMask, cudaStream_t stream)
{
if (multiChannelMask)
cv::gpu::cudev::transform((PtrStepSz<T>) src, (PtrStepSz<T>) dst, identity<T>(), SingleMask(mask), stream);
else
cv::gpu::cudev::transform((PtrStepSz<T>) src, (PtrStepSz<T>) dst, identity<T>(), SingleMaskChannels(mask, cn), stream);
}
void copyWithMask(PtrStepSzb src, PtrStepSzb dst, size_t elemSize1, int cn, PtrStepSzb mask, bool multiChannelMask, cudaStream_t stream)
{
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, int cn, PtrStepSzb mask, bool multiChannelMask, cudaStream_t stream);
static const func_t tab[] =
{
0,
copyWithMask<uchar>,
copyWithMask<ushort>,
0,
copyWithMask<int>,
0,
0,
0,
copyWithMask<double>
};
const func_t func = tab[elemSize1];
CV_DbgAssert( func != 0 );
func(src, dst, cn, mask, multiChannelMask, stream);
}
///////////////////////////////////////////////////////////////////////////
// set
template<typename T, class Mask>
__global__ void set(PtrStepSz<T> mat, const Mask mask, const int channels, const typename TypeVec<T, 4>::vec_type value)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= mat.cols * channels || y >= mat.rows)
return;
const T scalar[4] = {value.x, value.y, value.z, value.w};
if (mask(y, x / channels))
mat(y, x) = scalar[x % channels];
}
template <typename T>
void set(PtrStepSz<T> mat, const T* scalar, int channels, cudaStream_t stream)
{
typedef typename TypeVec<T, 4>::vec_type scalar_t;
dim3 block(32, 8);
dim3 grid(divUp(mat.cols * channels, block.x), divUp(mat.rows, block.y));
set<T><<<grid, block, 0, stream>>>(mat, WithOutMask(), channels, VecTraits<scalar_t>::make(scalar));
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall ( cudaDeviceSynchronize() );
}
template void set<uchar >(PtrStepSz<uchar > mat, const uchar* scalar, int channels, cudaStream_t stream);
template void set<schar >(PtrStepSz<schar > mat, const schar* scalar, int channels, cudaStream_t stream);
template void set<ushort>(PtrStepSz<ushort> mat, const ushort* scalar, int channels, cudaStream_t stream);
template void set<short >(PtrStepSz<short > mat, const short* scalar, int channels, cudaStream_t stream);
template void set<int >(PtrStepSz<int > mat, const int* scalar, int channels, cudaStream_t stream);
template void set<float >(PtrStepSz<float > mat, const float* scalar, int channels, cudaStream_t stream);
template void set<double>(PtrStepSz<double> mat, const double* scalar, int channels, cudaStream_t stream);
template <typename T>
void set(PtrStepSz<T> mat, const T* scalar, PtrStepSzb mask, int channels, cudaStream_t stream)
{
typedef typename TypeVec<T, 4>::vec_type scalar_t;
dim3 block(32, 8);
dim3 grid(divUp(mat.cols * channels, block.x), divUp(mat.rows, block.y));
set<T><<<grid, block, 0, stream>>>(mat, SingleMask(mask), channels, VecTraits<scalar_t>::make(scalar));
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall ( cudaDeviceSynchronize() );
}
template void set<uchar >(PtrStepSz<uchar > mat, const uchar* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
template void set<schar >(PtrStepSz<schar > mat, const schar* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
template void set<ushort>(PtrStepSz<ushort> mat, const ushort* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
template void set<short >(PtrStepSz<short > mat, const short* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
template void set<int >(PtrStepSz<int > mat, const int* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
template void set<float >(PtrStepSz<float > mat, const float* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
template void set<double>(PtrStepSz<double> mat, const double* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
///////////////////////////////////////////////////////////////////////////
// convert
template <typename T, typename D, typename S> struct Convertor : unary_function<T, D>
{
Convertor(S alpha_, S beta_) : alpha(alpha_), beta(beta_) {}
