mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 03:00:14 +08:00
Merge pull request #23799 from TolyaTalamanov:at/ov20-backend-implement-missing-kernels
G-API: Implement InferROI, InferList, InferList2 for OpenVINO backend #23799 ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [ ] I agree to contribute to the project under Apache 2 License. - [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [ ] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake
This commit is contained in:
parent
0cf45b89ec
commit
71790e12ad
@ -101,8 +101,8 @@ static int toCV(const ov::element::Type &type) {
|
||||
|
||||
static void copyFromOV(const ov::Tensor &tensor, cv::Mat &mat) {
|
||||
const auto total = mat.total() * mat.channels();
|
||||
if (tensor.get_element_type() != toOV(mat.depth()) ||
|
||||
tensor.get_size() != total ) {
|
||||
if (toCV(tensor.get_element_type()) != mat.depth() ||
|
||||
tensor.get_size() != total ) {
|
||||
std::stringstream ss;
|
||||
ss << "Failed to copy data from ov::Tensor to cv::Mat."
|
||||
<< " Data type or number of elements mismatch."
|
||||
@ -128,8 +128,8 @@ static void copyToOV(const cv::Mat &mat, ov::Tensor &tensor) {
|
||||
// TODO: Ideally there should be check that mat and tensor
|
||||
// dimensions are compatible.
|
||||
const auto total = mat.total() * mat.channels();
|
||||
if (tensor.get_element_type() != toOV(mat.depth()) ||
|
||||
tensor.get_size() != total) {
|
||||
if (toCV(tensor.get_element_type()) != mat.depth() ||
|
||||
tensor.get_size() != total) {
|
||||
std::stringstream ss;
|
||||
ss << "Failed to copy data from cv::Mat to ov::Tensor."
|
||||
<< " Data type or number of elements mismatch."
|
||||
@ -158,6 +158,14 @@ int cv::gapi::ov::util::to_ocv(const ::ov::element::Type &type) {
|
||||
return toCV(type);
|
||||
}
|
||||
|
||||
void cv::gapi::ov::util::to_ov(const cv::Mat &mat, ::ov::Tensor &tensor) {
|
||||
copyToOV(mat, tensor);
|
||||
}
|
||||
|
||||
void cv::gapi::ov::util::to_ocv(const ::ov::Tensor &tensor, cv::Mat &mat) {
|
||||
copyFromOV(tensor, mat);
|
||||
}
|
||||
|
||||
struct OVUnit {
|
||||
static const char *name() { return "OVUnit"; }
|
||||
|
||||
@ -343,6 +351,15 @@ cv::GArg OVCallContext::packArg(const cv::GArg &arg) {
|
||||
switch (ref.shape)
|
||||
{
|
||||
case cv::GShape::GMAT: return cv::GArg(m_res.slot<cv::Mat>()[ref.id]);
|
||||
|
||||
// Note: .at() is intentional for GArray as object MUST be already there
|
||||
// (and constructed by either bindIn/Out or resetInternal)
|
||||
case cv::GShape::GARRAY: return cv::GArg(m_res.slot<cv::detail::VectorRef>().at(ref.id));
|
||||
|
||||
// Note: .at() is intentional for GOpaque as object MUST be already there
|
||||
// (and constructed by either bindIn/Out or resetInternal)
|
||||
case cv::GShape::GOPAQUE: return cv::GArg(m_res.slot<cv::detail::OpaqueRef>().at(ref.id));
|
||||
|
||||
default:
|
||||
cv::util::throw_error(std::logic_error("Unsupported GShape type"));
|
||||
break;
|
||||
@ -547,6 +564,62 @@ static void PostOutputs(::ov::InferRequest &infer_request,
|
||||
}
|
||||
}
|
||||
|
||||
class PostOutputsList {
|
||||
public:
|
||||
PostOutputsList(size_t size,
|
||||
std::shared_ptr<OVCallContext> ctx);
|
||||
|
||||
void operator()(::ov::InferRequest &infer_request,
|
||||
std::exception_ptr eptr,
|
||||
size_t pos) const;
|
||||
|
||||
private:
|
||||
struct Priv {
|
||||
std::atomic<size_t> finished{0u};
|
||||
size_t size;
|
||||
std::shared_ptr<OVCallContext> ctx;
|
||||
};
|
||||
std::shared_ptr<Priv> m_priv;
|
||||
};
|
||||
|
||||
PostOutputsList::PostOutputsList(size_t size,
|
||||
std::shared_ptr<OVCallContext> ctx)
|
||||
: m_priv(new Priv{}) {
|
||||
m_priv->size = size;
|
||||
m_priv->ctx = ctx;
|
||||
}
|
||||
|
||||
void PostOutputsList::operator()(::ov::InferRequest &infer_request,
|
||||
std::exception_ptr eptr,
|
||||
size_t pos) const {
|
||||
auto&& ctx = m_priv->ctx;
|
||||
auto&& finished = m_priv->finished;
|
||||
auto&& size = m_priv->size;
|
||||
|
||||
ctx->eptr = eptr;
|
||||
if (!ctx->eptr) {
|
||||
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
|
||||
std::vector<cv::Mat> &out_vec = ctx->outVecR<cv::Mat>(i);
|
||||
|
||||
const auto &out_name = ctx->uu.params.output_names[i];
|
||||
const auto &out_tensor = infer_request.get_tensor(out_name);
|
||||
|
||||
out_vec[pos].create(toCV(out_tensor.get_shape()),
|
||||
toCV(out_tensor.get_element_type()));
|
||||
copyFromOV(out_tensor, out_vec[pos]);
|
||||
}
|
||||
}
|
||||
++finished;
|
||||
|
||||
if (finished == size) {
|
||||
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
|
||||
auto output = ctx->output(i);
|
||||
ctx->out.meta(output, ctx->getMeta());
|
||||
ctx->out.post(std::move(output), ctx->eptr);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
namespace cv {
|
||||
namespace gimpl {
|
||||
namespace ov {
|
||||
@ -594,6 +667,34 @@ cv::optional<V> lookUp(const std::map<K, V> &map, const K& key) {
|
||||
return cv::util::make_optional(std::move(it->second));
|
||||
}
|
||||
|
||||
// NB: This function is used to preprocess input image
|
||||
// for InferROI, InferList, InferList2 kernels.
|
||||
static cv::Mat preprocess(const cv::Mat &in_mat,
|
||||
const cv::Rect &roi,
|
||||
const ::ov::Shape &model_shape) {
|
||||
cv::Mat out;
|
||||
// FIXME: Since there is no information about H and W positions
|
||||
// among tensor dimmensions assume that model layout is "NHWC".
|
||||
// (In fact "NHWC" is the only right layout for preprocessing because
|
||||
// it works only with images.
|
||||
GAPI_Assert(model_shape.size() == 4u);
|
||||
const auto H = model_shape[1];
|
||||
const auto W = model_shape[2];
|
||||
const auto C = model_shape[3];
|
||||
// NB: Soft check that at least number of channels matches.
|
||||
if (static_cast<int>(C) != in_mat.channels()) {
|
||||
std::stringstream ss;
|
||||
ss << "OV Backend: Failed to preprocess input data "
|
||||
" (Number of channels mismatch)."
|
||||
" Provided data: " << cv::descr_of(in_mat) <<
|
||||
" and Model shape: " << model_shape;
|
||||
util::throw_error(std::logic_error(ss.str()));
|
||||
}
|
||||
// NB: Crop roi and resize to model size.
|
||||
cv::resize(in_mat(roi), out, cv::Size(W, H));
|
||||
return out;
|
||||
}
|
||||
|
||||
static bool isImage(const cv::GMatDesc &desc,
|
||||
const ::ov::Shape &model_shape) {
|
||||
return (model_shape.size() == 4u) &&
|
||||
@ -603,6 +704,191 @@ static bool isImage(const cv::GMatDesc &desc,
|
||||
(desc.depth == CV_8U);
|
||||
}
|
||||
|
||||
class PrePostProcWrapper {
|
||||
public:
|
||||
PrePostProcWrapper(std::shared_ptr<::ov::Model> &model,
|
||||
const ParamDesc::Model &model_info,
|
||||
const std::vector<std::string> &input_names,
|
||||
const std::vector<std::string> &output_names)
|
||||
: m_ppp(model),
|
||||
m_model(model),
|
||||
m_model_info(model_info),
|
||||
m_input_names(input_names),
|
||||
m_output_names(output_names) {
|
||||
// NB: Do Reshape right away since it must be the first step of model modification
|
||||
// and applicable for all infer kernels.
