use mutex provided by opencv itself

add getoclcontext and getoclcommandqueue so that other opencl program can interactive with opencv ocl module
correct haar test cases
add face detection sample
This commit is contained in:
niko 2012-08-31 14:08:52 +08:00
parent 11e16a7204
commit 6f6e990988
8 changed files with 416 additions and 428 deletions

View File

@ -88,7 +88,10 @@ namespace cv
//CV_EXPORTS void getComputeCapability(cl_device_id device, int &major, int &minor);
//optional function, if you want save opencl binary kernel to the file, set its path
CV_EXPORTS void setBinpath(const char *path);
//The two functions below are used to get opencl runtime so that opencv can interactive with
//other opencl program
CV_EXPORTS void* getoclContext();
CV_EXPORTS void* getoclCommandQueue();
//////////////////////////////// Error handling ////////////////////////
CV_EXPORTS void error(const char *error_string, const char *file, const int line, const char *func);

View File

@ -60,29 +60,23 @@ PARAM_TEST_CASE(HaarTestBase, int, int)
//std::vector<cv::ocl::Info> oclinfo;
cv::ocl::OclCascadeClassifier cascade, nestedCascade;
cv::CascadeClassifier cpucascade, cpunestedCascade;
// Mat img;
// Mat img;
double scale;
int index;
virtual void SetUp()
{
scale = 1.1;
#if WIN32
string cascadeName="E:\\opencvbuffer\\trunk\\data\\haarcascades\\haarcascade_frontalface_alt.xml";
#else
string cascadeName="../data/haarcascades/haarcascade_frontalface_alt.xml";
#endif
scale = 1.0;
index=0;
string cascadeName="../../../data/haarcascades/haarcascade_frontalface_alt.xml";
if( (!cascade.load( cascadeName )) || (!cpucascade.load(cascadeName)))
{
cout << "ERROR: Could not load classifier cascade" << endl;
cout << "Usage: facedetect [--cascade=<cascade_path>]\n"
" [--nested-cascade[=nested_cascade_path]]\n"
" [--scale[=<image scale>\n"
" [filename|camera_index]\n" << endl ;
return;
}
//int devnums = getDevice(oclinfo);
@ -97,29 +91,20 @@ PARAM_TEST_CASE(HaarTestBase, int, int)
struct Haar : HaarTestBase {};
TEST_P(Haar, FaceDetect)
TEST_F(Haar, FaceDetect)
{
for(int index = 1;index < 2; index++)
{
Mat img;
char buff[256];
#if WIN32
sprintf(buff,"E:\\myDataBase\\%d.jpg",index);
img = imread( buff, 1 );
#else
sprintf(buff,"%d.jpg",index);
img = imread( buff, 1 );
std::cout << "Now test " << index << ".jpg" <<std::endl;
#endif
string imgName = "../../../samples/c/lena.jpg";
Mat img = imread( imgName, 1 );
if(img.empty())
{
std::cout << "Couldn't read test" << index <<".jpg" << std::endl;
continue;
return ;
}
int i = 0;
double t = 0;
vector<Rect> faces;
vector<Rect> faces, oclfaces;
const static Scalar colors[] = { CV_RGB(0,0,255),
CV_RGB(0,128,255),
@ -135,64 +120,51 @@ TEST_P(Haar, FaceDetect)
cvtColor( img, gray, CV_BGR2GRAY );
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
equalizeHist( smallImg, smallImg );
CvMat _image = smallImg;
Mat tempimg(&_image, false);
cv::ocl::oclMat image(tempimg);
CvSeq* _objects;
#if 1
for(int k= 0; k<10; k++)
{
t = (double)cvGetTickCount();
_objects = cascade.oclHaarDetectObjects( image, storage, 1.1,
2, 0
for(int k= 0; k<LOOP_TIMES; k++)
{
cpucascade.detectMultiScale( smallImg, faces, 1.1,
3, 0
|CV_HAAR_SCALE_IMAGE
, Size(30,30), Size(0, 0) );
t = (double)cvGetTickCount() - t ;
printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
}
t = (double)cvGetTickCount() - t ;
printf( "cpudetection time = %g ms\n", t/(LOOP_TIMES*(double)cvGetTickFrequency()*1000.) );
#else
cpucascade.detectMultiScale( image, faces, 1.1,
2, 0
cv::ocl::oclMat image;
CvSeq* _objects;
t = (double)cvGetTickCount();
for(int k= 0; k<LOOP_TIMES; k++)
{
image.upload(smallImg);
_objects = cascade.oclHaarDetectObjects( image, storage, 1.1,
3, 0
|CV_HAAR_SCALE_IMAGE
, Size(30,30), Size(0, 0) );
#endif
}
t = (double)cvGetTickCount() - t ;
printf( "ocldetection time = %g ms\n", t/(LOOP_TIMES*(double)cvGetTickFrequency()*1000.) );
vector<CvAvgComp> vecAvgComp;
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
faces.resize(vecAvgComp.size());
std::transform(vecAvgComp.begin(), vecAvgComp.end(), faces.begin(), getRect());
oclfaces.resize(vecAvgComp.size());
std::transform(vecAvgComp.begin(), vecAvgComp.end(), oclfaces.begin(), getRect());
for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
{
Mat smallImgROI;
vector<Rect> nestedObjects;
Point center;
Scalar color = colors[i%8];
int radius;
center.x = cvRound((r->x + r->width*0.5)*scale);
center.y = cvRound((r->y + r->height*0.5)*scale);
radius = cvRound((r->width + r->height)*0.25*scale);
circle( img, center, radius, color, 3, 8, 0 );
}
//for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
//{
// Mat smallImgROI;
// Point center;
// Scalar color = colors[i%8];
// int radius;
// center.x = cvRound((r->x + r->width*0.5)*scale);
// center.y = cvRound((r->y + r->height*0.5)*scale);
// radius = cvRound((r->width + r->height)*0.25*scale);
// circle( img, center, radius, color, 3, 8, 0 );
//}
//namedWindow("result");
//imshow("result",img);
//waitKey(0);
//destroyAllWindows();
#if WIN32
sprintf(buff,"E:\\result1\\%d.jpg",index);
imwrite(buff,img);
#else
sprintf(buff,"testdet_%d.jpg",index);
imwrite(buff,img);
#endif
}
}
//INSTANTIATE_TEST_CASE_P(HaarTestBase, Haar, Combine(Values(1),
// Values(1)));
#endif // HAVE_OPENCL