__device__ __forceinline__ D operator()(typename TypeTraits<T>::ParameterType src) const
{
return saturate_cast<D>(alpha * src + beta);
}
S alpha, beta;
};
namespace detail
{
template <size_t src_size, size_t dst_size, typename F> struct ConvertTraitsDispatcher : DefaultTransformFunctorTraits<F>
{
};
template <typename F> struct ConvertTraitsDispatcher<1, 1, F> : DefaultTransformFunctorTraits<F>
{
enum { smart_shift = 8 };
};
template <typename F> struct ConvertTraitsDispatcher<1, 2, F> : DefaultTransformFunctorTraits<F>
{
enum { smart_shift = 4 };
};
template <typename F> struct ConvertTraitsDispatcher<1, 4, F> : DefaultTransformFunctorTraits<F>
{
enum { smart_block_dim_y = 8 };
enum { smart_shift = 4 };
};
template <typename F> struct ConvertTraitsDispatcher<2, 2, F> : DefaultTransformFunctorTraits<F>
{
enum { smart_shift = 4 };
};
template <typename F> struct ConvertTraitsDispatcher<2, 4, F> : DefaultTransformFunctorTraits<F>
{
enum { smart_shift = 2 };
};
template <typename F> struct ConvertTraitsDispatcher<4, 2, F> : DefaultTransformFunctorTraits<F>
{
enum { smart_block_dim_y = 8 };
enum { smart_shift = 4 };
};
template <typename F> struct ConvertTraitsDispatcher<4, 4, F> : DefaultTransformFunctorTraits<F>
{
enum { smart_block_dim_y = 8 };
enum { smart_shift = 2 };
};
template <typename F> struct ConvertTraits : ConvertTraitsDispatcher<sizeof(typename F::argument_type), sizeof(typename F::result_type), F>
{
};
}
template <typename T, typename D, typename S> struct TransformFunctorTraits< Convertor<T, D, S> > : detail::ConvertTraits< Convertor<T, D, S> >
{
};
template<typename T, typename D, typename S>
void cvt_(PtrStepSzb src, PtrStepSzb dst, double alpha, double beta, cudaStream_t stream)
{
Convertor<T, D, S> op(static_cast<S>(alpha), static_cast<S>(beta));
cv::gpu::cudev::transform((PtrStepSz<T>)src, (PtrStepSz<D>)dst, op, WithOutMask(), stream);
}
void convert(PtrStepSzb src, int sdepth, PtrStepSzb dst, int ddepth, double alpha, double beta, cudaStream_t stream)
{
typedef void (*caller_t)(PtrStepSzb src, PtrStepSzb dst, double alpha, double beta, cudaStream_t stream);
static const caller_t tab[7][7] =
{
{
cvt_<uchar, uchar, float>,
cvt_<uchar, schar, float>,
cvt_<uchar, ushort, float>,
cvt_<uchar, short, float>,
cvt_<uchar, int, float>,
cvt_<uchar, float, float>,
cvt_<uchar, double, double>
},
{
cvt_<schar, uchar, float>,
cvt_<schar, schar, float>,
cvt_<schar, ushort, float>,
cvt_<schar, short, float>,
cvt_<schar, int, float>,
cvt_<schar, float, float>,
cvt_<schar, double, double>
},
{
cvt_<ushort, uchar, float>,
cvt_<ushort, schar, float>,
cvt_<ushort, ushort, float>,
cvt_<ushort, short, float>,
cvt_<ushort, int, float>,
cvt_<ushort, float, float>,
cvt_<ushort, double, double>
},
{
cvt_<short, uchar, float>,
cvt_<short, schar, float>,
cvt_<short, ushort, float>,
cvt_<short, short, float>,
cvt_<short, int, float>,
cvt_<short, float, float>,
cvt_<short, double, double>
},
{
cvt_<int, uchar, float>,
cvt_<int, schar, float>,
cvt_<int, ushort, float>,
cvt_<int, short, float>,
cvt_<int, int, double>,
cvt_<int, float, double>,
cvt_<int, double, double>
},
{
cvt_<float, uchar, float>,
cvt_<float, schar, float>,
cvt_<float, ushort, float>,
cvt_<float, short, float>,
cvt_<float, int, float>,
cvt_<float, float, float>,
cvt_<float, double, double>
},
{
cvt_<double, uchar, double>,
cvt_<double, schar, double>,
cvt_<double, ushort, double>,
cvt_<double, short, double>,
cvt_<double, int, double>,
cvt_<double, float, double>,
cvt_<double, double, double>
}
};
const caller_t func = tab[sdepth][ddepth];
func(src, dst, alpha, beta, stream);
}
}}} // namespace cv { namespace gpu { namespace cudev

View File

@ -1,57 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/core/cuda/common.hpp"
namespace cv { namespace gpu { namespace cudev
{
void copyWithMask(PtrStepSzb src, PtrStepSzb dst, size_t elemSize1, int cn, PtrStepSzb mask, bool multiChannelMask, cudaStream_t stream);
