mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 03:30:34 +08:00
Further optimize bfmatcher by passing macros.
This commit is contained in:
parent
113b7584e0
commit
6eefd276cf
@ -16,6 +16,7 @@
|
||||
//
|
||||
// @Authors
|
||||
// Nathan, liujun@multicorewareinc.com
|
||||
// Peng Xiao, pengxiao@outlook.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
@ -61,6 +62,8 @@ namespace cv
|
||||
}
|
||||
}
|
||||
|
||||
static const int OPT_SIZE = 100;
|
||||
|
||||
template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ >
|
||||
void matchUnrolledCached(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
|
||||
const oclMat &trainIdx, const oclMat &distance, int distType)
|
||||
@ -74,9 +77,9 @@ void matchUnrolledCached(const oclMat &query, const oclMat &train, const oclMat
|
||||
int m_size = MAX_DESC_LEN;
|
||||
vector< pair<size_t, const void *> > args;
|
||||
|
||||
static const int OPT_SIZE = 40;
|
||||
char opt [OPT_SIZE] = "";
|
||||
sprintf(opt, "-D block_size=%d -D max_desc_len=%d", block_size, m_size);
|
||||
sprintf(opt, "-D distType=%d -D block_size=%d -D max_desc_len=%d", distType, block_size, m_size);
|
||||
|
||||
if(globalSize[0] != 0)
|
||||
{
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data ));
|
||||
@ -90,7 +93,6 @@ void matchUnrolledCached(const oclMat &query, const oclMat &train, const oclMat
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&distType ));
|
||||
|
||||
std::string kernelName = "BruteForceMatch_UnrollMatch";
|
||||
|
||||
@ -116,9 +118,9 @@ void match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
|
||||
int block_size = BLOCK_SIZE;
|
||||
vector< pair<size_t, const void *> > args;
|
||||
|
||||
static const int OPT_SIZE = 40;
|
||||
char opt [OPT_SIZE] = "";
|
||||
sprintf(opt, "-D block_size=%d", block_size);
|
||||
sprintf(opt, "-D distType=%d -D block_size=%d", distType, block_size);
|
||||
|
||||
if(globalSize[0] != 0)
|
||||
{
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data ));
|
||||
@ -132,7 +134,6 @@ void match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&distType ));
|
||||
|
||||
std::string kernelName = "BruteForceMatch_Match";
|
||||
|
||||
@ -160,9 +161,9 @@ void matchUnrolledCached(const oclMat &query, const oclMat &train, float maxDist
|
||||
int m_size = MAX_DESC_LEN;
|
||||
vector< pair<size_t, const void *> > args;
|
||||
|
||||
static const int OPT_SIZE = 40;
|
||||
char opt [OPT_SIZE] = "";
|
||||
sprintf(opt, "-D block_size=%d -D max_desc_len=%d", block_size, m_size);
|
||||
sprintf(opt, "-D distType=%d -D block_size=%d -D max_desc_len=%d", distType, block_size, m_size);
|
||||
|
||||
if(globalSize[0] != 0)
|
||||
{
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data ));
|
||||
@ -180,7 +181,6 @@ void matchUnrolledCached(const oclMat &query, const oclMat &train, float maxDist
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&trainIdx.cols ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&trainIdx.step ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&distType ));
|
||||
|
||||
std::string kernelName = "BruteForceMatch_RadiusUnrollMatch";
|
||||
|
||||
@ -201,9 +201,9 @@ void radius_match(const oclMat &query, const oclMat &train, float maxDistance, c
|
||||
int block_size = BLOCK_SIZE;
|
||||
vector< pair<size_t, const void *> > args;
|
||||
|
||||
static const int OPT_SIZE = 40;
|
||||
char opt [OPT_SIZE] = "";
|
||||
sprintf(opt, "-D block_size=%d", block_size);
|
||||
sprintf(opt, "-D distType=%d -D block_size=%d", distType, block_size);
|
||||
|
||||
if(globalSize[0] != 0)
|
||||
{
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data ));
|
||||
@ -221,7 +221,6 @@ void radius_match(const oclMat &query, const oclMat &train, float maxDistance, c
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&trainIdx.cols ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&trainIdx.step ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&distType ));