View File

@ -45,10 +45,10 @@
#ifdef PRINT_KERNEL_RUN_TIME
#define LOOP_TIMES 1
#else
#define LOOP_TIMES 1
#define LOOP_TIMES 100
#endif
#define MWIDTH 256
#define MHEIGHT 256
#define MWIDTH 1920
#define MHEIGHT 1080
#define CLBINPATH ".\\"
#define LOOPROISTART 0
#define LOOPROIEND 1

View File

@ -44,7 +44,6 @@
//M*/
#include "precomp.hpp"
#include "threadsafe.h"
#include <iomanip>
#include "binarycaching.hpp"
@ -348,7 +347,14 @@ namespace cv
}
Context::setContext(oclinfo);
}
void* getoclContext()
{
return &(Context::getContext()->impl->clContext);
}
void* getoclCommandQueue()
{
return &(Context::getContext()->impl->clCmdQueue);
}
void openCLReadBuffer(Context *clCxt, cl_mem dst_buffer, void *host_buffer, size_t size)
{
cl_int status;
@ -772,12 +778,12 @@ namespace cv
/////////////////////////////OpenCL initialization/////////////////
auto_ptr<Context> Context::clCxt;
int Context::val = 0;
CriticalSection cs;
Mutex cs;
Context *Context::getContext()
{
if(val == 0)
{
myAutoLock al(&cs);
AutoLock al(cs);
if( NULL == clCxt.get())
clCxt.reset(new Context);

View File

@ -1,83 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Niko Li, newlife20080214@gmail.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
//#include "precomp.hpp"
#include "threadsafe.h"
CriticalSection::CriticalSection()
{
#if defined WIN32 || defined _WIN32
InitializeCriticalSection(&m_CritSec);
#else
pthread_mutex_init(&m_CritSec, NULL);
#endif
}
CriticalSection::~CriticalSection()
{
#if defined WIN32 || defined _WIN32
DeleteCriticalSection(&m_CritSec);
#else
pthread_mutex_destroy(&m_CritSec);
#endif
}
void CriticalSection::Lock()
{
#if defined WIN32 || defined _WIN32
EnterCriticalSection(&m_CritSec);
#else
pthread_mutex_lock(&m_CritSec);
#endif
}
void CriticalSection::Unlock()
{
#if defined WIN32 || defined _WIN32
LeaveCriticalSection(&m_CritSec);
#else
pthread_mutex_unlock(&m_CritSec);
#endif
}