|
||||
const auto new_shapes = broadcastLayerAttr(model_info.new_shapes, input_names);
|
||||
m_model->reshape(toOV(new_shapes));
|
||||
|
||||
const auto &mi = m_model_info;
|
||||
m_input_tensor_layout = broadcastLayerAttr(mi.input_tensor_layout, m_input_names);
|
||||
m_input_model_layout = broadcastLayerAttr(mi.input_model_layout, m_input_names);
|
||||
m_interpolation = broadcastLayerAttr(mi.interpolation, m_input_names);
|
||||
m_mean_values = broadcastLayerAttr(mi.mean_values, m_input_names);
|
||||
m_scale_values = broadcastLayerAttr(mi.scale_values, m_input_names);
|
||||
m_interpolation = broadcastLayerAttr(mi.interpolation, m_input_names);
|
||||
|
||||
m_output_tensor_layout = broadcastLayerAttr(mi.output_tensor_layout, m_output_names);
|
||||
m_output_model_layout = broadcastLayerAttr(mi.output_model_layout, m_output_names);
|
||||
m_output_tensor_precision = broadcastLayerAttr(mi.output_tensor_precision, m_output_names);
|
||||
};
|
||||
|
||||
void cfgLayouts(const std::string &input_name) {
|
||||
auto &input_info = m_ppp.input(input_name);
|
||||
const auto explicit_in_model_layout = lookUp(m_input_model_layout, input_name);
|
||||
if (explicit_in_model_layout) {
|
||||
input_info.model().set_layout(::ov::Layout(*explicit_in_model_layout));
|
||||
}
|
||||
const auto explicit_in_tensor_layout = lookUp(m_input_tensor_layout, input_name);
|
||||
if (explicit_in_tensor_layout) {
|
||||
input_info.tensor().set_layout(::ov::Layout(*explicit_in_tensor_layout));
|
||||
}
|
||||
}
|
||||
|
||||
void cfgScaleMean(const std::string &input_name) {
|
||||
auto &input_info = m_ppp.input(input_name);
|
||||
const auto mean_vec = lookUp(m_mean_values, input_name);
|
||||
if (mean_vec) {
|
||||
input_info.preprocess().mean(*mean_vec);
|
||||
}
|
||||
const auto scale_vec = lookUp(m_scale_values, input_name);
|
||||
if (scale_vec) {
|
||||
input_info.preprocess().scale(*scale_vec);
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: Decompose this...
|
||||
void cfgPreProcessing(const std::string &input_name,
|
||||
const cv::GMetaArg &input_meta,
|
||||
const bool disable_img_resize = false) {
|
||||
GAPI_Assert(cv::util::holds_alternative<cv::GMatDesc>(input_meta));
|
||||
const auto &matdesc = cv::util::get<cv::GMatDesc>(input_meta);
|
||||
|
||||
const auto explicit_in_tensor_layout = lookUp(m_input_tensor_layout, input_name);
|
||||
const auto explicit_resize = lookUp(m_interpolation, input_name);
|
||||
|
||||
if (disable_img_resize && explicit_resize.has_value()) {
|
||||
std::stringstream ss;
|
||||
util::throw_error(std::logic_error(
|
||||
"OV Backend: Resize for layer \"" + input_name + "\" will be performed"
|
||||
" on host via OpenCV so explicitly configured resize is prohibited."));
|
||||
}
|
||||
|
||||
const auto &input_shape = m_model->input(input_name).get_shape();
|
||||
auto &input_info = m_ppp.input(input_name);
|
||||
|
||||
m_ppp.input(input_name).tensor().set_element_type(toOV(matdesc.depth));
|
||||
if (isImage(matdesc, input_shape)) {
|
||||
// NB: Image case - all necessary preprocessng is configured automatically.
|
||||
GAPI_LOG_DEBUG(NULL, "OV Backend: Input: \"" << input_name << "\" is image.");
|
||||
if (explicit_in_tensor_layout &&
|
||||
*explicit_in_tensor_layout != "NHWC") {
|
||||
std::stringstream ss;
|
||||
ss << "OV Backend: Provided tensor layout " << *explicit_in_tensor_layout
|
||||
<< " is not compatible with input data " << matdesc << " for layer \""
|
||||
<< input_name << "\". Expecting NHWC";
|
||||
util::throw_error(std::logic_error(ss.str()));
|
||||
} else {
|
||||
input_info.tensor().set_layout(::ov::Layout("NHWC"));
|
||||
}
|
||||
|
||||
if (!disable_img_resize) {
|
||||
input_info.tensor().set_spatial_static_shape(matdesc.size.height,
|
||||
matdesc.size.width);
|
||||
// NB: Even though resize is automatically configured
|
||||
// user have an opportunity to specify the interpolation algorithm.
|
||||
auto interp = explicit_resize
|
||||
? toOVInterp(*explicit_resize)
|
||||
: ::ov::preprocess::ResizeAlgorithm::RESIZE_LINEAR;
|
||||
input_info.preprocess().resize(interp);
|
||||
}
|
||||
} else {
|
||||
// NB: Tensor case - resize or layout conversions must be explicitly specified.
|
||||
GAPI_LOG_DEBUG(NULL, "OV Backend: Input: \"" << input_name << "\" is tensor.");
|
||||
|
||||
if (explicit_resize) {
|
||||
if (matdesc.isND()) {
|
||||
// NB: ND case - need to obtain "H" and "W" positions
|
||||
// in order to configure resize.
|
||||
const auto model_layout = ::ov::layout::get_layout(m_model->input(input_name));
|
||||
if (!explicit_in_tensor_layout && model_layout.empty()) {
|
||||
std::stringstream ss;
|
||||
ss << "Resize for input layer: " << input_name
|
||||
<< "can't be configured."
|
||||
<< " Failed to extract H and W positions from layout.";
|
||||
util::throw_error(std::logic_error(ss.str()));
|
||||
} else {
|
||||
const auto layout = explicit_in_tensor_layout
|
||||
? ::ov::Layout(*explicit_in_tensor_layout) : model_layout;
|
||||
auto H_idx = ::ov::layout::height_idx(layout);
|
||||
auto W_idx = ::ov::layout::width_idx(layout);
|
||||
// NB: If layout is "...HW", H position is -2.
|
||||
if (H_idx < 0) H_idx = matdesc.dims.size() + H_idx;
|
||||
if (W_idx < 0) W_idx = matdesc.dims.size() + W_idx;
|
||||
GAPI_Assert(H_idx >= 0 && H_idx < static_cast<int>(matdesc.dims.size()));
|
||||
GAPI_Assert(W_idx >= 0 && W_idx < static_cast<int>(matdesc.dims.size()));
|
||||
input_info.tensor().set_spatial_static_shape(matdesc.dims[H_idx],
|
||||
matdesc.dims[W_idx]);
|
||||
input_info.preprocess().resize(toOVInterp(*explicit_resize));
|
||||
}
|
||||
} else {
|
||||
// NB: 2D case - We know exactly where H and W...
|
||||
input_info.tensor().set_spatial_static_shape(matdesc.size.height,
|
||||
matdesc.size.width);
|
||||
input_info.preprocess().resize(toOVInterp(*explicit_resize));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void cfgPostProcessing() {
|
||||
for (const auto &output_name : m_output_names) {
|
||||
const auto explicit_out_tensor_layout =
|
||||
lookUp(m_output_tensor_layout, output_name);
|
||||
if (explicit_out_tensor_layout) {
|
||||
m_ppp.output(output_name).tensor()
|
||||
.set_layout(::ov::Layout(*explicit_out_tensor_layout));
|
||||
}
|
||||
|
||||
const auto explicit_out_model_layout =
|
||||
lookUp(m_output_model_layout, output_name);
|
||||
if (explicit_out_model_layout) {
|
||||
m_ppp.output(output_name).model()
|
||||
.set_layout(::ov::Layout(*explicit_out_model_layout));
|
||||
}
|
||||
|
||||
const auto explicit_out_tensor_prec =
|
||||
lookUp(m_output_tensor_precision, output_name);
|
||||
if (explicit_out_tensor_prec) {
|
||||
m_ppp.output(output_name).tensor()
|
||||
.set_element_type(toOV(*explicit_out_tensor_prec));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void finalize() {
|
||||
GAPI_LOG_DEBUG(NULL, "OV Backend: PrePostProcessor: " << m_ppp);
|
||||
m_model = m_ppp.build();
|
||||
}
|
||||
|
||||
private:
|
||||
::ov::preprocess::PrePostProcessor m_ppp;
|
||||
|
||||
std::shared_ptr<::ov::Model> &m_model;
|
||||
const ParamDesc::Model &m_model_info;
|
||||
const std::vector<std::string> &m_input_names;
|
||||
const std::vector<std::string> &m_output_names;
|
||||
|
||||
cv::gimpl::ov::AttrMap<std::string> m_input_tensor_layout;
|
||||
cv::gimpl::ov::AttrMap<std::string> m_input_model_layout;
|
||||
cv::gimpl::ov::AttrMap<int> m_interpolation;
|
||||
cv::gimpl::ov::AttrMap<std::vector<float>> m_mean_values;
|
||||
cv::gimpl::ov::AttrMap<std::vector<float>> m_scale_values;
|
||||
cv::gimpl::ov::AttrMap<std::string> m_output_tensor_layout;
|
||||
cv::gimpl::ov::AttrMap<std::string> m_output_model_layout;
|
||||
cv::gimpl::ov::AttrMap<int> m_output_tensor_precision;
|
||||
};
|
||||
|
||||
struct Infer: public cv::detail::KernelTag {
|
||||
using API = cv::GInferBase;
|
||||
static cv::gapi::GBackend backend() { return cv::gapi::ov::backend(); }
|
||||
@ -625,156 +911,21 @@ struct Infer: public cv::detail::KernelTag {
|
||||
// NB: Pre/Post processing configuration avaiable only for read models.