template <typename T>
void set(PtrStepSz<T> mat, const T* scalar, int channels, cudaStream_t stream);
template <typename T>
void set(PtrStepSz<T> mat, const T* scalar, PtrStepSzb mask, int channels, cudaStream_t stream);
void convert(PtrStepSzb src, int sdepth, PtrStepSzb dst, int ddepth, double alpha, double beta, cudaStream_t stream);
}}}

View File

@ -46,504 +46,6 @@
using namespace cv;
using namespace cv::gpu;
/////////////////////////// matrix operations /////////////////////////
#ifdef HAVE_CUDA
// CUDA implementation
#include "cuda/matrix_operations.hpp"
namespace
{
template <typename T> void cudaSet_(GpuMat& src, Scalar s, cudaStream_t stream)
{
Scalar_<T> sf = s;
cudev::set<T>(PtrStepSz<T>(src), sf.val, src.channels(), stream);
}
void cudaSet(GpuMat& src, Scalar s, cudaStream_t stream)
{
typedef void (*func_t)(GpuMat& src, Scalar s, cudaStream_t stream);
static const func_t funcs[] =
{
cudaSet_<uchar>,
cudaSet_<schar>,
cudaSet_<ushort>,
cudaSet_<short>,
cudaSet_<int>,
cudaSet_<float>,
cudaSet_<double>
};
funcs[src.depth()](src, s, stream);
}
template <typename T> void cudaSet_(GpuMat& src, Scalar s, PtrStepSzb mask, cudaStream_t stream)
{
Scalar_<T> sf = s;
cudev::set<T>(PtrStepSz<T>(src), sf.val, mask, src.channels(), stream);
}
void cudaSet(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream)
{
typedef void (*func_t)(GpuMat& src, Scalar s, PtrStepSzb mask, cudaStream_t stream);
static const func_t funcs[] =
{
cudaSet_<uchar>,
cudaSet_<schar>,
cudaSet_<ushort>,
cudaSet_<short>,
cudaSet_<int>,
cudaSet_<float>,
cudaSet_<double>
};
funcs[src.depth()](src, s, mask, stream);
}
void cudaCopyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
{
cudev::copyWithMask(src.reshape(1), dst.reshape(1), src.elemSize1(), src.channels(), mask.reshape(1), mask.channels() != 1, stream);
}
void cudaConvert(const GpuMat& src, GpuMat& dst, cudaStream_t stream)
{
cudev::convert(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), 1.0, 0.0, stream);
}
void cudaConvert(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream)
{
cudev::convert(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), alpha, beta, stream);
}
}
// NPP implementation
namespace
{
//////////////////////////////////////////////////////////////////////////
// Convert
template<int SDEPTH, int DDEPTH> struct NppConvertFunc
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI);
};
template<int DDEPTH> struct NppConvertFunc<CV_32F, DDEPTH>
{
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI, NppRoundMode eRoundMode);
};
template<int SDEPTH, int DDEPTH, typename NppConvertFunc<SDEPTH, DDEPTH>::func_ptr func> struct NppCvt
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
static void call(const GpuMat& src, GpuMat& dst, cudaStream_t stream)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), dst.ptr<dst_t>(), static_cast<int>(dst.step), sz) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int DDEPTH, typename NppConvertFunc<CV_32F, DDEPTH>::func_ptr func> struct NppCvt<CV_32F, DDEPTH, func>
{
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
static void call(const GpuMat& src, GpuMat& dst, cudaStream_t stream)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<Npp32f>(), static_cast<int>(src.step), dst.ptr<dst_t>(), static_cast<int>(dst.step), sz, NPP_RND_NEAR) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
//////////////////////////////////////////////////////////////////////////
// Set
template<int SDEPTH, int SCN> struct NppSetFunc
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI);
};
template<int SDEPTH> struct NppSetFunc<SDEPTH, 1>
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI);
};
template<int SCN> struct NppSetFunc<CV_8S, SCN>
{
typedef NppStatus (*func_ptr)(Npp8s values[], Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI);
};
template<> struct NppSetFunc<CV_8S, 1>
{
