mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
Added ResizeBilinear op for tf (#11050)
* Added ResizeBilinear op for tf Combined ResizeNearestNeighbor and ResizeBilinear layers into Resize (with an interpolation param). Minor changes to tf_importer and resize layer to save some code lines Minor changes in init.cpp Minor changes in tf_importer.cpp * Replaced implementation of a custom ResizeBilinear layer to all layers * Use Mat::ptr. Replace interpolation flags
This commit is contained in:
parent
60fa6bea70
commit
7175f257b5
@ -565,14 +565,14 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
|||||||
};
|
};
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Resize input 4-dimensional blob by nearest neighbor strategy.
|
* @brief Resize input 4-dimensional blob by nearest neighbor or bilinear strategy.
|
||||||
*
|
*
|
||||||
* Layer is used to support TensorFlow's resize_nearest_neighbor op.
|
* Layer is used to support TensorFlow's resize_nearest_neighbor and resize_bilinear ops.
|
||||||
*/
|
*/
|
||||||
class CV_EXPORTS ResizeNearestNeighborLayer : public Layer
|
class CV_EXPORTS ResizeLayer : public Layer
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
static Ptr<ResizeNearestNeighborLayer> create(const LayerParams& params);
|
static Ptr<ResizeLayer> create(const LayerParams& params);
|
||||||
};
|
};
|
||||||
|
|
||||||
class CV_EXPORTS ProposalLayer : public Layer
|
class CV_EXPORTS ProposalLayer : public Layer
|
||||||
|
@ -236,6 +236,14 @@ PERF_TEST_P_(DNNTestNetwork, YOLOv3)
|
|||||||
processNet("dnn/yolov3.cfg", "dnn/yolov3.weights", "", inp / 255);
|
processNet("dnn/yolov3.cfg", "dnn/yolov3.weights", "", inp / 255);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
PERF_TEST_P_(DNNTestNetwork, EAST_text_detection)
|
||||||
|
{
|
||||||
|
if (backend == DNN_BACKEND_HALIDE ||
|
||||||
|
backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
|
||||||
|
throw SkipTestException("");
|
||||||
|
processNet("dnn/frozen_east_text_detection.pb", "", "", Mat(cv::Size(320, 320), CV_32FC3));
|
||||||
|
}
|
||||||
|
|
||||||
const tuple<DNNBackend, DNNTarget> testCases[] = {
|
const tuple<DNNBackend, DNNTarget> testCases[] = {
|
||||||
#ifdef HAVE_HALIDE
|
#ifdef HAVE_HALIDE
|
||||||
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_HALIDE, DNN_TARGET_CPU),
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_HALIDE, DNN_TARGET_CPU),
|
||||||
|
@ -395,9 +395,10 @@ namespace cv {
|
|||||||
{
|
{
|
||||||
cv::dnn::LayerParams param;
|
cv::dnn::LayerParams param;
|
||||||
param.name = "Upsample-name";
|
param.name = "Upsample-name";
|
||||||
param.type = "ResizeNearestNeighbor";
|
param.type = "Resize";
|
||||||
|
|
||||||
param.set<int>("zoom_factor", scaleFactor);
|
param.set<int>("zoom_factor", scaleFactor);
|
||||||
|
param.set<String>("interpolation", "nearest");
|
||||||
|
|
||||||
darknet::LayerParameter lp;
|
darknet::LayerParameter lp;
|
||||||
std::string layer_name = cv::format("upsample_%d", layer_id);
|
std::string layer_name = cv::format("upsample_%d", layer_id);
|
||||||
|
@ -83,7 +83,7 @@ void initializeLayerFactory()
|
|||||||
CV_DNN_REGISTER_LAYER_CLASS(Concat, ConcatLayer);
|
CV_DNN_REGISTER_LAYER_CLASS(Concat, ConcatLayer);
|
||||||
CV_DNN_REGISTER_LAYER_CLASS(Reshape, ReshapeLayer);
|
CV_DNN_REGISTER_LAYER_CLASS(Reshape, ReshapeLayer);
|
||||||
CV_DNN_REGISTER_LAYER_CLASS(Flatten, FlattenLayer);
|
CV_DNN_REGISTER_LAYER_CLASS(Flatten, FlattenLayer);
|
||||||