|
||||
if (cv::util::holds_alternative<ParamDesc::Model>(uu.params.kind)) {
|
||||
const auto &model_info = cv::util::get<ParamDesc::Model>(uu.params.kind);
|
||||
const auto new_shapes =
|
||||
broadcastLayerAttr(model_info.new_shapes,
|
||||
uu.params.input_names);
|
||||
const_cast<std::shared_ptr<::ov::Model>&>(uu.model)->reshape(toOV(new_shapes));
|
||||
auto& model = const_cast<std::shared_ptr<::ov::Model>&>(uu.model);
|
||||
PrePostProcWrapper ppp {model, model_info,
|
||||
uu.params.input_names, uu.params.output_names};
|
||||
|
||||
const auto input_tensor_layout =
|
||||
broadcastLayerAttr(model_info.input_tensor_layout,
|
||||
uu.params.input_names);
|
||||
const auto input_model_layout =
|
||||
broadcastLayerAttr(model_info.input_model_layout,
|
||||
uu.params.input_names);
|
||||
|
||||
const auto interpolation = broadcastLayerAttr(model_info.interpolation,
|
||||
uu.params.input_names);
|
||||
const auto mean_values = broadcastLayerAttr(model_info.mean_values,
|
||||
uu.params.input_names);
|
||||
const auto scale_values = broadcastLayerAttr(model_info.scale_values,
|
||||
uu.params.input_names);
|
||||
// FIXME: Pre/Post processing step shouldn't be configured in this method.
|
||||
::ov::preprocess::PrePostProcessor ppp(uu.model);
|
||||
for (auto &&it : ade::util::zip(ade::util::toRange(uu.params.input_names),
|
||||
ade::util::toRange(in_metas))) {
|
||||
const auto &mm = std::get<1>(it);
|
||||
GAPI_Assert(cv::util::holds_alternative<cv::GMatDesc>(mm));
|
||||
const auto &matdesc = cv::util::get<cv::GMatDesc>(mm);
|
||||
|
||||
const auto &input_name = std::get<0>(it);
|
||||
auto &input_info = ppp.input(input_name);
|
||||
input_info.tensor().set_element_type(toOV(matdesc.depth));
|
||||
const auto &mm = std::get<1>(it);
|
||||
|
||||
const auto explicit_in_model_layout = lookUp(input_model_layout, input_name);
|
||||
if (explicit_in_model_layout) {
|
||||
input_info.model().set_layout(::ov::Layout(*explicit_in_model_layout));
|
||||
}
|
||||
const auto explicit_in_tensor_layout = lookUp(input_tensor_layout, input_name);
|
||||
if (explicit_in_tensor_layout) {
|
||||
input_info.tensor().set_layout(::ov::Layout(*explicit_in_tensor_layout));
|
||||
}
|
||||
const auto explicit_resize = lookUp(interpolation, input_name);
|
||||
// NB: Note that model layout still can't be empty.
|
||||
// e.g If model converted to IRv11 without any additional
|
||||
// info about layout via Model Optimizer.
|
||||
const auto model_layout = ::ov::layout::get_layout(uu.model->input(input_name));
|
||||
const auto &input_shape = uu.model->input(input_name).get_shape();
|
||||
if (isImage(matdesc, input_shape)) {
|
||||
// NB: Image case - all necessary preprocessng is configured automatically.
|
||||
GAPI_LOG_DEBUG(NULL, "OV Backend: Input: \"" << input_name << "\" is image.");
|
||||
// NB: Layout is already set just double check that
|
||||
// user provided the correct one. In fact, there is only one correct for image.
|
||||
if (explicit_in_tensor_layout &&
|
||||
*explicit_in_tensor_layout != "NHWC") {
|
||||
std::stringstream ss;
|
||||
ss << "OV Backend: Provided tensor layout " << *explicit_in_tensor_layout
|
||||
<< " is not compatible with input data " << matdesc << " for layer \""
|
||||
<< input_name << "\". Expecting NHWC";
|
||||
util::throw_error(std::logic_error(ss.str()));
|
||||
}
|
||||
input_info.tensor().set_layout(::ov::Layout("NHWC"));
|
||||
input_info.tensor().set_spatial_static_shape(matdesc.size.height,
|
||||
matdesc.size.width);
|
||||
// NB: Even though resize is automatically configured
|
||||
// user have an opportunity to specify the interpolation algorithm.
|
||||
auto interp = explicit_resize
|
||||
? toOVInterp(*explicit_resize)
|
||||
: ::ov::preprocess::ResizeAlgorithm::RESIZE_LINEAR;
|
||||
input_info.preprocess().resize(interp);
|
||||
} else {
|
||||
// NB: Tensor case - resize or layout conversions must be explicitly specified.
|
||||
GAPI_LOG_DEBUG(NULL, "OV Backend: Input: \"" << input_name << "\" is tensor.");
|
||||
if (explicit_resize) {
|
||||
if (matdesc.isND()) {
|
||||
// NB: ND case - need to obtain "H" and "W" positions
|
||||
// in order to configure resize.
|
||||
if (!explicit_in_tensor_layout && model_layout.empty()) {
|
||||
std::stringstream ss;
|
||||
ss << "Resize for input layer: " << input_name
|
||||
<< "can't be configured."
|
||||
<< " Failed to extract H and W positions from layout.";
|
||||
util::throw_error(std::logic_error(ss.str()));
|
||||
} else {
|
||||
const auto layout = explicit_in_tensor_layout
|
||||
? ::ov::Layout(*explicit_in_tensor_layout) : model_layout;
|
||||
auto H_idx = ::ov::layout::height_idx(layout);
|
||||
auto W_idx = ::ov::layout::width_idx(layout);
|
||||
// NB: If layout is "...HW", H position is -2.
|
||||
if (H_idx < 0) H_idx = matdesc.dims.size() + H_idx;
|
||||
if (W_idx < 0) W_idx = matdesc.dims.size() + W_idx;
|
||||
GAPI_Assert(H_idx >= 0 && H_idx < static_cast<int>(matdesc.dims.size()));
|
||||
GAPI_Assert(W_idx >= 0 && W_idx < static_cast<int>(matdesc.dims.size()));
|
||||
input_info.tensor().set_spatial_static_shape(matdesc.dims[H_idx],
|
||||
matdesc.dims[W_idx]);
|
||||
input_info.preprocess().resize(toOVInterp(*explicit_resize));
|
||||
}
|
||||
} else {
|
||||
// NB: 2D case - We know exactly where H and W...
|
||||
input_info.tensor().set_spatial_static_shape(matdesc.size.height,
|
||||
matdesc.size.width);
|
||||
input_info.preprocess().resize(toOVInterp(*explicit_resize));
|
||||
}
|
||||
}
|
||||
}
|
||||
// NB: Apply mean/scale as the last step of the preprocessing.
|
||||
// Note that this can be applied to any input data if the
|
||||
// position of "C" dimension is known.