typedef NppStatus (*func_ptr)(Npp8s val, Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI);
};
template<int SDEPTH, int SCN, typename NppSetFunc<SDEPTH, SCN>::func_ptr func> struct NppSet
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void call(GpuMat& src, Scalar s, cudaStream_t stream)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Scalar_<src_t> nppS = s;
NppStreamHandler h(stream);
nppSafeCall( func(nppS.val, src.ptr<src_t>(), static_cast<int>(src.step), sz) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int SDEPTH, typename NppSetFunc<SDEPTH, 1>::func_ptr func> struct NppSet<SDEPTH, 1, func>
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void call(GpuMat& src, Scalar s, cudaStream_t stream)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Scalar_<src_t> nppS = s;
NppStreamHandler h(stream);
nppSafeCall( func(nppS[0], src.ptr<src_t>(), static_cast<int>(src.step), sz) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int SDEPTH, int SCN> struct NppSetMaskFunc
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
};
template<int SDEPTH> struct NppSetMaskFunc<SDEPTH, 1>
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
};
template<int SDEPTH, int SCN, typename NppSetMaskFunc<SDEPTH, SCN>::func_ptr func> struct NppSetMask
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void call(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Scalar_<src_t> nppS = s;
NppStreamHandler h(stream);
nppSafeCall( func(nppS.val, src.ptr<src_t>(), static_cast<int>(src.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int SDEPTH, typename NppSetMaskFunc<SDEPTH, 1>::func_ptr func> struct NppSetMask<SDEPTH, 1, func>
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void call(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Scalar_<src_t> nppS = s;
NppStreamHandler h(stream);
nppSafeCall( func(nppS[0], src.ptr<src_t>(), static_cast<int>(src.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
//////////////////////////////////////////////////////////////////////////
// CopyMasked
template<int SDEPTH> struct NppCopyWithMaskFunc
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, src_t* pDst, int nDstStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
};
template<int SDEPTH, typename NppCopyWithMaskFunc<SDEPTH>::func_ptr func> struct NppCopyWithMask
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void call(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), dst.ptr<src_t>(), static_cast<int>(dst.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
}
// Dispatcher
namespace
{
void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream = 0)
{
CV_DbgAssert( src.size() == dst.size() && src.type() == dst.type() );
CV_Assert( src.depth() <= CV_64F && src.channels() <= 4 );
CV_Assert( src.size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == src.channels()) );
if (src.depth() == CV_64F)
{
CV_Assert( deviceSupports(NATIVE_DOUBLE) );
}
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream);
static const func_t funcs[7][4] =
{
/* 8U */ {NppCopyWithMask<CV_8U , nppiCopy_8u_C1MR >::call, cudaCopyWithMask, NppCopyWithMask<CV_8U , nppiCopy_8u_C3MR >::call, NppCopyWithMask<CV_8U , nppiCopy_8u_C4MR >::call},
/* 8S */ {cudaCopyWithMask , cudaCopyWithMask, cudaCopyWithMask , cudaCopyWithMask },
/* 16U */ {NppCopyWithMask<CV_16U, nppiCopy_16u_C1MR>::call, cudaCopyWithMask, NppCopyWithMask<CV_16U, nppiCopy_16u_C3MR>::call, NppCopyWithMask<CV_16U, nppiCopy_16u_C4MR>::call},
/* 16S */ {NppCopyWithMask<CV_16S, nppiCopy_16s_C1MR>::call, cudaCopyWithMask, NppCopyWithMask<CV_16S, nppiCopy_16s_C3MR>::call, NppCopyWithMask<CV_16S, nppiCopy_16s_C4MR>::call},
/* 32S */ {NppCopyWithMask<CV_32S, nppiCopy_32s_C1MR>::call, cudaCopyWithMask, NppCopyWithMask<CV_32S, nppiCopy_32s_C3MR>::call, NppCopyWithMask<CV_32S, nppiCopy_32s_C4MR>::call},
/* 32F */ {NppCopyWithMask<CV_32F, nppiCopy_32f_C1MR>::call, cudaCopyWithMask, NppCopyWithMask<CV_32F, nppiCopy_32f_C3MR>::call, NppCopyWithMask<CV_32F, nppiCopy_32f_C4MR>::call},