|
||||
|
||||
std::string kernelName = "BruteForceMatch_RadiusMatch";
|
||||
|
||||
@ -300,9 +299,9 @@ void knn_matchUnrolledCached(const oclMat &query, const oclMat &train, const ocl
|
||||
int m_size = MAX_DESC_LEN;
|
||||
vector< pair<size_t, const void *> > args;
|
||||
|
||||
static const int OPT_SIZE = 40;
|
||||
char opt [OPT_SIZE] = "";
|
||||
sprintf(opt, "-D block_size=%d -D max_desc_len=%d", block_size, m_size);
|
||||
sprintf(opt, "-D distType=%d -D block_size=%d -D max_desc_len=%d", distType, block_size, m_size);
|
||||
|
||||
if(globalSize[0] != 0)
|
||||
{
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data ));
|
||||
@ -316,7 +315,6 @@ void knn_matchUnrolledCached(const oclMat &query, const oclMat &train, const ocl
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&distType ));
|
||||
|
||||
std::string kernelName = "BruteForceMatch_knnUnrollMatch";
|
||||
|
||||
@ -335,9 +333,9 @@ void knn_match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
|
||||
int block_size = BLOCK_SIZE;
|
||||
vector< pair<size_t, const void *> > args;
|
||||
|
||||
static const int OPT_SIZE = 40;
|
||||
char opt [OPT_SIZE] = "";
|
||||
sprintf(opt, "-D block_size=%d", block_size);
|
||||
sprintf(opt, "-D distType=%d -D block_size=%d", distType, block_size);
|
||||
|
||||
if(globalSize[0] != 0)
|
||||
{
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data ));
|
||||
@ -351,7 +349,6 @@ void knn_match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&distType ));
|
||||
|
||||
std::string kernelName = "BruteForceMatch_knnMatch";
|
||||
|
||||
@ -370,6 +367,8 @@ void calcDistanceUnrolled(const oclMat &query, const oclMat &train, const oclMat
|
||||
int m_size = MAX_DESC_LEN;
|
||||
vector< pair<size_t, const void *> > args;
|
||||
|
||||
char opt [OPT_SIZE] = "";
|
||||
sprintf(opt, "-D distType=%d", distType);
|
||||
if(globalSize[0] != 0)
|
||||
{
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data ));
|
||||
@ -384,11 +383,10 @@ void calcDistanceUnrolled(const oclMat &query, const oclMat &train, const oclMat
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&distType ));
|
||||
|
||||
std::string kernelName = "BruteForceMatch_calcDistanceUnrolled";
|
||||
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth());
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth(), opt);
|
||||
}
|
||||
}
|
||||
|
||||
@ -402,6 +400,8 @@ void calcDistance(const oclMat &query, const oclMat &train, const oclMat &/*mask
|
||||
int block_size = BLOCK_SIZE;
|
||||
vector< pair<size_t, const void *> > args;
|
||||
|
||||
char opt [OPT_SIZE] = "";
|
||||
sprintf(opt, "-D distType=%d", distType);
|
||||
if(globalSize[0] != 0)
|
||||
{
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data ));
|
||||
@ -415,11 +415,10 @@ void calcDistance(const oclMat &query, const oclMat &train, const oclMat &/*mask
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&train.rows ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&query.step ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&distType ));
|
||||
|
||||
std::string kernelName = "BruteForceMatch_calcDistance";
|
||||
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth());
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth(), opt);
|
||||
}
|
||||
}
|
||||
|
||||
@ -676,12 +675,14 @@ void cv::ocl::BruteForceMatcher_OCL_base::matchCollection(const oclMat &query, c
|
||||
}
|
||||
|
||||
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
|
||||
|
||||
const int nQuery = query.rows;
|
||||
|
||||
ensureSizeIsEnough(1, nQuery, CV_32S, trainIdx);
|
||||
ensureSizeIsEnough(1, nQuery, CV_32S, imgIdx);
|
||||
ensureSizeIsEnough(1, nQuery, CV_32F, distance);
|
||||
|
||||
|
||||