|
||||
const auto mean_vec = lookUp(mean_values, input_name);
|
||||
if (mean_vec) {
|
||||
input_info.preprocess().mean(*mean_vec);
|
||||
}
|
||||
|
||||
const auto scale_vec = lookUp(scale_values, input_name);
|
||||
if (scale_vec) {
|
||||
input_info.preprocess().scale(*scale_vec);
|
||||
}
|
||||
ppp.cfgLayouts(input_name);
|
||||
ppp.cfgPreProcessing(input_name, mm);
|
||||
ppp.cfgScaleMean(input_name);
|
||||
}
|
||||
|
||||
const auto output_tensor_layout =
|
||||
broadcastLayerAttr(model_info.output_tensor_layout,
|
||||
uu.params.output_names);
|
||||
const auto output_model_layout =
|
||||
broadcastLayerAttr(model_info.output_model_layout,
|
||||
uu.params.output_names);
|
||||
const auto output_tensor_precision =
|
||||
broadcastLayerAttr(model_info.output_tensor_precision,
|
||||
uu.params.output_names);
|
||||
|
||||
for (const auto &output_name : uu.params.output_names) {
|
||||
const auto explicit_out_tensor_layout =
|
||||
lookUp(output_tensor_layout, output_name);
|
||||
if (explicit_out_tensor_layout) {
|
||||
ppp.output(output_name).tensor()
|
||||
.set_layout(::ov::Layout(*explicit_out_tensor_layout));
|
||||
}
|
||||
|
||||
const auto explicit_out_model_layout =
|
||||
lookUp(output_model_layout, output_name);
|
||||
if (explicit_out_model_layout) {
|
||||
ppp.output(output_name).model()
|
||||
.set_layout(::ov::Layout(*explicit_out_model_layout));
|
||||
}
|
||||
|
||||
const auto explicit_out_tensor_prec =
|
||||
lookUp(output_tensor_precision, output_name);
|
||||
if (explicit_out_tensor_prec) {
|
||||
ppp.output(output_name).tensor()
|
||||
.set_element_type(toOV(*explicit_out_tensor_prec));
|
||||
}
|
||||
}
|
||||
|
||||
GAPI_LOG_DEBUG(NULL, "OV Backend: PrePostProcessor: " << ppp);
|
||||
const_cast<std::shared_ptr<::ov::Model>&>(uu.model) = ppp.build();
|
||||
ppp.cfgPostProcessing();
|
||||
ppp.finalize();
|
||||
}
|
||||
|
||||
for (const auto &out_name : uu.params.output_names) {
|
||||
@ -815,6 +966,313 @@ struct Infer: public cv::detail::KernelTag {
|
||||
}
|
||||
};
|
||||
|
||||
struct InferROI: public cv::detail::KernelTag {
|
||||
using API = cv::GInferROIBase;
|
||||
static cv::gapi::GBackend backend() { return cv::gapi::ov::backend(); }
|
||||
static KImpl kernel() { return KImpl{outMeta, run}; }
|
||||
|
||||
static cv::GMetaArgs outMeta(const ade::Graph &gr,
|
||||
const ade::NodeHandle &nh,
|
||||
const cv::GMetaArgs &in_metas,
|
||||
const cv::GArgs &/*in_args*/) {
|
||||
cv::GMetaArgs result;
|
||||
|
||||
GConstGOVModel gm(gr);
|
||||
const auto &uu = gm.metadata(nh).get<OVUnit>();
|
||||
// Initialize input information
|
||||
// FIXME: So far it is pretty limited
|
||||
GAPI_Assert(1u == uu.params.input_names.size());
|
||||
GAPI_Assert(2u == in_metas.size());
|
||||
|
||||
const auto &input_name = uu.params.input_names.at(0);
|
||||
const auto &mm = in_metas.at(1u);
|
||||
GAPI_Assert(cv::util::holds_alternative<cv::GMatDesc>(mm));
|
||||
const auto &matdesc = cv::util::get<cv::GMatDesc>(mm);
|
||||
|
||||
const bool is_model = cv::util::holds_alternative<ParamDesc::Model>(uu.params.kind);
|
||||
const auto &input_shape = is_model ? uu.model->input(input_name).get_shape()
|
||||
: uu.compiled_model.input(input_name).get_shape();
|
||||
if (!isImage(matdesc, input_shape)) {
|
||||
util::throw_error(std::runtime_error(
|
||||
"OV Backend: InferROI supports only image as the 1th argument"));
|
||||
}
|
||||
|
||||
if (is_model) {
|
||||
const auto &model_info = cv::util::get<ParamDesc::Model>(uu.params.kind);
|
||||
auto& model = const_cast<std::shared_ptr<::ov::Model>&>(uu.model);
|
||||
PrePostProcWrapper ppp {model, model_info,
|
||||
uu.params.input_names, uu.params.output_names};
|
||||
|
||||
ppp.cfgLayouts(input_name);
|
||||
ppp.cfgPreProcessing(input_name, mm, true /*disable_img_resize*/);
|
||||
ppp.cfgScaleMean(input_name);
|
||||
ppp.cfgPostProcessing();
|
||||
ppp.finalize();
|
||||
}
|
||||
|
||||
for (const auto &out_name : uu.params.output_names) {
|
||||
cv::GMatDesc outm;
|
||||
if (cv::util::holds_alternative<ParamDesc::Model>(uu.params.kind)) {
|
||||
const auto &out = uu.model->output(out_name);
|
||||
outm = cv::GMatDesc(toCV(out.get_element_type()),
|
||||
toCV(out.get_shape()));
|
||||
} else {
|
||||
GAPI_Assert(cv::util::holds_alternative<ParamDesc::CompiledModel>(uu.params.kind));
|
||||
const auto &out = uu.compiled_model.output(out_name);
|
||||
outm = cv::GMatDesc(toCV(out.get_element_type()),
|
||||
toCV(out.get_shape()));
|
||||
}
|
||||
result.emplace_back(std::move(outm));
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static void run(std::shared_ptr<OVCallContext> ctx,
|
||||
cv::gimpl::ov::RequestPool &reqPool) {
|
||||
using namespace std::placeholders;
|
||||
reqPool.getIdleRequest()->execute(
|
||||
IInferExecutor::Task {
|
||||
[ctx](::ov::InferRequest &infer_request) {
|
||||
GAPI_Assert(ctx->uu.params.num_in == 1);
|
||||
const auto &input_name = ctx->uu.params.input_names[0];
|
||||
auto input_tensor = infer_request.get_tensor(input_name);
|
||||
const auto &shape = input_tensor.get_shape();
|
||||
const auto &roi = ctx->inArg<cv::detail::OpaqueRef>(0).rref<cv::Rect>();
|
||||
const auto roi_mat = preprocess(ctx->inMat(1), roi, shape);
|
||||
copyToOV(roi_mat, input_tensor);
|
||||
},
|
||||
std::bind(PostOutputs, _1, _2, ctx)
|
||||
}
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
struct InferList: public cv::detail::KernelTag {
|
||||
using API = cv::GInferListBase;
|
||||
static cv::gapi::GBackend backend() { return cv::gapi::ov::backend(); }
|
||||
static KImpl kernel() { return KImpl{outMeta, run}; }
|
||||
|
||||
static cv::GMetaArgs outMeta(const ade::Graph &gr,
|
||||
const ade::NodeHandle &nh,
|
||||
const cv::GMetaArgs &in_metas,
|
||||
const cv::GArgs &/*in_args*/) {
|
||||
GConstGOVModel gm(gr);
|
||||
const auto &uu = gm.metadata(nh).get<OVUnit>();
|
||||
// Initialize input information
|
||||
// Note our input layers list order matches the API order and so
|
||||
// meta order.
|
||||
GAPI_Assert(uu.params.input_names.size() == (in_metas.size() - 1u)
|
||||
&& "Known input layers count doesn't match input meta count");
|
||||
|
||||
// NB: Pre/Post processing configuration avaiable only for read models.
|
||||
if (cv::util::holds_alternative<ParamDesc::Model>(uu.params.kind)) {
|
||||
const auto &model_info = cv::util::get<ParamDesc::Model>(uu.params.kind);
|
||||
auto& model = const_cast<std::shared_ptr<::ov::Model>&>(uu.model);
|
||||
PrePostProcWrapper ppp {model, model_info,
|
||||
uu.params.input_names, uu.params.output_names};
|
||||
|
||||
size_t idx = 1u;
|
||||
for (auto &&input_name : uu.params.input_names) {
|
||||
const auto &mm = in_metas[idx++];
|
||||
GAPI_Assert(cv::util::holds_alternative<cv::GMatDesc>(mm));
|
||||
const auto &matdesc = cv::util::get<cv::GMatDesc>(mm);
|
||||
const auto &input_shape = uu.model->input(input_name).get_shape();
|
||||
|
||||
if (!isImage(matdesc, input_shape)) {
|
||||
util::throw_error(std::runtime_error(
|
||||
"OV Backend: Only image is supported"
|
||||
" as the " + std::to_string(idx) + "th argument for InferList"));
|
||||
}
|
||||
|
||||
ppp.cfgLayouts(input_name);
|
||||
ppp.cfgPreProcessing(input_name, mm, true /*disable_img_resize*/);
|
||||
ppp.cfgScaleMean(input_name);
|
||||
}
|
||||
ppp.cfgPostProcessing();
|
||||
ppp.finalize();
|
||||
}
|
||||
|
||||
// roi-list version is much easier at the moment.
|
||||
// All our outputs are vectors which don't have
|
||||
// metadata at the moment - so just create a vector of
|
||||
// "empty" array metadatas of the required size.