/* 64F */ {cudaCopyWithMask , cudaCopyWithMask, cudaCopyWithMask , cudaCopyWithMask }
};
const func_t func = mask.channels() == src.channels() ? funcs[src.depth()][src.channels() - 1] : cudaCopyWithMask;
func(src, dst, mask, stream);
}
void convert(const GpuMat& src, GpuMat& dst, cudaStream_t stream = 0)
{
CV_DbgAssert( src.size() == dst.size() && src.channels() == dst.channels() );
CV_Assert( src.depth() <= CV_64F && src.channels() <= 4 );
CV_Assert( dst.depth() <= CV_64F );
if (src.depth() == CV_64F || dst.depth() == CV_64F)
{
CV_Assert( deviceSupports(NATIVE_DOUBLE) );
}
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, cudaStream_t stream);
static const func_t funcs[7][7][4] =
{
{
/* 8U -> 8U */ {0, 0, 0, 0},
/* 8U -> 8S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert },
/* 8U -> 16U */ {NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C1R>::call, cudaConvert, cudaConvert, NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C4R>::call},
/* 8U -> 16S */ {NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C1R>::call, cudaConvert, cudaConvert, NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C4R>::call},
/* 8U -> 32S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert },
/* 8U -> 32F */ {NppCvt<CV_8U, CV_32F, nppiConvert_8u32f_C1R>::call, cudaConvert, cudaConvert, cudaConvert },
/* 8U -> 64F */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert }
},
{
/* 8S -> 8U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 8S -> 8S */ {0,0,0,0},
/* 8S -> 16U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 8S -> 16S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 8S -> 32S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 8S -> 32F */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 8S -> 64F */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}
},
{
/* 16U -> 8U */ {NppCvt<CV_16U, CV_8U , nppiConvert_16u8u_C1R >::call, cudaConvert, cudaConvert, NppCvt<CV_16U, CV_8U, nppiConvert_16u8u_C4R>::call},
/* 16U -> 8S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert },
/* 16U -> 16U */ {0,0,0,0},
/* 16U -> 16S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert },
/* 16U -> 32S */ {NppCvt<CV_16U, CV_32S, nppiConvert_16u32s_C1R>::call, cudaConvert, cudaConvert, cudaConvert },
/* 16U -> 32F */ {NppCvt<CV_16U, CV_32F, nppiConvert_16u32f_C1R>::call, cudaConvert, cudaConvert, cudaConvert },
/* 16U -> 64F */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert }
},
{
/* 16S -> 8U */ {NppCvt<CV_16S, CV_8U , nppiConvert_16s8u_C1R >::call, cudaConvert, cudaConvert, NppCvt<CV_16S, CV_8U, nppiConvert_16s8u_C4R>::call},
/* 16S -> 8S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert },
/* 16S -> 16U */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert },
/* 16S -> 16S */ {0,0,0,0},
/* 16S -> 32S */ {NppCvt<CV_16S, CV_32S, nppiConvert_16s32s_C1R>::call, cudaConvert, cudaConvert, cudaConvert },
/* 16S -> 32F */ {NppCvt<CV_16S, CV_32F, nppiConvert_16s32f_C1R>::call, cudaConvert, cudaConvert, cudaConvert },
/* 16S -> 64F */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert }
},
{
/* 32S -> 8U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 32S -> 8S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 32S -> 16U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 32S -> 16S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 32S -> 32S */ {0,0,0,0},
/* 32S -> 32F */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 32S -> 64F */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}
},
{
/* 32F -> 8U */ {NppCvt<CV_32F, CV_8U , nppiConvert_32f8u_C1R >::call, cudaConvert, cudaConvert, cudaConvert},
/* 32F -> 8S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert},
/* 32F -> 16U */ {NppCvt<CV_32F, CV_16U, nppiConvert_32f16u_C1R>::call, cudaConvert, cudaConvert, cudaConvert},