matchDispatcher(query, (const oclMat *)trainCollection.ptr(), trainCollection.cols, masks, trainIdx, imgIdx, distance, distType);
|
||||
exit:
|
||||
return;
|
||||
@ -771,6 +772,7 @@ void cv::ocl::BruteForceMatcher_OCL_base::knnMatchSingle(const oclMat &query, co
|
||||
|
||||
const int nQuery = query.rows;
|
||||
const int nTrain = train.rows;
|
||||
|
||||
if (k == 2)
|
||||
{
|
||||
ensureSizeIsEnough(1, nQuery, CV_32SC2, trainIdx);
|
||||
@ -1045,6 +1047,7 @@ void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchSingle(const oclMat &query,
|
||||
|
||||
const int nQuery = query.rows;
|
||||
const int nTrain = train.rows;
|
||||
|
||||
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
|
||||
CV_Assert(train.type() == query.type() && train.cols == query.cols);
|
||||
CV_Assert(trainIdx.empty() || (trainIdx.rows == query.rows && trainIdx.size() == distance.size()));
|
||||
|
@ -66,37 +66,30 @@ int bit1Count(float x)
|
||||
return (float)c;
|
||||
}
|
||||
|
||||
#ifndef distType
|
||||
#define distType 0
|
||||
#endif
|
||||
|
||||
#if (distType == 0)
|
||||
#define DIST(x, y) fabs((x) - (y))
|
||||
#elif (distType == 1)
|
||||
#define DIST(x, y) (((x) - (y)) * ((x) - (y)))
|
||||
#elif (distType == 2)
|
||||
#define DIST(x, y) bit1Count((uint)(x) ^ (uint)(y))
|
||||
#endif
|
||||
|
||||
|
||||
float reduce_block(__local float *s_query,
|
||||
__local float *s_train,
|
||||
int lidx,
|
||||
int lidy,
|
||||
int distType
|
||||
int lidy
|
||||
)
|
||||
{
|
||||
/* there are threee types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
|
||||
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
|
||||
float result = 0;
|
||||
switch(distType)
|
||||
#pragma unroll
|
||||
for (int j = 0 ; j < block_size ; j++)
|
||||
{
|
||||
case 0:
|
||||
for (int j = 0 ; j < block_size ; j++)
|
||||
{
|
||||
result += fabs(s_query[lidy * block_size + j] - s_train[j * block_size + lidx]);
|
||||
}
|
||||
break;
|
||||
case 1:
|
||||
for (int j = 0 ; j < block_size ; j++)
|
||||
{
|
||||
float qr = s_query[lidy * block_size + j] - s_train[j * block_size + lidx];
|
||||
result += qr * qr;
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
for (int j = 0 ; j < block_size ; j++)
|
||||
{
|
||||
result += bit1Count((uint)s_query[lidy * block_size + j] ^ (uint)s_train[(uint)j * block_size + lidx]);
|
||||
}
|
||||
break;
|
||||
result += DIST(s_query[lidy * block_size + j], s_train[j * block_size + lidx]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
@ -105,35 +98,14 @@ float reduce_multi_block(__local float *s_query,
|
||||
__local float *s_train,
|
||||
int block_index,
|
||||
int lidx,
|
||||
int lidy,
|
||||
int distType
|
||||
int lidy
|
||||
)
|
||||
{
|
||||
/* there are threee types in the reducer. the first is L1Dist, which to sum the abs(v1, v2), the second is L2Dist, which to
|
||||
sum the (v1 - v2) * (v1 - v2), the third is humming, which to popc(v1 ^ v2), popc is to count the bits are set to 1*/
|
||||
float result = 0;
|
||||
switch(distType)
|
||||
#pragma unroll
|
||||
for (int j = 0 ; j < block_size ; j++)
|
||||
{
|
||||
case 0:
|
||||
for (int j = 0 ; j < block_size ; j++)
|
||||
{
|
||||
result += fabs(s_query[lidy * max_desc_len + block_index * block_size + j] - s_train[j * block_size + lidx]);
|
||||
}
|
||||
break;
|
||||
case 1:
|
||||
for (int j = 0 ; j < block_size ; j++)
|
||||
{
|
||||
float qr = s_query[lidy * max_desc_len + block_index * block_size + j] - s_train[j * block_size + lidx];
|
||||
result += qr * qr;
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
for (int j = 0 ; j < block_size ; j++)
|
||||
{
|
||||
//result += popcount((uint)s_query[lidy * max_desc_len + block_index * block_size + j] ^ (uint)s_train[j * block_size + lidx]);
|
||||
result += bit1Count((uint)s_query[lidy * max_desc_len + block_index * block_size + j] ^ (uint)s_train[j * block_size + lidx]);
|
||||
}
|
||||
break;
|
||||