|
||||
return cv::GMetaArgs(uu.params.output_names.size(),
|
||||
cv::GMetaArg{cv::empty_array_desc()});
|
||||
}
|
||||
|
||||
static void run(std::shared_ptr<OVCallContext> ctx,
|
||||
cv::gimpl::ov::RequestPool &reqPool) {
|
||||
const auto& in_roi_vec = ctx->inArg<cv::detail::VectorRef>(0u).rref<cv::Rect>();
|
||||
// NB: In case there is no input data need to post output anyway
|
||||
if (in_roi_vec.empty()) {
|
||||
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
|
||||
auto output = ctx->output(i);
|
||||
ctx->out.meta(output, ctx->getMeta());
|
||||
ctx->out.post(std::move(output));
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
|
||||
// FIXME: Isn't this should be done automatically
|
||||
// by some resetInternalData(), etc? (Probably at the GExecutor level)
|
||||
auto& out_vec = ctx->outVecR<cv::Mat>(i);
|
||||
out_vec.clear();
|
||||
out_vec.resize(in_roi_vec.size());
|
||||
}
|
||||
|
||||
PostOutputsList callback(in_roi_vec.size(), ctx);
|
||||
for (auto&& it : ade::util::indexed(in_roi_vec)) {
|
||||
const auto pos = ade::util::index(it);
|
||||
const auto &rc = ade::util::value(it);
|
||||
reqPool.getIdleRequest()->execute(
|
||||
IInferExecutor::Task {
|
||||
[ctx, rc](::ov::InferRequest &infer_request) {
|
||||
const auto &input_name = ctx->uu.params.input_names[0];
|
||||
auto input_tensor = infer_request.get_tensor(input_name);
|
||||
const auto &shape = input_tensor.get_shape();
|
||||
const auto roi_mat = preprocess(ctx->inMat(1), rc, shape);
|
||||
copyToOV(roi_mat, input_tensor);
|
||||
},
|
||||
std::bind(callback, std::placeholders::_1, std::placeholders::_2, pos)
|
||||
}
|
||||
);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct InferList2: public cv::detail::KernelTag {
|
||||
using API = cv::GInferList2Base;
|
||||
static cv::gapi::GBackend backend() { return cv::gapi::ov::backend(); }
|
||||
static KImpl kernel() { return KImpl{outMeta, run}; }
|
||||
|
||||
static cv::GMetaArgs outMeta(const ade::Graph &gr,
|
||||
const ade::NodeHandle &nh,
|
||||
const cv::GMetaArgs &in_metas,
|
||||
const cv::GArgs &/*in_args*/) {
|
||||
GConstGOVModel gm(gr);
|
||||
const auto &uu = gm.metadata(nh).get<OVUnit>();
|
||||
// Initialize input information
|
||||
// Note our input layers list order matches the API order and so
|
||||
// meta order.
|
||||
GAPI_Assert(uu.params.input_names.size() == (in_metas.size() - 1u)
|
||||
&& "Known input layers count doesn't match input meta count");
|
||||
|
||||
const auto &op = gm.metadata(nh).get<Op>();
|
||||
|
||||
// In contrast to InferList, the InferList2 has only one
|
||||
// "full-frame" image argument, and all the rest are arrays of
|
||||
// ether ROI or blobs. So here we set the 0th arg image format
|
||||
// to all inputs which are ROI-based (skipping the
|
||||
// "blob"-based ones)
|
||||
// FIXME: this is filtering not done, actually! GArrayDesc has
|
||||
// no hint for its underlying type!
|
||||
|
||||
const auto &input_name_0 = uu.params.input_names.front();
|
||||
const auto &mm_0 = in_metas[0u];
|
||||
const auto &matdesc = cv::util::get<cv::GMatDesc>(mm_0);
|
||||
|
||||
const bool is_model = cv::util::holds_alternative<ParamDesc::Model>(uu.params.kind);
|
||||
const auto &input_shape = is_model ? uu.model->input(input_name_0).get_shape()
|
||||
: uu.compiled_model.input(input_name_0).get_shape();
|
||||
if (!isImage(matdesc, input_shape)) {
|
||||
util::throw_error(std::runtime_error(
|
||||
"OV Backend: InferList2 supports only image as the 0th argument"));
|
||||
}
|
||||
|
||||
if (is_model) {
|
||||
const auto &model_info = cv::util::get<ParamDesc::Model>(uu.params.kind);
|
||||
auto& model = const_cast<std::shared_ptr<::ov::Model>&>(uu.model);
|
||||
PrePostProcWrapper ppp {model, model_info,
|
||||
uu.params.input_names, uu.params.output_names};
|
||||
|
||||
size_t idx = 1u;
|
||||
for (auto &&input_name : uu.params.input_names) {
|
||||
GAPI_Assert(util::holds_alternative<cv::GArrayDesc>(in_metas[idx])
|
||||
&& "Non-array inputs are not supported");
|
||||
|
||||
ppp.cfgLayouts(input_name);
|
||||
if (op.k.inKinds[idx] == cv::detail::OpaqueKind::CV_RECT) {
|
||||
ppp.cfgPreProcessing(input_name, mm_0, true /*disable_img_resize*/);
|
||||
} else {
|
||||
// This is a cv::GMat (equals to: cv::Mat)
|
||||
// Just validate that it is really the type
|
||||
// (other types are prohibited here)
|
||||
GAPI_Assert(op.k.inKinds[idx] == cv::detail::OpaqueKind::CV_MAT);
|
||||
}
|
||||
|
||||
ppp.cfgScaleMean(input_name);
|
||||
idx++; // NB: Never forget to increment the counter
|
||||
}
|
||||
ppp.cfgPostProcessing();
|
||||
ppp.finalize();
|
||||
}
|
||||
|
||||
// roi-list version is much easier at the moment.
|
||||
// All our outputs are vectors which don't have
|
||||
// metadata at the moment - so just create a vector of
|
||||
// "empty" array metadatas of the required size.
|
||||
return cv::GMetaArgs(uu.params.output_names.size(),
|
||||
cv::GMetaArg{cv::empty_array_desc()});
|
||||
}
|
||||
|
||||
static void run(std::shared_ptr<OVCallContext> ctx,
|
||||
cv::gimpl::ov::RequestPool &reqPool) {
|
||||
GAPI_Assert(ctx->inArgs().size() > 1u
|
||||
&& "This operation must have at least two arguments");
|
||||
// NB: This blob will be used to make roi from its, so
|
||||
// it should be treated as image
|
||||
const auto list_size = ctx->inArg<cv::detail::VectorRef>(1u).size();
|
||||
if (list_size == 0u) {
|
||||
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
|
||||
auto output = ctx->output(i);
|
||||
ctx->out.meta(output, ctx->getMeta());
|
||||
ctx->out.post(std::move(output));
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
for (auto i : ade::util::iota(ctx->uu.params.num_out)) {
|
||||
// FIXME: Isn't this should be done automatically
|
||||
// by some resetInternalData(), etc? (Probably at the GExecutor level)
|
||||
auto& out_vec = ctx->outVecR<cv::Mat>(i);
|
||||
out_vec.clear();
|
||||
out_vec.resize(list_size);
|
||||
}
|
||||
|
||||
PostOutputsList callback(list_size, ctx);
|
||||
for (const auto &list_idx : ade::util::iota(list_size)) {
|
||||
reqPool.getIdleRequest()->execute(
|
||||
IInferExecutor::Task {
|
||||
[ctx, list_idx, list_size](::ov::InferRequest &infer_request) {
|
||||
for (auto in_idx : ade::util::iota(ctx->uu.params.num_in)) {
|
||||
const auto &this_vec = ctx->inArg<cv::detail::VectorRef>(in_idx+1u);
|
||||
GAPI_Assert(this_vec.size() == list_size);
|
||||
const auto &input_name = ctx->uu.params.input_names[in_idx];
|
||||
auto input_tensor = infer_request.get_tensor(input_name);
|
||||
const auto &shape = input_tensor.get_shape();
|
||||
if (this_vec.getKind() == cv::detail::OpaqueKind::CV_RECT) {
|
||||
const auto &vec = this_vec.rref<cv::Rect>();
|
||||
const auto roi_mat = preprocess(ctx->inMat(0), vec[list_idx], shape);
|
||||
copyToOV(roi_mat, input_tensor);
|
||||
} else if (this_vec.getKind() == cv::detail::OpaqueKind::CV_MAT) {
|
||||
const auto &vec = this_vec.rref<cv::Mat>();
|
||||
const auto &mat = vec[list_idx];
|
||||
copyToOV(mat, input_tensor);
|
||||
} else {
|
||||
GAPI_Assert(false &&
|
||||
"OV Backend: Only Rect and Mat types are supported for InferList2");
|
||||
}
|
||||
}
|
||||
},
|
||||
std::bind(callback, std::placeholders::_1, std::placeholders::_2, list_idx)
|
||||
} // task
|
||||
);
|
||||
} // for
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace ov
|
||||
} // namespace gimpl
|
||||
} // namespace cv
|
||||
@ -858,7 +1316,10 @@ class GOVBackendImpl final: public cv::gapi::GBackend::Priv {
|
||||
}
|
||||
|
||||
virtual cv::GKernelPackage auxiliaryKernels() const override {
|
||||
return cv::gapi::kernels< cv::gimpl::ov::Infer >();
|
||||
return cv::gapi::kernels< cv::gimpl::ov::Infer
|
||||
, cv::gimpl::ov::InferROI
|
||||
, cv::gimpl::ov::InferList
|
||||
, cv::gimpl::ov::InferList2 >();
|
||||
}
|
||||
|
||||
virtual bool controlsMerge() const override {
|
||||
|
@ -27,6 +27,8 @@ namespace util {
|
||||
// test suite only.
