mirror of
https://github.com/opencv/opencv.git
synced 2025-06-12 04:12:52 +08:00
ml: don't use "getSubVector()" with 2D matrix
It is designed for 1D vectors only
This commit is contained in:
parent
7ee69740e8
commit
6e84abc746
@ -239,7 +239,18 @@ public:
|
||||
/** @brief Returns vector of symbolic names captured in loadFromCSV() */
|
||||
CV_WRAP void getNames(std::vector<String>& names) const;
|
||||
|
||||
CV_WRAP static Mat getSubVector(const Mat& vec, const Mat& idx);
|
||||
/** @brief Extract from 1D vector elements specified by passed indexes.
|
||||
@param vec input vector (supported types: CV_32S, CV_32F, CV_64F)
|
||||
@param idx 1D index vector
|
||||
*/
|
||||
static CV_WRAP Mat getSubVector(const Mat& vec, const Mat& idx);
|
||||
|
||||
/** @brief Extract from matrix rows/cols specified by passed indexes.
|
||||
@param matrix input matrix (supported types: CV_32S, CV_32F, CV_64F)
|
||||
@param idx 1D index vector
|
||||
@param layout specifies to extract rows (cv::ml::ROW_SAMPLES) or to extract columns (cv::ml::COL_SAMPLES)
|
||||
*/
|
||||
static CV_WRAP Mat getSubMatrix(const Mat& matrix, const Mat& idx, int layout);
|
||||
|
||||
/** @brief Reads the dataset from a .csv file and returns the ready-to-use training data.
|
||||
|
||||
|
@ -43,6 +43,8 @@
|
||||
#include <algorithm>
|
||||
#include <iterator>
|
||||
|
||||
#include <opencv2/core/utils/logger.hpp>
|
||||
|
||||
namespace cv { namespace ml {
|
||||
|
||||
static const float MISSED_VAL = TrainData::missingValue();
|
||||
@ -54,69 +56,65 @@ Mat TrainData::getTestSamples() const
|
||||
{
|
||||
Mat idx = getTestSampleIdx();
|
||||
Mat samples = getSamples();
|
||||
return idx.empty() ? Mat() : getSubVector(samples, idx);
|
||||
return idx.empty() ? Mat() : getSubMatrix(samples, idx, getLayout());
|
||||
}
|
||||
|
||||
Mat TrainData::getSubVector(const Mat& vec, const Mat& idx)
|
||||
{
|
||||
if( idx.empty() )
|
||||
return vec;
|
||||
int i, j, n = idx.checkVector(1, CV_32S);
|
||||
int type = vec.type();
|
||||
CV_Assert( type == CV_32S || type == CV_32F || type == CV_64F );
|
||||
int dims = 1, m;
|
||||
if (!(vec.cols == 1 || vec.rows == 1))
|
||||
CV_LOG_WARNING(NULL, "'getSubVector(const Mat& vec, const Mat& idx)' call with non-1D input is deprecated. It is not designed to work with 2D matrixes (especially with 'cv::ml::COL_SAMPLE' layout).");
|
||||
return getSubMatrix(vec, idx, vec.rows == 1 ? cv::ml::COL_SAMPLE : cv::ml::ROW_SAMPLE);
|
||||
}
|
||||
|
||||
if( vec.cols == 1 || vec.rows == 1 )
|
||||
template<typename T>
|
||||
Mat getSubMatrixImpl(const Mat& m, const Mat& idx, int layout)
|
||||
{
|
||||
int nidx = idx.checkVector(1, CV_32S);
|
||||
int dims = m.cols, nsamples = m.rows;
|
||||
|
||||
Mat subm;
|
||||
if (layout == COL_SAMPLE)
|
||||
{
|
||||
dims = 1;
|
||||
m = vec.cols + vec.rows - 1;
|
||||
std::swap(dims, nsamples);
|
||||
subm.create(dims, nidx, m.type());
|
||||
}
|
||||
else
|
||||
{
|
||||
dims = vec.cols;
|
||||
m = vec.rows;
|
||||
subm.create(nidx, dims, m.type());
|
||||
}
|
||||
|
||||
Mat subvec;
|
||||
for (int i = 0; i < nidx; i++)
|
||||
{
|
||||
int k = idx.at<int>(i); CV_CheckGE(k, 0, "Bad idx"); CV_CheckLT(k, nsamples, "Bad idx or layout");
|
||||
if (dims == 1)
|
||||
{
|
||||
subm.at<T>(i) = m.at<T>(k); // at() has "transparent" access for 1D col-based / row-based vectors.