CV_DNN_REGISTER_LAYER_CLASS(ResizeNearestNeighbor, ResizeNearestNeighborLayer);
|
CV_DNN_REGISTER_LAYER_CLASS(Resize, ResizeLayer);
|
||||||
CV_DNN_REGISTER_LAYER_CLASS(CropAndResize, CropAndResizeLayer);
|
CV_DNN_REGISTER_LAYER_CLASS(CropAndResize, CropAndResizeLayer);
|
||||||
|
|
||||||
CV_DNN_REGISTER_LAYER_CLASS(Convolution, ConvolutionLayer);
|
CV_DNN_REGISTER_LAYER_CLASS(Convolution, ConvolutionLayer);
|
||||||
|
@ -68,7 +68,7 @@ public:
|
|||||||
{
|
{
|
||||||
float input_y = top * (inpHeight - 1) + y * heightScale;
|
float input_y = top * (inpHeight - 1) + y * heightScale;
|
||||||
int y0 = static_cast<int>(input_y);
|
int y0 = static_cast<int>(input_y);
|
||||||
const float* inpData_row0 = (float*)inp.data + y0 * inpWidth;
|
const float* inpData_row0 = inp.ptr<float>(0, 0, y0);
|
||||||
const float* inpData_row1 = (y0 + 1 < inpHeight) ? (inpData_row0 + inpWidth) : inpData_row0;
|
const float* inpData_row1 = (y0 + 1 < inpHeight) ? (inpData_row0 + inpWidth) : inpData_row0;
|
||||||
for (int x = 0; x < outWidth; ++x)
|
for (int x = 0; x < outWidth; ++x)
|
||||||
{
|
{
|
||||||
|
176
modules/dnn/src/layers/resize_layer.cpp
Normal file
176
modules/dnn/src/layers/resize_layer.cpp
Normal file
@ -0,0 +1,176 @@
|
|||||||
|
// This file is part of OpenCV project.
|
||||||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||||
|
// of this distribution and at http://opencv.org/license.html.
|
||||||
|
|
||||||
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
#include "../precomp.hpp"
|
||||||
|
#include "layers_common.hpp"
|
||||||
|
#include "../op_inf_engine.hpp"
|
||||||
|
#include <opencv2/imgproc.hpp>
|
||||||
|
|
||||||
|
namespace cv { namespace dnn {
|
||||||
|
|
||||||
|
class ResizeLayerImpl CV_FINAL : public ResizeLayer
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
ResizeLayerImpl(const LayerParams& params)
|
||||||
|
{
|
||||||
|
setParamsFrom(params);
|
||||||
|
outWidth = params.get<float>("width", 0);
|
||||||
|
outHeight = params.get<float>("height", 0);
|
||||||
|
if (params.has("zoom_factor"))
|
||||||
|
{
|
||||||
|
CV_Assert(!params.has("zoom_factor_x") && !params.has("zoom_factor_y"));
|
||||||
|
zoomFactorWidth = zoomFactorHeight = params.get<int>("zoom_factor");
|
||||||
|
}
|
||||||
|
else if (params.has("zoom_factor_x") || params.has("zoom_factor_y"))
|
||||||
|
{
|
||||||
|
CV_Assert(params.has("zoom_factor_x") && params.has("zoom_factor_y"));
|
||||||
|
zoomFactorWidth = params.get<int>("zoom_factor_x");
|
||||||
|
zoomFactorHeight = params.get<int>("zoom_factor_y");
|
||||||
|
}
|
||||||
|
interpolation = params.get<String>("interpolation");
|
||||||
|
CV_Assert(interpolation == "nearest" || interpolation == "bilinear");
|
||||||
|
|
||||||
|
alignCorners = params.get<bool>("align_corners", false);
|
||||||
|
if (alignCorners)
|
||||||
|
CV_Error(Error::StsNotImplemented, "Resize with align_corners=true is not implemented");
|
||||||
|
}
|
||||||
|
|
||||||
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
||||||
|
const int requiredOutputs,
|
||||||
|
std::vector<MatShape> &outputs,
|
||||||
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
||||||
|
{
|
||||||
|
CV_Assert(inputs.size() == 1, inputs[0].size() == 4);
|
||||||
|
outputs.resize(1, inputs[0]);
|
||||||
|
outputs[0][2] = outHeight > 0 ? outHeight : (outputs[0][2] * zoomFactorHeight);
|
||||||
|
outputs[0][3] = outWidth > 0 ? outWidth : (outputs[0][3] * zoomFactorWidth);
|
||||||
|
// We can work in-place (do nothing) if input shape == output shape.