|
||||
GAPI_EXPORTS std::vector<int> to_ocv(const ::ov::Shape &shape);
|
||||
GAPI_EXPORTS int to_ocv(const ::ov::element::Type &type);
|
||||
GAPI_EXPORTS void to_ov(const cv::Mat &mat, ::ov::Tensor &tensor);
|
||||
GAPI_EXPORTS void to_ocv(const ::ov::Tensor &tensor, cv::Mat &mat);
|
||||
|
||||
}}}}
|
||||
|
||||
|
@ -41,20 +41,6 @@ void initDLDTDataPath()
|
||||
|
||||
static const std::string SUBDIR = "intel/age-gender-recognition-retail-0013/FP32/";
|
||||
|
||||
void copyFromOV(ov::Tensor &tensor, cv::Mat &mat) {
|
||||
GAPI_Assert(tensor.get_byte_size() == mat.total() * mat.elemSize());
|
||||
std::copy_n(reinterpret_cast<uint8_t*>(tensor.data()),
|
||||
tensor.get_byte_size(),
|
||||
mat.ptr<uint8_t>());
|
||||
}
|
||||
|
||||
void copyToOV(const cv::Mat &mat, ov::Tensor &tensor) {
|
||||
GAPI_Assert(tensor.get_byte_size() == mat.total() * mat.elemSize());
|
||||
std::copy_n(mat.ptr<uint8_t>(),
|
||||
tensor.get_byte_size(),
|
||||
reinterpret_cast<uint8_t*>(tensor.data()));
|
||||
}
|
||||
|
||||
// FIXME: taken from the DNN module
|
||||
void normAssert(cv::InputArray ref, cv::InputArray test,
|
||||
const char *comment /*= ""*/,
|
||||
@ -74,7 +60,7 @@ ov::Core getCore() {
|
||||
// TODO: AGNetGenComp, AGNetTypedComp, AGNetOVComp, AGNetOVCompiled
|
||||
// can be generalized to work with any model and used as parameters for tests.
|
||||
|
||||
struct AGNetGenComp {
|
||||
struct AGNetGenParams {
|
||||
static constexpr const char* tag = "age-gender-generic";
|
||||
using Params = cv::gapi::ov::Params<cv::gapi::Generic>;
|
||||
|
||||
@ -88,19 +74,9 @@ struct AGNetGenComp {
|
||||
const std::string &device) {
|
||||
return {tag, blob_path, device};
|
||||
}
|
||||
|
||||
static cv::GComputation create() {
|
||||
cv::GMat in;
|
||||
GInferInputs inputs;
|
||||
inputs["data"] = in;
|
||||
auto outputs = cv::gapi::infer<cv::gapi::Generic>(tag, inputs);
|
||||
auto age = outputs.at("age_conv3");
|
||||
auto gender = outputs.at("prob");
|
||||
return cv::GComputation{cv::GIn(in), cv::GOut(age, gender)};
|
||||
}
|
||||
};
|
||||
|
||||
struct AGNetTypedComp {
|
||||
struct AGNetTypedParams {
|
||||
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
|
||||
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "typed-age-gender");
|
||||
using Params = cv::gapi::ov::Params<AgeGender>;
|
||||
@ -112,7 +88,9 @@ struct AGNetTypedComp {
|
||||
xml_path, bin_path, device
|
||||
}.cfgOutputLayers({ "age_conv3", "prob" });
|
||||
}
|
||||
};
|
||||
|
||||
struct AGNetTypedComp : AGNetTypedParams {
|
||||
static cv::GComputation create() {
|
||||
cv::GMat in;
|
||||
cv::GMat age, gender;
|
||||
@ -121,30 +99,104 @@ struct AGNetTypedComp {
|
||||
}
|
||||
};
|
||||
|
||||
struct AGNetGenComp : public AGNetGenParams {
|
||||
static cv::GComputation create() {
|
||||
cv::GMat in;
|
||||
GInferInputs inputs;
|
||||
inputs["data"] = in;
|
||||
auto outputs = cv::gapi::infer<cv::gapi::Generic>(tag, inputs);
|
||||
auto age = outputs.at("age_conv3");
|
||||
auto gender = outputs.at("prob");
|
||||
return cv::GComputation{cv::GIn(in), cv::GOut(age, gender)};
|
||||
}
|
||||
};
|
||||
|
||||
struct AGNetROIGenComp : AGNetGenParams {
|
||||
static cv::GComputation create() {
|
||||
cv::GMat in;
|
||||
cv::GOpaque<cv::Rect> roi;
|
||||
GInferInputs inputs;
|
||||
inputs["data"] = in;
|
||||
auto outputs = cv::gapi::infer<cv::gapi::Generic>(tag, roi, inputs);
|
||||
auto age = outputs.at("age_conv3");
|
||||
auto gender = outputs.at("prob");
|
||||
return cv::GComputation{cv::GIn(in, roi), cv::GOut(age, gender)};
|
||||
}
|
||||
};
|
||||
|
||||
struct AGNetListGenComp : AGNetGenParams {
|
||||
static cv::GComputation create() {
|
||||
cv::GMat in;
|
||||
cv::GArray<cv::Rect> rois;
|
||||
GInferInputs inputs;
|
||||
inputs["data"] = in;
|
||||
auto outputs = cv::gapi::infer<cv::gapi::Generic>(tag, rois, inputs);
|
||||
auto age = outputs.at("age_conv3");
|
||||
auto gender = outputs.at("prob");
|
||||
return cv::GComputation{cv::GIn(in, rois), cv::GOut(age, gender)};
|
||||
}
|
||||
};
|
||||
|
||||
struct AGNetList2GenComp : AGNetGenParams {
|
||||
static cv::GComputation create() {
|
||||
cv::GMat in;
|
||||
cv::GArray<cv::Rect> rois;
|
||||
GInferListInputs list;
|
||||
list["data"] = rois;
|
||||
auto outputs = cv::gapi::infer2<cv::gapi::Generic>(tag, in, list);
|
||||
auto age = outputs.at("age_conv3");
|
||||
auto gender = outputs.at("prob");
|
||||
return cv::GComputation{cv::GIn(in, rois), cv::GOut(age, gender)};
|
||||
}
|
||||
};
|
||||
|
||||
class AGNetOVCompiled {
|
||||
public:
|
||||
AGNetOVCompiled(ov::CompiledModel &&compiled_model)
|
||||
: m_compiled_model(std::move(compiled_model)) {
|
||||
: m_compiled_model(std::move(compiled_model)),
|
||||
m_infer_request(m_compiled_model.create_infer_request()) {
|
||||
}
|
||||
|
||||
void operator()(const cv::Mat &in_mat,
|
||||
const cv::Rect &roi,
|
||||
cv::Mat &age_mat,
|
||||
cv::Mat &gender_mat) {
|
||||
// FIXME: W & H could be extracted from model shape
|
||||
// but it's anyway used only for Age Gender model.