/* 32F -> 16S */ {NppCvt<CV_32F, CV_16S, nppiConvert_32f16s_C1R>::call, cudaConvert, cudaConvert, cudaConvert},
/* 32F -> 32S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert},
/* 32F -> 32F */ {0,0,0,0},
/* 32F -> 64F */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert}
},
{
/* 64F -> 8U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 64F -> 8S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 64F -> 16U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 64F -> 16S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 64F -> 32S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 64F -> 32F */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert},
/* 64F -> 64F */ {0,0,0,0}
}
};
const bool aligned = isAligned(src.data, 16) && isAligned(dst.data, 16);
if (!aligned)
{
cudaConvert(src, dst, stream);
return;
}
const func_t func = funcs[src.depth()][dst.depth()][src.channels() - 1];
CV_DbgAssert( func != 0 );
func(src, dst, stream);
}
void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream = 0)
{
CV_DbgAssert( src.size() == dst.size() && src.channels() == dst.channels() );
CV_Assert( src.depth() <= CV_64F && src.channels() <= 4 );
CV_Assert( dst.depth() <= CV_64F );
if (src.depth() == CV_64F || dst.depth() == CV_64F)
{
CV_Assert( deviceSupports(NATIVE_DOUBLE) );
}
cudaConvert(src, dst, alpha, beta, stream);
}
void set(GpuMat& m, Scalar s, cudaStream_t stream = 0)
{
if (s[0] == 0.0 && s[1] == 0.0 && s[2] == 0.0 && s[3] == 0.0)
{
if (stream)
cudaSafeCall( cudaMemset2DAsync(m.data, m.step, 0, m.cols * m.elemSize(), m.rows, stream) );
else
cudaSafeCall( cudaMemset2D(m.data, m.step, 0, m.cols * m.elemSize(), m.rows) );
return;
}
if (m.depth() == CV_8U)
{
int cn = m.channels();
if (cn == 1 || (cn == 2 && s[0] == s[1]) || (cn == 3 && s[0] == s[1] && s[0] == s[2]) || (cn == 4 && s[0] == s[1] && s[0] == s[2] && s[0] == s[3]))
{
int val = saturate_cast<uchar>(s[0]);
if (stream)
cudaSafeCall( cudaMemset2DAsync(m.data, m.step, val, m.cols * m.elemSize(), m.rows, stream) );
else
cudaSafeCall( cudaMemset2D(m.data, m.step, val, m.cols * m.elemSize(), m.rows) );
return;
}
}
typedef void (*func_t)(GpuMat& src, Scalar s, cudaStream_t stream);
static const func_t funcs[7][4] =
{
{NppSet<CV_8U , 1, nppiSet_8u_C1R >::call, cudaSet , cudaSet , NppSet<CV_8U , 4, nppiSet_8u_C4R >::call},
{NppSet<CV_8S , 1, nppiSet_8s_C1R >::call, NppSet<CV_8S , 2, nppiSet_8s_C2R >::call, NppSet<CV_8S, 3, nppiSet_8s_C3R>::call, NppSet<CV_8S , 4, nppiSet_8s_C4R >::call},
{NppSet<CV_16U, 1, nppiSet_16u_C1R>::call, NppSet<CV_16U, 2, nppiSet_16u_C2R>::call, cudaSet , NppSet<CV_16U, 4, nppiSet_16u_C4R>::call},
{NppSet<CV_16S, 1, nppiSet_16s_C1R>::call, NppSet<CV_16S, 2, nppiSet_16s_C2R>::call, cudaSet , NppSet<CV_16S, 4, nppiSet_16s_C4R>::call},
{NppSet<CV_32S, 1, nppiSet_32s_C1R>::call, cudaSet , cudaSet , NppSet<CV_32S, 4, nppiSet_32s_C4R>::call},
{NppSet<CV_32F, 1, nppiSet_32f_C1R>::call, cudaSet , cudaSet , NppSet<CV_32F, 4, nppiSet_32f_C4R>::call},
{cudaSet , cudaSet , cudaSet , cudaSet }
};
CV_Assert( m.depth() <= CV_64F && m.channels() <= 4 );
if (m.depth() == CV_64F)
{
CV_Assert( deviceSupports(NATIVE_DOUBLE) );
}
funcs[m.depth()][m.channels() - 1](m, s, stream);
}
void set(GpuMat& m, Scalar s, const GpuMat& mask, cudaStream_t stream = 0)
{
CV_DbgAssert( !mask.empty() );
CV_Assert( m.depth() <= CV_64F && m.channels() <= 4 );
if (m.depth() == CV_64F)
{
CV_Assert( deviceSupports(NATIVE_DOUBLE) );
}
typedef void (*func_t)(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream);
static const func_t funcs[7][4] =
{
{NppSetMask<CV_8U , 1, nppiSet_8u_C1MR >::call, cudaSet, cudaSet, NppSetMask<CV_8U , 4, nppiSet_8u_C4MR >::call},
{cudaSet , cudaSet, cudaSet, cudaSet },
{NppSetMask<CV_16U, 1, nppiSet_16u_C1MR>::call, cudaSet, cudaSet, NppSetMask<CV_16U, 4, nppiSet_16u_C4MR>::call},
{NppSetMask<CV_16S, 1, nppiSet_16s_C1MR>::call, cudaSet, cudaSet, NppSetMask<CV_16S, 4, nppiSet_16s_C4MR>::call},