View File

@ -1,92 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if defined WIN32 || defined _WIN32
#include <Windows.h>
#undef min
#undef max
#else
#include <pthread.h>
#endif
class CriticalSection
{
public:
CriticalSection();
~CriticalSection();
// Jia Haipeng, jiahaipeng95@gmail.com
void Lock();
void Unlock();
protected:
#if defined WIN32 || defined _WIN32
CRITICAL_SECTION m_CritSec;
#else
pthread_mutex_t m_CritSec;
#endif
};
class myAutoLock
{
public:
explicit myAutoLock(CriticalSection *lock)
{
m_lock = lock;
m_lock->Lock();
};
~myAutoLock()
{
m_lock->Unlock();
};
protected:
CriticalSection *m_lock;
};

View File

@ -53,13 +53,7 @@ using namespace testing;
using namespace std;
using namespace cv;
struct getRect
{
Rect operator ()(const CvAvgComp &e) const
{
return e.rect;
}
};
struct getRect { Rect operator ()(const CvAvgComp& e) const { return e.rect; } };
PARAM_TEST_CASE(HaarTestBase, int, int)
{
@ -73,26 +67,20 @@ PARAM_TEST_CASE(HaarTestBase, int, int)
virtual void SetUp()
{
scale = 1.1;
#if WIN32
string cascadeName = "E:\\opencvbuffer\\trunk\\data\\haarcascades\\haarcascade_frontalface_alt.xml";
#else
string cascadeName = "../data/haarcascades/haarcascade_frontalface_alt.xml";
#endif
scale = 1.0;
index=0;
string cascadeName="../../../data/haarcascades/haarcascade_frontalface_alt.xml";
if( (!cascade.load( cascadeName )) || (!cpucascade.load(cascadeName)))
{
cout << "ERROR: Could not load classifier cascade" << endl;
cout << "Usage: facedetect [--cascade=<cascade_path>]\n"
" [--nested-cascade[=nested_cascade_path]]\n"
" [--scale[=<image scale>\n"
" [filename|camera_index]\n" << endl ;
return;
}
//int devnums = getDevice(oclinfo, OPENCV_DEFAULT_OPENCL_DEVICE);
//CV_Assert(devnums > 0);
//int devnums = getDevice(oclinfo);
//CV_Assert(devnums>0);
////if you want to use undefault device, set it here
////setDevice(oclinfo[0]);
//cv::ocl::setBinpath("E:\\");
@ -103,104 +91,69 @@ PARAM_TEST_CASE(HaarTestBase, int, int)
struct Haar : HaarTestBase {};
TEST_P(Haar, FaceDetect)
TEST_F(Haar, FaceDetect)
{
string imgName = "../../../samples/c/lena.jpg";
Mat img = imread( imgName, 1 );
for(int index = 1; index < 2; index++)
{
Mat img;
char buff[256];
#if WIN32
sprintf(buff, "E:\\myDataBase\\%d.jpg", index);
img = imread( buff, 1 );
#else
sprintf(buff, "%d.jpg", index);
img = imread( buff, 1 );
std::cout << "Now test " << index << ".jpg" << std::endl;
#endif
if(img.empty())
{
std::cout << "Couldn't read test" << index << ".jpg" << std::endl;
continue;
std::cout << "Couldn't read test" << index <<".jpg" << std::endl;
return ;
}
int i = 0;
double t = 0;
vector<Rect> faces;
vector<Rect> faces, oclfaces;
const static Scalar colors[] = { CV_RGB(0, 0, 255),