|
||||
// (Well won't work in case of reshape)
|
||||
const int W = 62;
|
||||
const int H = 62;
|
||||
cv::Mat resized_roi;
|
||||
cv::resize(in_mat(roi), resized_roi, cv::Size(W, H));
|
||||
(*this)(resized_roi, age_mat, gender_mat);
|
||||
}
|
||||
|
||||
void operator()(const cv::Mat &in_mat,
|
||||
const std::vector<cv::Rect> &rois,
|
||||
std::vector<cv::Mat> &age_mats,
|
||||
std::vector<cv::Mat> &gender_mats) {
|
||||
for (size_t i = 0; i < rois.size(); ++i) {
|
||||
(*this)(in_mat, rois[i], age_mats[i], gender_mats[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void operator()(const cv::Mat &in_mat,
|
||||
cv::Mat &age_mat,
|
||||
cv::Mat &gender_mat) {
|
||||
auto infer_request = m_compiled_model.create_infer_request();
|
||||
auto input_tensor = infer_request.get_input_tensor();
|
||||
copyToOV(in_mat, input_tensor);
|
||||
auto input_tensor = m_infer_request.get_input_tensor();
|
||||
cv::gapi::ov::util::to_ov(in_mat, input_tensor);
|
||||
|
||||
infer_request.infer();
|
||||
m_infer_request.infer();
|
||||
|
||||
auto age_tensor = infer_request.get_tensor("age_conv3");
|
||||
auto age_tensor = m_infer_request.get_tensor("age_conv3");
|
||||
age_mat.create(cv::gapi::ov::util::to_ocv(age_tensor.get_shape()),
|
||||
cv::gapi::ov::util::to_ocv(age_tensor.get_element_type()));
|
||||
copyFromOV(age_tensor, age_mat);
|
||||
cv::gapi::ov::util::to_ocv(age_tensor, age_mat);
|
||||
|
||||
auto gender_tensor = infer_request.get_tensor("prob");
|
||||
auto gender_tensor = m_infer_request.get_tensor("prob");
|
||||
gender_mat.create(cv::gapi::ov::util::to_ocv(gender_tensor.get_shape()),
|
||||
cv::gapi::ov::util::to_ocv(gender_tensor.get_element_type()));
|
||||
copyFromOV(gender_tensor, gender_mat);
|
||||
cv::gapi::ov::util::to_ocv(gender_tensor, gender_mat);
|
||||
}
|
||||
|
||||
void export_model(const std::string &outpath) {
|
||||
@ -155,6 +207,7 @@ public:
|
||||
|
||||
private:
|
||||
ov::CompiledModel m_compiled_model;
|
||||
ov::InferRequest m_infer_request;
|
||||
};
|
||||
|
||||
struct ImageInputPreproc {
|
||||
@ -202,19 +255,78 @@ private:
|
||||
std::shared_ptr<ov::Model> m_model;
|
||||
};
|
||||
|
||||
struct BaseAgeGenderOV: public ::testing::Test {
|
||||
BaseAgeGenderOV() {
|
||||
initDLDTDataPath();
|
||||
xml_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
bin_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
device = "CPU";
|
||||
blob_path = "age-gender-recognition-retail-0013.blob";
|
||||
}
|
||||
|
||||
cv::Mat getRandomImage(const cv::Size &sz) {
|
||||
cv::Mat image(sz, CV_8UC3);
|
||||
cv::randu(image, 0, 255);
|
||||
return image;
|
||||
}
|
||||
|
||||
cv::Mat getRandomTensor(const std::vector<int> &dims,
|
||||
const int depth) {
|
||||
cv::Mat tensor(dims, depth);
|
||||
cv::randu(tensor, -1, 1);
|
||||
return tensor;
|
||||
}
|
||||
|
||||
std::string xml_path;
|
||||
std::string bin_path;
|
||||
std::string blob_path;
|
||||
std::string device;
|
||||
|
||||
};
|
||||
|
||||
struct TestAgeGenderOV : public BaseAgeGenderOV {
|
||||
cv::Mat ov_age, ov_gender, gapi_age, gapi_gender;
|
||||
|
||||
void validate() {
|
||||
normAssert(ov_age, gapi_age, "Test age output" );
|
||||
normAssert(ov_gender, gapi_gender, "Test gender output");
|
||||
}
|
||||
};
|
||||
|
||||
struct TestAgeGenderListOV : public BaseAgeGenderOV {
|
||||
std::vector<cv::Mat> ov_age, ov_gender,
|
||||
gapi_age, gapi_gender;
|
||||
|
||||
std::vector<cv::Rect> roi_list = {
|
||||
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}),
|
||||
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}),
|
||||
};
|
||||
|
||||
TestAgeGenderListOV() {
|
||||
ov_age.resize(roi_list.size());
|
||||
ov_gender.resize(roi_list.size());
|
||||
gapi_age.resize(roi_list.size());
|
||||
gapi_gender.resize(roi_list.size());
|
||||
}
|
||||
|
||||
void validate() {
|
||||
ASSERT_EQ(ov_age.size(), ov_gender.size());
|
||||
|
||||
ASSERT_EQ(ov_age.size(), gapi_age.size());
|
||||
ASSERT_EQ(ov_gender.size(), gapi_gender.size());
|
||||
|
||||
for (size_t i = 0; i < ov_age.size(); ++i) {
|
||||
normAssert(ov_age[i], gapi_age[i], "Test age output");
|
||||
normAssert(ov_gender[i], gapi_gender[i], "Test gender output");
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
// TODO: Make all of tests below parmetrized to avoid code duplication
|
||||
TEST(TestAgeGenderOV, InferTypedTensor) {
|
||||
initDLDTDataPath();
|
||||
const std::string xml_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
const std::string bin_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
const std::string device = "CPU";
|
||||
|
||||
cv::Mat in_mat({1, 3, 62, 62}, CV_32F);
|
||||
cv::randu(in_mat, -1, 1);
|
||||
cv::Mat ov_age, ov_gender, gapi_age, gapi_gender;
|
||||
|
||||
TEST_F(TestAgeGenderOV, Infer_Tensor) {
|
||||
const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F);
|
||||
// OpenVINO
|
||||
AGNetOVComp ref(xml_path, bin_path, device);
|
||||
ref.apply(in_mat, ov_age, ov_gender);
|
||||
@ -226,19 +338,11 @@ TEST(TestAgeGenderOV, InferTypedTensor) {
|
||||
cv::compile_args(cv::gapi::networks(pp)));
|
||||
|
||||
// Assert
|
||||
normAssert(ov_age, gapi_age, "Test age output" );
|
||||
normAssert(ov_gender, gapi_gender, "Test gender output");
|
||||
validate();
|
||||
}
|
||||
|
||||
TEST(TestAgeGenderOV, InferTypedImage) {
|
||||
initDLDTDataPath();
|
||||
const std::string xml_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
const std::string bin_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
const std::string device = "CPU";
|
||||
|
||||
cv::Mat in_mat(300, 300, CV_8UC3);
|
||||
cv::randu(in_mat, 0, 255);
|
||||
cv::Mat ov_age, ov_gender, gapi_age, gapi_gender;
|
||||
TEST_F(TestAgeGenderOV, Infer_Image) {
|
||||
const auto in_mat = getRandomImage({300, 300});
|
||||
|
||||
// OpenVINO
|
||||
AGNetOVComp ref(xml_path, bin_path, device);
|
||||
@ -252,19 +356,11 @@ TEST(TestAgeGenderOV, InferTypedImage) {
|
||||
cv::compile_args(cv::gapi::networks(pp)));
|
||||
|
||||
// Assert
|
||||
normAssert(ov_age, gapi_age, "Test age output" );
|
||||
normAssert(ov_gender, gapi_gender, "Test gender output");
|
||||
validate();
|
||||
}
|
||||
|
||||
TEST(TestAgeGenderOV, InferGenericTensor) {
|
||||
initDLDTDataPath();
|
||||
const std::string xml_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
const std::string bin_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
const std::string device = "CPU";
|
||||
|
||||
cv::Mat in_mat({1, 3, 62, 62}, CV_32F);
|
||||
cv::randu(in_mat, -1, 1);
|
||||
cv::Mat ov_age, ov_gender, gapi_age, gapi_gender;
|
||||
TEST_F(TestAgeGenderOV, InferGeneric_Tensor) {
|
||||
const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F);
|
||||
|
||||
// OpenVINO
|
||||
AGNetOVComp ref(xml_path, bin_path, device);
|
||||
@ -277,19 +373,11 @@ TEST(TestAgeGenderOV, InferGenericTensor) {
|
||||
cv::compile_args(cv::gapi::networks(pp)));
|
||||
|
||||
// Assert
|
||||
normAssert(ov_age, gapi_age, "Test age output" );
|
||||
normAssert(ov_gender, gapi_gender, "Test gender output");
|
||||
validate();
|
||||
}
|
||||
|
||||
TEST(TestAgeGenderOV, InferGenericImage) {
|
||||
initDLDTDataPath();
|
||||
const std::string xml_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
const std::string bin_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
const std::string device = "CPU";
|
||||
|
||||
cv::Mat in_mat(300, 300, CV_8UC3);
|
||||
cv::randu(in_mat, 0, 255);
|
||||
cv::Mat ov_age, ov_gender, gapi_age, gapi_gender;
|
||||
TEST_F(TestAgeGenderOV, InferGenericImage) {
|
||||
const auto in_mat = getRandomImage({300, 300});
|
||||
|
||||
// OpenVINO
|
||||
AGNetOVComp ref(xml_path, bin_path, device);
|
||||
@ -303,20 +391,11 @@ TEST(TestAgeGenderOV, InferGenericImage) {
|
||||
cv::compile_args(cv::gapi::networks(pp)));
|
||||
|
||||
// Assert
|
||||
normAssert(ov_age, gapi_age, "Test age output" );
|
||||
normAssert(ov_gender, gapi_gender, "Test gender output");
|
||||
validate();
|
||||
}
|
||||
|
||||
TEST(TestAgeGenderOV, InferGenericImageBlob) {
|
||||
initDLDTDataPath();
|
||||
const std::string xml_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
const std::string bin_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
const std::string blob_path = "age-gender-recognition-retail-0013.blob";