|
||||||
|
return (outputs[0][2] == inputs[0][2]) && (outputs[0][3] == inputs[0][3]);
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
||||||
|
{
|
||||||
|
return backendId == DNN_BACKEND_OPENCV ||
|
||||||
|
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine() && interpolation == "nearest";
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual void finalize(const std::vector<Mat*>& inputs, std::vector<Mat> &outputs) CV_OVERRIDE
|
||||||
|
{
|
||||||
|
if (!outWidth && !outHeight)
|
||||||
|
{
|
||||||
|
outHeight = outputs[0].size[2];
|
||||||
|
outWidth = outputs[0].size[3];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
||||||
|
{
|
||||||
|
CV_TRACE_FUNCTION();
|
||||||
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||||
|
|
||||||
|
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
||||||
|
}
|
||||||
|
|
||||||
|
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE
|
||||||
|
{
|
||||||
|
CV_TRACE_FUNCTION();
|
||||||
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||||
|
|
||||||
|
if (outHeight == inputs[0]->size[2] && outWidth == inputs[0]->size[3])
|
||||||
|
return;
|
||||||
|
|
||||||
|
Mat& inp = *inputs[0];
|
||||||
|
Mat& out = outputs[0];
|
||||||
|
if (interpolation == "nearest")
|
||||||
|
{
|
||||||
|
for (size_t n = 0; n < inputs[0]->size[0]; ++n)
|
||||||
|
{
|
||||||
|
for (size_t ch = 0; ch < inputs[0]->size[1]; ++ch)
|
||||||
|
{
|
||||||
|
resize(getPlane(inp, n, ch), getPlane(out, n, ch),
|
||||||
|
Size(outWidth, outHeight), 0, 0, INTER_NEAREST);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else if (interpolation == "bilinear")
|
||||||
|
{
|
||||||
|
const int inpHeight = inp.size[2];
|
||||||
|
const int inpWidth = inp.size[3];
|
||||||
|
const int inpSpatialSize = inpHeight * inpWidth;
|
||||||
|
const int outSpatialSize = outHeight * outWidth;
|
||||||
|
const float heightScale = static_cast<float>(inpHeight) / (outHeight);
|
||||||
|
const float widthScale = static_cast<float>(inpWidth) / (outWidth);
|
||||||
|
const int numPlanes = inp.size[0] * inp.size[1];
|
||||||
|
CV_Assert(inp.isContinuous(), out.isContinuous());
|
||||||
|
|
||||||
|
Mat inpPlanes = inp.reshape(1, numPlanes * inpHeight);
|
||||||
|
Mat outPlanes = out.reshape(1, numPlanes * outHeight);
|
||||||
|
for (int y = 0; y < outHeight; ++y)
|
||||||
|
{
|
||||||
|
float input_y = y * heightScale;
|
||||||
|
int y0 = static_cast<int>(input_y);
|
||||||
|
const float* inpData_row0 = inpPlanes.ptr<float>(y0);
|
||||||
|
const float* inpData_row1 = inpPlanes.ptr<float>(std::min(y0 + 1, inpHeight - 1));
|
||||||
|
for (int x = 0; x < outWidth; ++x)
|
||||||
|
{
|
||||||
|
float input_x = x * widthScale;
|
||||||
|
int x0 = static_cast<int>(input_x);
|
||||||
|
int x1 = std::min(x0 + 1, inpWidth - 1);
|
||||||
|
|
||||||
|
float* outData = outPlanes.ptr<float>(y, x);
|
||||||
|
const float* inpData_row0_c = inpData_row0;
|
||||||
|
const float* inpData_row1_c = inpData_row1;
|
||||||
|
for (int c = 0; c < numPlanes; ++c)
|
||||||
|
{
|
||||||
|
*outData = inpData_row0_c[x0] +
|
||||||
|
(input_y - y0) * (inpData_row1_c[x0] - inpData_row0_c[x0]) +
|
||||||
|
(input_x - x0) * (inpData_row0_c[x1] - inpData_row0_c[x0] +
|
||||||
|
(input_y - y0) * (inpData_row1_c[x1] - inpData_row0_c[x1] - inpData_row1_c[x0] + inpData_row0_c[x0]));
|
||||||
|
|
||||||
|
inpData_row0_c += inpSpatialSize;
|
||||||
|
inpData_row1_c += inpSpatialSize;
|
||||||
|
outData += outSpatialSize;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
CV_Error(Error::StsNotImplemented, "Unknown interpolation: " + interpolation);
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
|
||||||
|
{
|
||||||
|
#ifdef HAVE_INF_ENGINE
|
||||||
|
InferenceEngine::LayerParams lp;
|
||||||
|
lp.name = name;
|
||||||
|
lp.type = "Resample";
|
||||||
|
lp.precision = InferenceEngine::Precision::FP32;
|
||||||
|
|
||||||
|
std::shared_ptr<InferenceEngine::CNNLayer> ieLayer(new InferenceEngine::CNNLayer(lp));
|
||||||
|
ieLayer->params["type"] = "caffe.ResampleParameter.NEAREST";
|
||||||
|
ieLayer->params["antialias"] = "0";
|
||||||
|
ieLayer->params["width"] = cv::format("%d", outWidth);
|
||||||
|
ieLayer->params["height"] = cv::format("%d", outHeight);
|
||||||
|
|
||||||
|
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
|
||||||
|
#endif // HAVE_INF_ENGINE
|
||||||
|
return Ptr<BackendNode>();
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
int outWidth, outHeight, zoomFactorWidth, zoomFactorHeight;
|
||||||
|
String interpolation;
|
||||||
|
bool alignCorners;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
Ptr<ResizeLayer> ResizeLayer::create(const LayerParams& params)
|
||||||
|
{
|
||||||
|
return Ptr<ResizeLayer>(new ResizeLayerImpl(params));
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace dnn
|
||||||
|
} // namespace cv
|
@ -1,117 +0,0 @@
|
|||||||
// This file is part of OpenCV project.