CV_RGB(0, 128, 255),
CV_RGB(0, 255, 255),
CV_RGB(0, 255, 0),
CV_RGB(255, 128, 0),
CV_RGB(255, 255, 0),
CV_RGB(255, 0, 0),
CV_RGB(255, 0, 255)
} ;
const static Scalar colors[] = { CV_RGB(0,0,255),
CV_RGB(0,128,255),
CV_RGB(0,255,255),
CV_RGB(0,255,0),
CV_RGB(255,128,0),
CV_RGB(255,255,0),
CV_RGB(255,0,0),
CV_RGB(255,0,255)} ;
Mat gray, smallImg(cvRound (img.rows / scale), cvRound(img.cols / scale), CV_8UC1 );
Mat gray, smallImg(cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
MemStorage storage(cvCreateMemStorage(0));
cvtColor( img, gray, CV_BGR2GRAY );
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
equalizeHist( smallImg, smallImg );
CvMat _image = smallImg;
Mat tempimg(&_image, false);
cv::ocl::oclMat image(tempimg);
CvSeq *_objects;
#if 1
for(int k = 0; k < 10; k++)
{
t = (double)cvGetTickCount();
cv::ocl::oclMat image;
CvSeq* _objects;
image.upload(smallImg);
_objects = cascade.oclHaarDetectObjects( image, storage, 1.1,
2, 0
| CV_HAAR_SCALE_IMAGE
, Size(30, 30), Size(0, 0) );
t = (double)cvGetTickCount() - t ;
printf( "detection time = %g ms\n", t / ((double)cvGetTickFrequency() * 1000.) );
}
#else
cpucascade.detectMultiScale( image, faces, 1.1,
2, 0
| CV_HAAR_SCALE_IMAGE
, Size(30, 30), Size(0, 0) );
#endif
3, 0
|CV_HAAR_SCALE_IMAGE
, Size(30,30), Size(0, 0) );
vector<CvAvgComp> vecAvgComp;
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
faces.resize(vecAvgComp.size());
std::transform(vecAvgComp.begin(), vecAvgComp.end(), faces.begin(), getRect());
oclfaces.resize(vecAvgComp.size());
std::transform(vecAvgComp.begin(), vecAvgComp.end(), oclfaces.begin(), getRect());
for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
cpucascade.detectMultiScale( smallImg, faces, 1.1,
3, 0
|CV_HAAR_SCALE_IMAGE
, Size(30,30), Size(0, 0) );
EXPECT_EQ(faces.size(),oclfaces.size());
/* for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
{
Mat smallImgROI;
vector<Rect> nestedObjects;
Point center;
Scalar color = colors[i%8];
int radius;
center.x = cvRound((r->x + r->width * 0.5) * scale);
center.y = cvRound((r->y + r->height * 0.5) * scale);
radius = cvRound((r->width + r->height) * 0.25 * scale);
center.x = cvRound((r->x + r->width*0.5)*scale);
center.y = cvRound((r->y + r->height*0.5)*scale);
radius = cvRound((r->width + r->height)*0.25*scale);
circle( img, center, radius, color, 3, 8, 0 );
}
} */
//namedWindow("result");
//imshow("result",img);
//waitKey(0);
//destroyAllWindows();
#if WIN32
sprintf(buff, "E:\\result1\\%d.jpg", index);
imwrite(buff, img);
#else
sprintf(buff, "testdet_%d.jpg", index);
imwrite(buff, img);
#endif
}
}
//INSTANTIATE_TEST_CASE_P(HaarTestBase, Haar, Combine(Values(1),
// Values(1)));
#endif // HAVE_OPENCL