{NppSetMask<CV_32S, 1, nppiSet_32s_C1MR>::call, cudaSet, cudaSet, NppSetMask<CV_32S, 4, nppiSet_32s_C4MR>::call},
{NppSetMask<CV_32F, 1, nppiSet_32f_C1MR>::call, cudaSet, cudaSet, NppSetMask<CV_32F, 4, nppiSet_32f_C4MR>::call},
{cudaSet , cudaSet, cudaSet, cudaSet }
};
funcs[m.depth()][m.channels() - 1](m, s, mask, stream);
}
}
#endif // HAVE_CUDA
cv::gpu::GpuMat::GpuMat(int rows_, int cols_, int type_, void* data_, size_t step_) :
flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(rows_), cols(cols_),
step(step_), data((uchar*)data_), refcount(0),
@ -651,288 +153,6 @@ cv::gpu::GpuMat::GpuMat(const GpuMat& m, Rect roi) :
rows = cols = 0;
}
void cv::gpu::GpuMat::create(int _rows, int _cols, int _type)
{
#ifndef HAVE_CUDA
(void) _rows;
(void) _cols;
(void) _type;
throw_no_cuda();
#else
_type &= Mat::TYPE_MASK;
if (rows == _rows && cols == _cols && type() == _type && data)
return;
if (data)
release();
CV_DbgAssert( _rows >= 0 && _cols >= 0 );
if (_rows > 0 && _cols > 0)
{
flags = Mat::MAGIC_VAL + _type;
rows = _rows;
cols = _cols;
size_t esz = elemSize();
void* devPtr;
if (rows > 1 && cols > 1)
{
cudaSafeCall( cudaMallocPitch(&devPtr, &step, esz * cols, rows) );
}
else
{
// Single row or single column must be continuous
cudaSafeCall( cudaMalloc(&devPtr, esz * cols * rows) );
step = esz * cols;
}
if (esz * cols == step)
flags |= Mat::CONTINUOUS_FLAG;
int64 _nettosize = static_cast<int64>(step) * rows;
size_t nettosize = static_cast<size_t>(_nettosize);
datastart = data = static_cast<uchar*>(devPtr);
dataend = data + nettosize;
refcount = static_cast<int*>(fastMalloc(sizeof(*refcount)));
*refcount = 1;
}
#endif
}
void cv::gpu::GpuMat::release()
{
#ifdef HAVE_CUDA
if (refcount && CV_XADD(refcount, -1) == 1)
{
cudaFree(datastart);
fastFree(refcount);
}
data = datastart = dataend = 0;
step = rows = cols = 0;
refcount = 0;
#endif
}
void cv::gpu::GpuMat::upload(InputArray arr)
{
#ifndef HAVE_CUDA
(void) arr;
throw_no_cuda();
#else
Mat mat = arr.getMat();
CV_DbgAssert( !mat.empty() );
create(mat.size(), mat.type());
cudaSafeCall( cudaMemcpy2D(data, step, mat.data, mat.step, cols * elemSize(), rows, cudaMemcpyHostToDevice) );
#endif
}
void cv::gpu::GpuMat::upload(InputArray arr, Stream& _stream)
{
#ifndef HAVE_CUDA
(void) arr;
(void) _stream;
throw_no_cuda();
#else
Mat mat = arr.getMat();
CV_DbgAssert( !mat.empty() );
create(mat.size(), mat.type());
cudaStream_t stream = StreamAccessor::getStream(_stream);
cudaSafeCall( cudaMemcpy2DAsync(data, step, mat.data, mat.step, cols * elemSize(), rows, cudaMemcpyHostToDevice, stream) );
#endif
}
void cv::gpu::GpuMat::download(OutputArray _dst) const
{
#ifndef HAVE_CUDA
(void) _dst;
throw_no_cuda();
#else
CV_DbgAssert( !empty() );
_dst.create(size(), type());
Mat dst = _dst.getMat();
cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToHost) );
#endif
}
void cv::gpu::GpuMat::download(OutputArray _dst, Stream& _stream) const
{
#ifndef HAVE_CUDA
(void) _dst;
(void) _stream;
throw_no_cuda();
#else
CV_DbgAssert( !empty() );
_dst.create(size(), type());
Mat dst = _dst.getMat();
cudaStream_t stream = StreamAccessor::getStream(_stream);
cudaSafeCall( cudaMemcpy2DAsync(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToHost, stream) );
#endif
}
void cv::gpu::GpuMat::copyTo(OutputArray _dst) const
{
#ifndef HAVE_CUDA
(void) _dst;
throw_no_cuda();
#else
CV_DbgAssert( !empty() );
_dst.create(size(), type());
GpuMat dst = _dst.getGpuMat();
cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToDevice) );
#endif
}
void cv::gpu::GpuMat::copyTo(OutputArray _dst, Stream& _stream) const
{
#ifndef HAVE_CUDA
(void) _dst;
(void) _stream;
throw_no_cuda();
#else
CV_DbgAssert( !empty() );
_dst.create(size(), type());
GpuMat dst = _dst.getGpuMat();
cudaStream_t stream = StreamAccessor::getStream(_stream);
cudaSafeCall( cudaMemcpy2DAsync(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToDevice, stream) );