|
|
||||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
||||||
// of this distribution and at http://opencv.org/license.html.
|
|
||||||
|
|
||||||
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
#include "../precomp.hpp"
|
|
||||||
#include "layers_common.hpp"
|
|
||||||
#include "../op_inf_engine.hpp"
|
|
||||||
#include <opencv2/imgproc.hpp>
|
|
||||||
|
|
||||||
namespace cv { namespace dnn {
|
|
||||||
|
|
||||||
class ResizeNearestNeighborLayerImpl CV_FINAL : public ResizeNearestNeighborLayer
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
ResizeNearestNeighborLayerImpl(const LayerParams& params)
|
|
||||||
{
|
|
||||||
setParamsFrom(params);
|
|
||||||
CV_Assert(params.has("width") && params.has("height") || params.has("zoom_factor"));
|
|
||||||
CV_Assert(!params.has("width") && !params.has("height") || !params.has("zoom_factor"));
|
|
||||||
outWidth = params.get<float>("width", 0);
|
|
||||||
outHeight = params.get<float>("height", 0);
|
|
||||||
zoomFactor = params.get<int>("zoom_factor", 1);
|
|
||||||
alignCorners = params.get<bool>("align_corners", false);
|
|
||||||
if (alignCorners)
|
|
||||||
CV_Error(Error::StsNotImplemented, "Nearest neighborhood resize with align_corners=true is not implemented");
|
|
||||||
}
|
|
||||||
|
|
||||||
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
||||||
const int requiredOutputs,
|
|
||||||
std::vector<MatShape> &outputs,
|
|
||||||
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
||||||
{
|
|
||||||
CV_Assert(inputs.size() == 1, inputs[0].size() == 4);
|
|
||||||
outputs.resize(1, inputs[0]);
|
|
||||||
outputs[0][2] = outHeight > 0 ? outHeight : (outputs[0][2] * zoomFactor);
|
|
||||||
outputs[0][3] = outWidth > 0 ? outWidth : (outputs[0][3] * zoomFactor);
|
|
||||||
// We can work in-place (do nothing) if input shape == output shape.
|
|
||||||
return (outputs[0][2] == inputs[0][2]) && (outputs[0][3] == inputs[0][3]);
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
||||||
{
|
|
||||||
return backendId == DNN_BACKEND_OPENCV ||
|
|
||||||
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine();
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual void finalize(const std::vector<Mat*>& inputs, std::vector<Mat> &outputs) CV_OVERRIDE
|
|
||||||
{
|
|
||||||
if (!outWidth && !outHeight)
|
|
||||||
{
|
|
||||||
outHeight = outputs[0].size[2];
|
|
||||||
outWidth = outputs[0].size[3];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
||||||
{
|
|
||||||
CV_TRACE_FUNCTION();
|
|
||||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
||||||
|
|
||||||
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
||||||
}
|
|
||||||
|
|
||||||
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE
|
|
||||||
{
|
|
||||||
CV_TRACE_FUNCTION();
|
|
||||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
||||||
|
|
||||||
if (outHeight == inputs[0]->size[2] && outWidth == inputs[0]->size[3])
|
|
||||||
return;
|
|
||||||
|
|
||||||
Mat& inp = *inputs[0];
|
|
||||||
Mat& out = outputs[0];
|
|
||||||
for (size_t n = 0; n < inputs[0]->size[0]; ++n)
|
|
||||||
{
|
|
||||||
for (size_t ch = 0; ch < inputs[0]->size[1]; ++ch)
|
|
||||||
{
|
|
||||||
resize(getPlane(inp, n, ch), getPlane(out, n, ch),
|
|
||||||