229
samples/ocl/facedetect.cpp Normal file
View File

@ -0,0 +1,229 @@
//This sample is inherited from facedetect.cpp in smaple/c
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/ocl/ocl.hpp"
#include <iostream>
#include <stdio.h>
using namespace std;
using namespace cv;
void help()
{
cout << "\nThis program demonstrates the cascade recognizer.\n"
"This classifier can recognize many ~rigid objects, it's most known use is for faces.\n"
"Usage:\n"
"./facedetect [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]\n"
" [--scale=<image scale greater or equal to 1, try 1.3 for example>\n"
" [filename|camera_index]\n\n"
"see facedetect.cmd for one call:\n"
"./facedetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --scale=1.3 \n"
"Hit any key to quit.\n"
"Using OpenCV version " << CV_VERSION << "\n" << endl;
}
struct getRect { Rect operator ()(const CvAvgComp& e) const { return e.rect; } };
void detectAndDraw( Mat& img,
cv::ocl::OclCascadeClassifier& cascade, CascadeClassifier& nestedCascade,
double scale);
String cascadeName = "../../../data/haarcascades/haarcascade_frontalface_alt.xml";
int main( int argc, const char** argv )
{
CvCapture* capture = 0;
Mat frame, frameCopy, image;
const String scaleOpt = "--scale=";
size_t scaleOptLen = scaleOpt.length();
const String cascadeOpt = "--cascade=";
size_t cascadeOptLen = cascadeOpt.length();
String inputName;
help();
cv::ocl::OclCascadeClassifier cascade;
CascadeClassifier nestedCascade;
double scale = 1;
for( int i = 1; i < argc; i++ )
{
cout << "Processing " << i << " " << argv[i] << endl;
if( cascadeOpt.compare( 0, cascadeOptLen, argv[i], cascadeOptLen ) == 0 )
{
cascadeName.assign( argv[i] + cascadeOptLen );
cout << " from which we have cascadeName= " << cascadeName << endl;
}
else if( scaleOpt.compare( 0, scaleOptLen, argv[i], scaleOptLen ) == 0 )
{
if( !sscanf( argv[i] + scaleOpt.length(), "%lf", &scale ) || scale < 1 )
scale = 1;
cout << " from which we read scale = " << scale << endl;
}
else if( argv[i][0] == '-' )
{
cerr << "WARNING: Unknown option %s" << argv[i] << endl;
}
else
inputName.assign( argv[i] );
}
if( !cascade.load( cascadeName ) )
{
cerr << "ERROR: Could not load classifier cascade" << endl;
cerr << "Usage: facedetect [--cascade=<cascade_path>]\n"
" [--scale[=<image scale>\n"
" [filename|camera_index]\n" << endl ;
return -1;
}
if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') )
{
capture = cvCaptureFromCAM( inputName.empty() ? 0 : inputName.c_str()[0] - '0' );
int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0' ;
if(!capture) cout << "Capture from CAM " << c << " didn't work" << endl;
}
else if( inputName.size() )
{
image = imread( inputName, 1 );
if( image.empty() )
{
capture = cvCaptureFromAVI( inputName.c_str() );
if(!capture) cout << "Capture from AVI didn't work" << endl;
}
}
else
{
image = imread( "lena.jpg", 1 );
if(image.empty()) cout << "Couldn't read lena.jpg" << endl;
}
cvNamedWindow( "result", 1 );
std::vector<cv::ocl::Info> oclinfo;
int devnums = cv::ocl::getDevice(oclinfo);
if(devnums<1)
{
std::cout << "no device found\n";
return -1;
}
//if you want to use undefault device, set it here
//setDevice(oclinfo[0]);
//setBinpath(CLBINPATH);
if( capture )
{
cout << "In capture ..." << endl;
for(;;)
{
IplImage* iplImg = cvQueryFrame( capture );
frame = iplImg;
if( frame.empty() )
break;
if( iplImg->origin == IPL_ORIGIN_TL )
frame.copyTo( frameCopy );
else
flip( frame, frameCopy, 0 );
detectAndDraw( frameCopy, cascade, nestedCascade, scale );
if( waitKey( 10 ) >= 0 )
goto _cleanup_;
}
waitKey(0);
_cleanup_:
cvReleaseCapture( &capture );
}
else
{
cout << "In image read" << endl;
if( !image.empty() )
{
detectAndDraw( image, cascade, nestedCascade, scale );
waitKey(0);
}
else if( !inputName.empty() )
{
/* assume it is a text file containing the
list of the image filenames to be processed - one per line */
FILE* f = fopen( inputName.c_str(), "rt" );
if( f )
{
char buf[1000+1];
while( fgets( buf, 1000, f ) )
{
int len = (int)strlen(buf), c;
while( len > 0 && isspace(buf[len-1]) )
len--;
buf[len] = '\0';
cout << "file " << buf << endl;
image = imread( buf, 1 );
if( !image.empty() )
{
detectAndDraw( image, cascade, nestedCascade, scale );
c = waitKey(0);
if( c == 27 || c == 'q' || c == 'Q' )
break;
}
else
{
cerr << "Aw snap, couldn't read image " << buf << endl;
}
}
fclose(f);
}
}
}
cvDestroyWindow("result");
return 0;
}
void detectAndDraw( Mat& img,
cv::ocl::OclCascadeClassifier& cascade, CascadeClassifier& nestedCascade,
double scale)
{
int i = 0;
double t = 0;
vector<Rect> faces;
const static Scalar colors[] = { CV_RGB(0,0,255),
CV_RGB(0,128,255),
CV_RGB(0,255,255),
CV_RGB(0,255,0),
CV_RGB(255,128,0),
CV_RGB(255,255,0),
CV_RGB(255,0,0),
CV_RGB(255,0,255)} ;
cv::ocl::oclMat image(img);
cv::ocl::oclMat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
cv::ocl::cvtColor( image, gray, CV_BGR2GRAY );
cv::ocl::resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
cv::ocl::equalizeHist( smallImg, smallImg );
CvSeq* _objects;
MemStorage storage(cvCreateMemStorage(0));
t = (double)cvGetTickCount();
_objects = cascade.oclHaarDetectObjects( smallImg, storage, 1.1,
3, 0
|CV_HAAR_SCALE_IMAGE
, Size(30,30), Size(0, 0) );
vector<CvAvgComp> vecAvgComp;
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
faces.resize(vecAvgComp.size());
std::transform(vecAvgComp.begin(), vecAvgComp.end(), faces.begin(), getRect());
t = (double)cvGetTickCount() - t;
printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
{
Mat smallImgROI;
Point center;
Scalar color = colors[i%8];
int radius;
center.x = cvRound((r->x + r->width*0.5)*scale);
center.y = cvRound((r->y + r->height*0.5)*scale);
radius = cvRound((r->width + r->height)*0.25*scale);
circle( img, center, radius, color, 3, 8, 0 );
}
cv::imshow( "result", img );
}