result += DIST(s_query[lidy * max_desc_len + block_index * block_size + j], s_train[j * block_size + lidx]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
@ -152,8 +124,7 @@ __kernel void BruteForceMatch_UnrollMatch_D5(
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int step,
|
||||
int distType
|
||||
int step
|
||||
)
|
||||
{
|
||||
|
||||
@ -191,7 +162,7 @@ __kernel void BruteForceMatch_UnrollMatch_D5(
|
||||
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
result += reduce_multi_block(s_query, s_train, i, lidx, lidy, distType);
|
||||
result += reduce_multi_block(s_query, s_train, i, lidx, lidy);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
@ -247,8 +218,7 @@ __kernel void BruteForceMatch_Match_D5(
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int step,
|
||||
int distType
|
||||
int step
|
||||
)
|
||||
{
|
||||
const int lidx = get_local_id(0);
|
||||
@ -283,7 +253,7 @@ __kernel void BruteForceMatch_Match_D5(
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
result += reduce_block(s_query, s_train, lidx, lidy, distType);
|
||||
result += reduce_block(s_query, s_train, lidx, lidy);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
@ -344,8 +314,7 @@ __kernel void BruteForceMatch_RadiusUnrollMatch_D5(
|
||||
int train_cols,
|
||||
int bestTrainIdx_cols,
|
||||
int step,
|
||||
int ostep,
|
||||
int distType
|
||||
int ostep
|
||||
)
|
||||
{
|
||||
const int lidx = get_local_id(0);
|
||||
@ -371,7 +340,7 @@ __kernel void BruteForceMatch_RadiusUnrollMatch_D5(
|
||||
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
result += reduce_block(s_query, s_train, lidx, lidy, distType);
|
||||
result += reduce_block(s_query, s_train, lidx, lidy);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
@ -405,8 +374,7 @@ __kernel void BruteForceMatch_RadiusMatch_D5(
|
||||
int train_cols,
|
||||
int bestTrainIdx_cols,
|
||||
int step,
|
||||
int ostep,
|
||||
int distType
|
||||
int ostep
|
||||
)
|
||||
{
|
||||
const int lidx = get_local_id(0);
|
||||
@ -432,7 +400,7 @@ __kernel void BruteForceMatch_RadiusMatch_D5(
|
||||
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
result += reduce_block(s_query, s_train, lidx, lidy, distType);
|
||||
result += reduce_block(s_query, s_train, lidx, lidy);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
@ -462,8 +430,7 @@ __kernel void BruteForceMatch_knnUnrollMatch_D5(
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int step,
|
||||
int distType
|
||||
int step
|
||||
)
|
||||
{
|
||||
const int lidx = get_local_id(0);
|
||||
@ -501,7 +468,7 @@ __kernel void BruteForceMatch_knnUnrollMatch_D5(
|
||||
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
result += reduce_multi_block(s_query, s_train, i, lidx, lidy, distType);
|
||||
result += reduce_multi_block(s_query, s_train, i, lidx, lidy);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
@ -609,8 +576,7 @@ __kernel void BruteForceMatch_knnMatch_D5(
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int step,
|
||||
int distType
|
||||
int step
|
||||
)
|
||||
{
|
||||
const int lidx = get_local_id(0);
|
||||
@ -645,7 +611,7 @@ __kernel void BruteForceMatch_knnMatch_D5(
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
result += reduce_block(s_query, s_train, lidx, lidy, distType);
|
||||
result += reduce_block(s_query, s_train, lidx, lidy);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
@ -752,8 +718,7 @@ kernel void BruteForceMatch_calcDistanceUnrolled_D5(
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int step,
|
||||
int distType)
|
||||
int step)
|
||||
{
|
||||
/* Todo */
|
||||
}
|
||||
@ -768,8 +733,7 @@ kernel void BruteForceMatch_calcDistance_D5(
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int step,
|
||||
int distType)
|
||||
int step)
|
||||
{
|
||||
/* Todo */
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user