Size(outWidth, outHeight), 0, 0, INTER_NEAREST);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
|
|
||||||
{
|
|
||||||
#ifdef HAVE_INF_ENGINE
|
|
||||||
InferenceEngine::LayerParams lp;
|
|
||||||
lp.name = name;
|
|
||||||
lp.type = "Resample";
|
|
||||||
lp.precision = InferenceEngine::Precision::FP32;
|
|
||||||
|
|
||||||
std::shared_ptr<InferenceEngine::CNNLayer> ieLayer(new InferenceEngine::CNNLayer(lp));
|
|
||||||
ieLayer->params["type"] = "caffe.ResampleParameter.NEAREST";
|
|
||||||
ieLayer->params["antialias"] = "0";
|
|
||||||
ieLayer->params["width"] = cv::format("%d", outWidth);
|
|
||||||
ieLayer->params["height"] = cv::format("%d", outHeight);
|
|
||||||
|
|
||||||
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
|
|
||||||
#endif // HAVE_INF_ENGINE
|
|
||||||
return Ptr<BackendNode>();
|
|
||||||
}
|
|
||||||
|
|
||||||
private:
|
|
||||||
int outWidth, outHeight, zoomFactor;
|
|
||||||
bool alignCorners;
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
Ptr<ResizeNearestNeighborLayer> ResizeNearestNeighborLayer::create(const LayerParams& params)
|
|
||||||
{
|
|
||||||
return Ptr<ResizeNearestNeighborLayer>(new ResizeNearestNeighborLayerImpl(params));
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace dnn
|
|
||||||
} // namespace cv
|
|
@ -1450,18 +1450,36 @@ void TFImporter::populateNet(Net dstNet)
|
|||||||
connect(layer_id, dstNet, parsePin(layer.input(1)), id, 0);
|
connect(layer_id, dstNet, parsePin(layer.input(1)), id, 0);
|
||||||
data_layouts[name] = DATA_LAYOUT_UNKNOWN;
|
data_layouts[name] = DATA_LAYOUT_UNKNOWN;
|
||||||
}
|
}
|
||||||
else if (type == "ResizeNearestNeighbor")
|
else if (type == "ResizeNearestNeighbor" || type == "ResizeBilinear")
|
||||||
{
|
{
|
||||||
Mat outSize = getTensorContent(getConstBlob(layer, value_id, 1));
|
if (layer.input_size() == 2)
|
||||||
CV_Assert(outSize.type() == CV_32SC1, outSize.total() == 2);
|
{
|
||||||
|
Mat outSize = getTensorContent(getConstBlob(layer, value_id, 1));
|
||||||
|
CV_Assert(outSize.type() == CV_32SC1, outSize.total() == 2);
|
||||||
|
layerParams.set("height", outSize.at<int>(0, 0));
|
||||||
|
layerParams.set("width", outSize.at<int>(0, 1));
|
||||||
|
}
|
||||||
|
else if (layer.input_size() == 3)
|
||||||
|
{
|
||||||
|
Mat factorHeight = getTensorContent(getConstBlob(layer, value_id, 1));
|
||||||
|
Mat factorWidth = getTensorContent(getConstBlob(layer, value_id, 2));
|
||||||
|
CV_Assert(factorHeight.type() == CV_32SC1, factorHeight.total() == 1,
|
||||||
|
factorWidth.type() == CV_32SC1, factorWidth.total() == 1);
|
||||||
|
layerParams.set("zoom_factor_x", factorWidth.at<int>(0));
|
||||||
|
layerParams.set("zoom_factor_y", factorHeight.at<int>(0));
|
||||||
|
}
|
||||||
|
else
|
||||||
|
CV_Assert(layer.input_size() == 2 || layer.input_size() == 3);
|
||||||
|
|
||||||
layerParams.set("height", outSize.at<int>(0, 0));
|
if (type == "ResizeNearestNeighbor")
|
||||||
layerParams.set("width", outSize.at<int>(0, 1));
|
layerParams.set("interpolation", "nearest");
|
||||||
|
else
|
||||||
|
layerParams.set("interpolation", "bilinear");
|
||||||
|
|
||||||
if (hasLayerAttr(layer, "align_corners"))
|
if (hasLayerAttr(layer, "align_corners"))
|
||||||
layerParams.set("align_corners", getLayerAttr(layer, "align_corners").b());