#endif
}
void cv::gpu::GpuMat::copyTo(OutputArray _dst, InputArray _mask, Stream& _stream) const
{
#ifndef HAVE_CUDA
(void) _dst;
(void) _mask;
(void) _stream;
throw_no_cuda();
#else
CV_DbgAssert( !empty() );
_dst.create(size(), type());
GpuMat dst = _dst.getGpuMat();
GpuMat mask = _mask.getGpuMat();
cudaStream_t stream = StreamAccessor::getStream(_stream);
::copyWithMask(*this, dst, mask, stream);
#endif
}
GpuMat& cv::gpu::GpuMat::setTo(Scalar s, Stream& _stream)
{
#ifndef HAVE_CUDA
(void) s;
(void) _stream;
throw_no_cuda();
#else
CV_DbgAssert( !empty() );
cudaStream_t stream = StreamAccessor::getStream(_stream);
::set(*this, s, stream);
#endif
return *this;
}
GpuMat& cv::gpu::GpuMat::setTo(Scalar s, InputArray _mask, Stream& _stream)
{
#ifndef HAVE_CUDA
(void) s;
(void) _mask;
(void) _stream;
throw_no_cuda();
#else
CV_DbgAssert( !empty() );
GpuMat mask = _mask.getGpuMat();
cudaStream_t stream = StreamAccessor::getStream(_stream);
::set(*this, s, mask, stream);
#endif
return *this;
}
void cv::gpu::GpuMat::convertTo(OutputArray _dst, int rtype, Stream& _stream) const
{
#ifndef HAVE_CUDA
(void) _dst;
(void) rtype;
(void) _stream;
throw_no_cuda();
#else
if (rtype < 0)
rtype = type();
else
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels());
const int sdepth = depth();
const int ddepth = CV_MAT_DEPTH(rtype);
if (sdepth == ddepth)
{
if (_stream)
copyTo(_dst, _stream);
else
copyTo(_dst);
return;
}
GpuMat src = *this;
_dst.create(size(), rtype);
GpuMat dst = _dst.getGpuMat();
cudaStream_t stream = StreamAccessor::getStream(_stream);
::convert(src, dst, stream);
#endif
}
void cv::gpu::GpuMat::convertTo(OutputArray _dst, int rtype, double alpha, double beta, Stream& _stream) const
{
#ifndef HAVE_CUDA
(void) _dst;
(void) rtype;
(void) alpha;
(void) beta;
(void) _stream;
throw_no_cuda();
#else
if (rtype < 0)
rtype = type();
else
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels());
GpuMat src = *this;
_dst.create(size(), rtype);
GpuMat dst = _dst.getGpuMat();
cudaStream_t stream = StreamAccessor::getStream(_stream);
::convert(src, dst, alpha, beta, stream);
#endif
}
GpuMat cv::gpu::GpuMat::reshape(int new_cn, int new_rows) const
{
GpuMat hdr = *this;
@ -1124,3 +344,101 @@ GpuMat cv::gpu::allocMatFromBuf(int rows, int cols, int type, GpuMat& mat)
return mat = GpuMat(rows, cols, type);
}
#ifndef HAVE_CUDA
void cv::gpu::GpuMat::create(int _rows, int _cols, int _type)
{
(void) _rows;
(void) _cols;
(void) _type;
throw_no_cuda();
}
void cv::gpu::GpuMat::release()
{
}
void cv::gpu::GpuMat::upload(InputArray arr)
{
(void) arr;
throw_no_cuda();
}
void cv::gpu::GpuMat::upload(InputArray arr, Stream& _stream)
{
(void) arr;
(void) _stream;
throw_no_cuda();
}
void cv::gpu::GpuMat::download(OutputArray _dst) const
{
(void) _dst;
throw_no_cuda();
}
void cv::gpu::GpuMat::download(OutputArray _dst, Stream& _stream) const
{
(void) _dst;
(void) _stream;
throw_no_cuda();
}
void cv::gpu::GpuMat::copyTo(OutputArray _dst) const
{
(void) _dst;
throw_no_cuda();
}
void cv::gpu::GpuMat::copyTo(OutputArray _dst, Stream& _stream) const
{
(void) _dst;
(void) _stream;
throw_no_cuda();
}
void cv::gpu::GpuMat::copyTo(OutputArray _dst, InputArray _mask, Stream& _stream) const
{
(void) _dst;
(void) _mask;
(void) _stream;
throw_no_cuda();
}
GpuMat& cv::gpu::GpuMat::setTo(Scalar s, Stream& _stream)
{
(void) s;
(void) _stream;
throw_no_cuda();
return *this;
}
GpuMat& cv::gpu::GpuMat::setTo(Scalar s, InputArray _mask, Stream& _stream)
{
(void) s;
(void) _mask;
(void) _stream;
throw_no_cuda();
return *this;
}
void cv::gpu::GpuMat::convertTo(OutputArray _dst, int rtype, Stream& _stream) const
{
(void) _dst;
(void) rtype;
(void) _stream;
throw_no_cuda();
}
void cv::gpu::GpuMat::convertTo(OutputArray _dst, int rtype, double alpha, double beta, Stream& _stream) const
{
(void) _dst;
(void) rtype;
(void) alpha;
(void) beta;
(void) _stream;
throw_no_cuda();
}
#endif