|
||||
}
|
||||
else if (layout == COL_SAMPLE)
|
||||
{
|
||||
for (int j = 0; j < dims; j++)
|
||||
subm.at<T>(j, i) = m.at<T>(j, k);
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int j = 0; j < dims; j++)
|
||||
subm.at<T>(i, j) = m.at<T>(k, j);
|
||||
}
|
||||
}
|
||||
return subm;
|
||||
}
|
||||
|
||||
if( vec.cols == m )
|
||||
subvec.create(dims, n, type);
|
||||
else
|
||||
subvec.create(n, dims, type);
|
||||
if( type == CV_32S )
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
int k = idx.at<int>(i);
|
||||
CV_Assert( 0 <= k && k < m );
|
||||
if( dims == 1 )
|
||||
subvec.at<int>(i) = vec.at<int>(k);
|
||||
else
|
||||
for( j = 0; j < dims; j++ )
|
||||
subvec.at<int>(i, j) = vec.at<int>(k, j);
|
||||
}
|
||||
else if( type == CV_32F )
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
int k = idx.at<int>(i);
|
||||
CV_Assert( 0 <= k && k < m );
|
||||
if( dims == 1 )
|
||||
subvec.at<float>(i) = vec.at<float>(k);
|
||||
else
|
||||
for( j = 0; j < dims; j++ )
|
||||
subvec.at<float>(i, j) = vec.at<float>(k, j);
|
||||
}
|
||||
else
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
int k = idx.at<int>(i);
|
||||
CV_Assert( 0 <= k && k < m );
|
||||
if( dims == 1 )
|
||||
subvec.at<double>(i) = vec.at<double>(k);
|
||||
else
|
||||
for( j = 0; j < dims; j++ )
|
||||
subvec.at<double>(i, j) = vec.at<double>(k, j);
|
||||
}
|
||||
return subvec;
|
||||
Mat TrainData::getSubMatrix(const Mat& m, const Mat& idx, int layout)
|
||||
{
|
||||
if (idx.empty())
|
||||
return m;
|
||||
int type = m.type();
|
||||
CV_CheckType(type, type == CV_32S || type == CV_32F || type == CV_64F, "");
|
||||
if (type == CV_32S || type == CV_32F) // 32-bit
|
||||
return getSubMatrixImpl<int>(m, idx, layout);
|
||||
if (type == CV_64F) // 64-bit
|
||||
return getSubMatrixImpl<double>(m, idx, layout);
|
||||
CV_Error(Error::StsInternal, "");
|
||||
}
|
||||
|
||||
class TrainDataImpl CV_FINAL : public TrainData
|
||||
@ -172,30 +170,30 @@ public:
|
||||
}
|
||||
Mat getTrainSampleWeights() const CV_OVERRIDE
|
||||
{
|
||||
return getSubVector(sampleWeights, getTrainSampleIdx());
|
||||
return getSubVector(sampleWeights, getTrainSampleIdx()); // 1D-vector
|
||||
}
|
||||
Mat getTestSampleWeights() const CV_OVERRIDE
|
||||
{
|
||||
Mat idx = getTestSampleIdx();
|
||||
return idx.empty() ? Mat() : getSubVector(sampleWeights, idx);
|
||||
return idx.empty() ? Mat() : getSubVector(sampleWeights, idx); // 1D-vector
|
||||
}
|
||||
Mat getTrainResponses() const CV_OVERRIDE
|
||||
{
|
||||
return getSubVector(responses, getTrainSampleIdx());
|
||||
return getSubMatrix(responses, getTrainSampleIdx(), cv::ml::ROW_SAMPLE); // col-based responses are transposed in setData()
|
||||
}
|
||||
Mat getTrainNormCatResponses() const CV_OVERRIDE
|
||||
{
|
||||
return getSubVector(normCatResponses, getTrainSampleIdx());
|
||||
return getSubMatrix(normCatResponses, getTrainSampleIdx(), cv::ml::ROW_SAMPLE); // like 'responses'
|
||||
}
|
||||
Mat getTestResponses() const CV_OVERRIDE
|
||||
{
|
||||
Mat idx = getTestSampleIdx();
|
||||
return idx.empty() ? Mat() : getSubVector(responses, idx);
|
||||
return idx.empty() ? Mat() : getSubMatrix(responses, idx, cv::ml::ROW_SAMPLE); // col-based responses are transposed in setData()
|
||||
}
|
||||
Mat getTestNormCatResponses() const CV_OVERRIDE
|
||||
{
|
||||
Mat idx = getTestSampleIdx();
|
||||
return idx.empty() ? Mat() : getSubVector(normCatResponses, idx);
|
||||
return idx.empty() ? Mat() : getSubMatrix(normCatResponses, idx, cv::ml::ROW_SAMPLE); // like 'responses'
|
||||
}
|
||||
Mat getNormCatResponses() const CV_OVERRIDE { return normCatResponses; }
|
||||
Mat getClassLabels() const CV_OVERRIDE { return classLabels; }
|
||||
|
Loading…
Reference in New Issue
Block a user