|
layerParams.set("align_corners", getLayerAttr(layer, "align_corners").b());
|
||||||
|
|
||||||
int id = dstNet.addLayer(name, "ResizeNearestNeighbor", layerParams);
|
int id = dstNet.addLayer(name, "Resize", layerParams);
|
||||||
layer_id[name] = id;
|
layer_id[name] = id;
|
||||||
|
|
||||||
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
|
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
|
||||||
|
@ -317,6 +317,43 @@ TEST_P(Test_TensorFlow_nets, opencv_face_detector_uint8)
|
|||||||
normAssertDetections(ref, out, "", 0.9, 3.4e-3, 1e-2);
|
normAssertDetections(ref, out, "", 0.9, 3.4e-3, 1e-2);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// inp = cv.imread('opencv_extra/testdata/cv/ximgproc/sources/08.png')
|
||||||
|
// inp = inp[:,:,[2, 1, 0]].astype(np.float32).reshape(1, 512, 512, 3)
|
||||||
|
// outs = sess.run([sess.graph.get_tensor_by_name('feature_fusion/Conv_7/Sigmoid:0'),
|
||||||
|
// sess.graph.get_tensor_by_name('feature_fusion/concat_3:0')],
|
||||||
|
// feed_dict={'input_images:0': inp})
|
||||||
|
// scores = np.ascontiguousarray(outs[0].transpose(0, 3, 1, 2))
|
||||||
|
// geometry = np.ascontiguousarray(outs[1].transpose(0, 3, 1, 2))
|
||||||
|
// np.save('east_text_detection.scores.npy', scores)
|
||||||
|
// np.save('east_text_detection.geometry.npy', geometry)
|
||||||
|
TEST_P(Test_TensorFlow_nets, EAST_text_detection)
|
||||||
|
{
|
||||||
|
std::string netPath = findDataFile("dnn/frozen_east_text_detection.pb", false);
|
||||||
|
std::string imgPath = findDataFile("cv/ximgproc/sources/08.png", false);
|
||||||
|
std::string refScoresPath = findDataFile("dnn/east_text_detection.scores.npy", false);
|
||||||
|
std::string refGeometryPath = findDataFile("dnn/east_text_detection.geometry.npy", false);
|
||||||
|
|
||||||
|
Net net = readNet(findDataFile("dnn/frozen_east_text_detection.pb", false));
|
||||||
|
|
||||||
|
net.setPreferableTarget(GetParam());
|
||||||
|
|
||||||
|
Mat img = imread(imgPath);
|
||||||
|
Mat inp = blobFromImage(img, 1.0, Size(), Scalar(123.68, 116.78, 103.94), true, false);
|
||||||
|
net.setInput(inp);
|
||||||
|
|
||||||
|
std::vector<Mat> outs;
|
||||||
|
std::vector<String> outNames(2);
|
||||||
|
outNames[0] = "feature_fusion/Conv_7/Sigmoid";
|
||||||
|
outNames[1] = "feature_fusion/concat_3";
|
||||||
|
net.forward(outs, outNames);
|
||||||
|
|
||||||
|
Mat scores = outs[0];
|
||||||
|
Mat geometry = outs[1];
|
||||||
|
|
||||||
|
normAssert(scores, blobFromNPY(refScoresPath), "scores");
|
||||||
|
normAssert(geometry, blobFromNPY(refGeometryPath), "geometry", 1e-4, 3e-3);
|
||||||
|
}
|
||||||
|
|
||||||
INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_nets, availableDnnTargets());
|
INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_nets, availableDnnTargets());
|
||||||
|
|
||||||
typedef testing::TestWithParam<DNNTarget> Test_TensorFlow_fp16;
|
typedef testing::TestWithParam<DNNTarget> Test_TensorFlow_fp16;
|
||||||
@ -396,159 +433,10 @@ TEST(Test_TensorFlow, memory_read)
|
|||||||
runTensorFlowNet("batch_norm_text", DNN_TARGET_CPU, true, l1, lInf, true);
|
runTensorFlowNet("batch_norm_text", DNN_TARGET_CPU, true, l1, lInf, true);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Test a custom layer.
|
|
||||||
class ResizeBilinearLayer CV_FINAL : public Layer
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
ResizeBilinearLayer(const LayerParams ¶ms) : Layer(params),
|
|
||||||
outWidth(0), outHeight(0), factorWidth(1), factorHeight(1)
|
|
||||||
{
|
|
||||||
CV_Assert(!params.get<bool>("align_corners", false));
|
|
||||||
CV_Assert(!blobs.empty());
|
|
||||||
|
|
||||||
for (size_t i = 0; i < blobs.size(); ++i)
|
|
||||||
CV_Assert(blobs[i].type() == CV_32SC1);
|
|
||||||
|
|
||||||
if (blobs.size() == 1)
|
|
||||||
{
|
|
||||||
CV_Assert(blobs[0].total() == 2);
|
|
||||||
outHeight = blobs[0].at<int>(0, 0);
|
|
||||||
outWidth = blobs[0].at<int>(0, 1);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
CV_Assert(blobs.size() == 2, blobs[0].total() == 1, blobs[1].total() == 1);
|
|
||||||
factorHeight = blobs[0].at<int>(0, 0);
|
|
||||||
factorWidth = blobs[1].at<int>(0, 0);
|
|
||||||
outHeight = outWidth = 0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
static Ptr<Layer> create(LayerParams& params)
|
|
||||||
{
|
|
||||||
return Ptr<Layer>(new ResizeBilinearLayer(params));
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual bool getMemoryShapes(const std::vector<std::vector<int> > &inputs,
|
|
||||||
const int requiredOutputs,
|
|
||||||
std::vector<std::vector<int> > &outputs,
|
|
||||||
std::vector<std::vector<int> > &internals) const CV_OVERRIDE
|
|
||||||
{
|
|
||||||
std::vector<int> outShape(4);
|
|
||||||
outShape[0] = inputs[0][0]; // batch size
|
|
||||||
outShape[1] = inputs[0][1]; // number of channels
|
|
||||||
outShape[2] = outHeight != 0 ? outHeight : (inputs[0][2] * factorHeight);
|
|
||||||
outShape[3] = outWidth != 0 ? outWidth : (inputs[0][3] * factorWidth);
|
|
||||||
outputs.assign(1, outShape);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual void finalize(const std::vector<Mat*>& inputs, std::vector<Mat> &outputs) CV_OVERRIDE
|
|
||||||
{
|
|
||||||
if (!outWidth && !outHeight)
|
|
||||||
{
|
|
||||||
outHeight = outputs[0].size[2];
|
|
||||||
outWidth = outputs[0].size[3];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// This implementation is based on a reference implementation from
|
|
||||||
// https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h
|
|
||||||
virtual void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE
|
|
||||||
{
|
|
||||||
Mat& inp = *inputs[0];
|
|
||||||
Mat& out = outputs[0];
|
|
||||||
const float* inpData = (float*)inp.data;
|
|
||||||
float* outData = (float*)out.data;
|
|
||||||
|
|
||||||
const int batchSize = inp.size[0];
|
|
||||||
const int numChannels = inp.size[1];
|
|
||||||
const int inpHeight = inp.size[2];
|
|
||||||
const int inpWidth = inp.size[3];
|
|
||||||
|
|
||||||
float heightScale = static_cast<float>(inpHeight) / outHeight;
|
|
||||||
float widthScale = static_cast<float>(inpWidth) / outWidth;
|
|
||||||
for (int b = 0; b < batchSize; ++b)
|
|
||||||
{
|
|
||||||
for (int y = 0; y < outHeight; ++y)
|
|
||||||
{
|
|
||||||
float input_y = y * heightScale;
|
|
||||||
int y0 = static_cast<int>(std::floor(input_y));
|
|
||||||
int y1 = std::min(y0 + 1, inpHeight - 1);
|
|
||||||
for (int x = 0; x < outWidth; ++x)
|
|
||||||
{
|
|
||||||
float input_x = x * widthScale;
|
|
||||||
int x0 = static_cast<int>(std::floor(input_x));
|
|
||||||
int x1 = std::min(x0 + 1, inpWidth - 1);
|
|
||||||
for (int c = 0; c < numChannels; ++c)
|
|
||||||
{
|
|
||||||
float interpolation =
|
|
||||||
inpData[offset(inp.size, c, x0, y0, b)] * (1 - (input_y - y0)) * (1 - (input_x - x0)) +
|
|
||||||
inpData[offset(inp.size, c, x0, y1, b)] * (input_y - y0) * (1 - (input_x - x0)) +
|
|
||||||
inpData[offset(inp.size, c, x1, y0, b)] * (1 - (input_y - y0)) * (input_x - x0) +
|
|
||||||
inpData[offset(inp.size, c, x1, y1, b)] * (input_y - y0) * (input_x - x0);
|
|
||||||
outData[offset(out.size, c, x, y, b)] = interpolation;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual void forward(InputArrayOfArrays, OutputArrayOfArrays, OutputArrayOfArrays) CV_OVERRIDE {}
|
|
||||||
|
|
||||||
private:
|
|
||||||
static inline int offset(const MatSize& size, int c, int x, int y, int b)
|
|
||||||
{
|
|
||||||
return x + size[3] * (y + size[2] * (c + size[1] * b));
|
|
||||||
}
|
|
||||||
|
|
||||||
int outWidth, outHeight, factorWidth, factorHeight;
|
|
||||||
};
|
|
||||||
|
|
||||||
TEST(Test_TensorFlow, resize_bilinear)
|
TEST(Test_TensorFlow, resize_bilinear)
|
||||||
{
|
{
|
||||||
CV_DNN_REGISTER_LAYER_CLASS(ResizeBilinear, ResizeBilinearLayer);
|
|
||||||
runTensorFlowNet("resize_bilinear");
|
runTensorFlowNet("resize_bilinear");
|
||||||
runTensorFlowNet("resize_bilinear_factor");
|
runTensorFlowNet("resize_bilinear_factor");
|
||||||
LayerFactory::unregisterLayer("ResizeBilinear");
|
|
||||||
}
|
|
||||||
|
|
||||||
// inp = cv.imread('opencv_extra/testdata/cv/ximgproc/sources/08.png')
|
|
||||||
// inp = inp[:,:,[2, 1, 0]].astype(np.float32).reshape(1, 512, 512, 3)
|
|
||||||
// outs = sess.run([sess.graph.get_tensor_by_name('feature_fusion/Conv_7/Sigmoid:0'),
|
|
||||||
// sess.graph.get_tensor_by_name('feature_fusion/concat_3:0')],
|
|
||||||
// feed_dict={'input_images:0': inp})
|
|
||||||
// scores = np.ascontiguousarray(outs[0].transpose(0, 3, 1, 2))
|
|
||||||
// geometry = np.ascontiguousarray(outs[1].transpose(0, 3, 1, 2))
|
|
||||||
// np.save('east_text_detection.scores.npy', scores)
|
|
||||||
// np.save('east_text_detection.geometry.npy', geometry)
|
|
||||||
TEST(Test_TensorFlow, EAST_text_detection)
|
|
||||||
{
|
|
||||||
CV_DNN_REGISTER_LAYER_CLASS(ResizeBilinear, ResizeBilinearLayer);
|
|
||||||
std::string netPath = findDataFile("dnn/frozen_east_text_detection.pb", false);
|
|
||||||
std::string imgPath = findDataFile("cv/ximgproc/sources/08.png", false);
|
|
||||||
std::string refScoresPath = findDataFile("dnn/east_text_detection.scores.npy", false);
|
|
||||||
std::string refGeometryPath = findDataFile("dnn/east_text_detection.geometry.npy", false);
|
|
||||||
|
|
||||||
Net net = readNet(findDataFile("dnn/frozen_east_text_detection.pb", false));
|
|
||||||
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
||||||
|
|
||||||
Mat img = imread(imgPath);
|
|
||||||
Mat inp = blobFromImage(img, 1.0, Size(), Scalar(123.68, 116.78, 103.94), true, false);
|
|
||||||
net.setInput(inp);
|
|
||||||
|
|
||||||
std::vector<Mat> outs;
|
|
||||||
std::vector<String> outNames(2);
|
|
||||||
outNames[0] = "feature_fusion/Conv_7/Sigmoid";
|
|
||||||
outNames[1] = "feature_fusion/concat_3";
|
|
||||||
net.forward(outs, outNames);
|
|
||||||
|
|
||||||
Mat scores = outs[0];
|
|
||||||
Mat geometry = outs[1];
|
|
||||||
|
|
||||||
normAssert(scores, blobFromNPY(refScoresPath), "scores");
|
|
||||||
normAssert(geometry, blobFromNPY(refGeometryPath), "geometry", 1e-4, 3e-3);
|
|
||||||
LayerFactory::unregisterLayer("ResizeBilinear");
|
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
@ -2,8 +2,6 @@
|
|||||||
#include <opencv2/highgui.hpp>
|
#include <opencv2/highgui.hpp>
|
||||||
#include <opencv2/dnn.hpp>
|
#include <opencv2/dnn.hpp>
|
||||||
|
|
||||||
#include "custom_layers.hpp"
|
|
||||||
|
|
||||||
using namespace cv;
|
using namespace cv;
|
||||||
using namespace cv::dnn;
|
using namespace cv::dnn;
|
||||||
|
|
||||||
@ -38,9 +36,6 @@ int main(int argc, char** argv)
|
|||||||
CV_Assert(parser.has("model"));
|
CV_Assert(parser.has("model"));
|
||||||
String model = parser.get<String>("model");
|
String model = parser.get<String>("model");
|
||||||
|
|
||||||
// Register a custom layer.
|
|
||||||
CV_DNN_REGISTER_LAYER_CLASS(ResizeBilinear, ResizeBilinearLayer);
|
|
||||||
|
|
||||||
// Load network.
|
// Load network.
|
||||||
Net net = readNet(model);
|
Net net = readNet(model);
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user