|
||||
const std::string device = "CPU";
|
||||
|
||||
cv::Mat in_mat(300, 300, CV_8UC3);
|
||||
cv::randu(in_mat, 0, 255);
|
||||
cv::Mat ov_age, ov_gender, gapi_age, gapi_gender;
|
||||
TEST_F(TestAgeGenderOV, InferGeneric_ImageBlob) {
|
||||
const auto in_mat = getRandomImage({300, 300});
|
||||
|
||||
// OpenVINO
|
||||
AGNetOVComp ref(xml_path, bin_path, device);
|
||||
@ -333,20 +412,11 @@ TEST(TestAgeGenderOV, InferGenericImageBlob) {
|
||||
cv::compile_args(cv::gapi::networks(pp)));
|
||||
|
||||
// Assert
|
||||
normAssert(ov_age, gapi_age, "Test age output" );
|
||||
normAssert(ov_gender, gapi_gender, "Test gender output");
|
||||
validate();
|
||||
}
|
||||
|
||||
TEST(TestAgeGenderOV, InferGenericTensorBlob) {
|
||||
initDLDTDataPath();
|
||||
const std::string xml_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
const std::string bin_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
const std::string blob_path = "age-gender-recognition-retail-0013.blob";
|
||||
const std::string device = "CPU";
|
||||
|
||||
cv::Mat in_mat({1, 3, 62, 62}, CV_32F);
|
||||
cv::randu(in_mat, -1, 1);
|
||||
cv::Mat ov_age, ov_gender, gapi_age, gapi_gender;
|
||||
TEST_F(TestAgeGenderOV, InferGeneric_TensorBlob) {
|
||||
const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F);
|
||||
|
||||
// OpenVINO
|
||||
AGNetOVComp ref(xml_path, bin_path, device);
|
||||
@ -361,19 +431,11 @@ TEST(TestAgeGenderOV, InferGenericTensorBlob) {
|
||||
cv::compile_args(cv::gapi::networks(pp)));
|
||||
|
||||
// Assert
|
||||
normAssert(ov_age, gapi_age, "Test age output" );
|
||||
normAssert(ov_gender, gapi_gender, "Test gender output");
|
||||
validate();
|
||||
}
|
||||
|
||||
TEST(TestAgeGenderOV, InferBothOutputsFP16) {
|
||||
initDLDTDataPath();
|
||||
const std::string xml_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
const std::string bin_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
const std::string device = "CPU";
|
||||
|
||||
cv::Mat in_mat({1, 3, 62, 62}, CV_32F);
|
||||
cv::randu(in_mat, -1, 1);
|
||||
cv::Mat ov_age, ov_gender, gapi_age, gapi_gender;
|
||||
TEST_F(TestAgeGenderOV, InferGeneric_BothOutputsFP16) {
|
||||
const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F);
|
||||
|
||||
// OpenVINO
|
||||
AGNetOVComp ref(xml_path, bin_path, device);
|
||||
@ -392,19 +454,11 @@ TEST(TestAgeGenderOV, InferBothOutputsFP16) {
|
||||
cv::compile_args(cv::gapi::networks(pp)));
|
||||
|
||||
// Assert
|
||||
normAssert(ov_age, gapi_age, "Test age output" );
|
||||
normAssert(ov_gender, gapi_gender, "Test gender output");
|
||||
validate();
|
||||
}
|
||||
|
||||
TEST(TestAgeGenderOV, InferOneOutputFP16) {
|
||||
initDLDTDataPath();
|
||||
const std::string xml_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
const std::string bin_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
const std::string device = "CPU";
|
||||
|
||||
cv::Mat in_mat({1, 3, 62, 62}, CV_32F);
|
||||
cv::randu(in_mat, -1, 1);
|
||||
cv::Mat ov_age, ov_gender, gapi_age, gapi_gender;
|
||||
TEST_F(TestAgeGenderOV, InferGeneric_OneOutputFP16) {
|
||||
const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F);
|
||||
|
||||
// OpenVINO
|
||||
const std::string fp16_output_name = "prob";
|
||||
@ -423,17 +477,10 @@ TEST(TestAgeGenderOV, InferOneOutputFP16) {
|
||||
cv::compile_args(cv::gapi::networks(pp)));
|
||||
|
||||
// Assert
|
||||
normAssert(ov_age, gapi_age, "Test age output" );
|
||||
normAssert(ov_gender, gapi_gender, "Test gender output");
|
||||
validate();
|
||||
}
|
||||
|
||||
TEST(TestAgeGenderOV, ThrowCfgOutputPrecForBlob) {
|
||||
initDLDTDataPath();
|
||||
const std::string xml_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
const std::string bin_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
const std::string blob_path = "age-gender-recognition-retail-0013.blob";
|
||||
const std::string device = "CPU";
|
||||
|
||||
TEST_F(TestAgeGenderOV, InferGeneric_ThrowCfgOutputPrecForBlob) {
|
||||
// OpenVINO (Just for blob compilation)
|
||||
AGNetOVComp ref(xml_path, bin_path, device);
|
||||
auto cc_ref = ref.compile();
|
||||
@ -446,12 +493,7 @@ TEST(TestAgeGenderOV, ThrowCfgOutputPrecForBlob) {
|
||||
EXPECT_ANY_THROW(pp.cfgOutputTensorPrecision(CV_16F));
|
||||
}
|
||||
|
||||
TEST(TestAgeGenderOV, ThrowInvalidConfigIR) {
|
||||
initDLDTDataPath();
|
||||
const std::string xml_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
const std::string bin_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
const std::string device = "CPU";
|
||||
|
||||
TEST_F(TestAgeGenderOV, InferGeneric_ThrowInvalidConfigIR) {
|
||||
// G-API
|
||||
auto comp = AGNetGenComp::create();
|
||||
auto pp = AGNetGenComp::params(xml_path, bin_path, device);
|
||||
@ -461,13 +503,7 @@ TEST(TestAgeGenderOV, ThrowInvalidConfigIR) {
|
||||
cv::compile_args(cv::gapi::networks(pp))));
|
||||
}
|
||||
|
||||
TEST(TestAgeGenderOV, ThrowInvalidConfigBlob) {
|
||||
initDLDTDataPath();
|
||||
const std::string xml_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
const std::string bin_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
const std::string blob_path = "age-gender-recognition-retail-0013.blob";
|
||||
const std::string device = "CPU";
|
||||
|
||||
TEST_F(TestAgeGenderOV, InferGeneric_ThrowInvalidConfigBlob) {
|
||||
// OpenVINO (Just for blob compilation)
|
||||
AGNetOVComp ref(xml_path, bin_path, device);
|
||||
auto cc_ref = ref.compile();
|
||||
@ -482,16 +518,8 @@ TEST(TestAgeGenderOV, ThrowInvalidConfigBlob) {
|
||||
cv::compile_args(cv::gapi::networks(pp))));
|
||||
}
|
||||
|
||||
TEST(TestAgeGenderOV, ThrowInvalidImageLayout) {
|
||||
initDLDTDataPath();
|
||||
const std::string xml_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
const std::string bin_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
const std::string device = "CPU";
|
||||
|
||||
// NB: This mat may only have "NHWC" layout.
|
||||
cv::Mat in_mat(300, 300, CV_8UC3);
|
||||
cv::randu(in_mat, 0, 255);
|
||||
cv::Mat gender, gapi_age, gapi_gender;
|
||||
TEST_F(TestAgeGenderOV, Infer_ThrowInvalidImageLayout) {
|
||||
const auto in_mat = getRandomImage({300, 300});
|
||||
auto comp = AGNetTypedComp::create();
|
||||
auto pp = AGNetTypedComp::params(xml_path, bin_path, device);
|
||||
|
||||
@ -501,15 +529,8 @@ TEST(TestAgeGenderOV, ThrowInvalidImageLayout) {
|
||||
cv::compile_args(cv::gapi::networks(pp))));
|
||||
}
|
||||
|
||||
TEST(TestAgeGenderOV, InferTensorWithPreproc) {
|
||||
initDLDTDataPath();
|
||||
const std::string xml_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
const std::string bin_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
const std::string device = "CPU";
|
||||
|
||||
cv::Mat in_mat({1, 240, 320, 3}, CV_32F);
|
||||
cv::randu(in_mat, -1, 1);
|
||||
cv::Mat ov_age, ov_gender, gapi_age, gapi_gender;
|
||||
TEST_F(TestAgeGenderOV, Infer_TensorWithPreproc) {
|
||||
const auto in_mat = getRandomTensor({1, 240, 320, 3}, CV_32F);
|
||||
|
||||
// OpenVINO
|
||||
AGNetOVComp ref(xml_path, bin_path, device);
|
||||
@ -531,8 +552,112 @@ TEST(TestAgeGenderOV, InferTensorWithPreproc) {
|
||||
cv::compile_args(cv::gapi::networks(pp)));
|
||||
|
||||
// Assert
|
||||
normAssert(ov_age, gapi_age, "Test age output" );
|
||||
normAssert(ov_gender, gapi_gender, "Test gender output");
|
||||
validate();
|
||||
}
|
||||
|
||||
TEST_F(TestAgeGenderOV, InferROIGeneric_Image) {
|
||||
const auto in_mat = getRandomImage({300, 300});
|
||||
cv::Rect roi(cv::Rect(cv::Point{64, 60}, cv::Size{96, 96}));
|
||||
|
||||
// OpenVINO
|
||||
AGNetOVComp ref(xml_path, bin_path, device);
|
||||
ref.cfgPrePostProcessing([](ov::preprocess::PrePostProcessor &ppp) {
|
||||
ppp.input().tensor().set_element_type(ov::element::u8);
|
||||
ppp.input().tensor().set_layout("NHWC");
|
||||
});
|
||||
ref.compile()(in_mat, roi, ov_age, ov_gender);
|
||||
|
||||
// G-API
|
||||
auto comp = AGNetROIGenComp::create();
|
||||
auto pp = AGNetROIGenComp::params(xml_path, bin_path, device);
|
||||
|
||||
comp.apply(cv::gin(in_mat, roi), cv::gout(gapi_age, gapi_gender),
|
||||
cv::compile_args(cv::gapi::networks(pp)));
|
||||
|
||||
// Assert
|
||||
validate();
|
||||
}
|
||||
|
||||
TEST_F(TestAgeGenderOV, InferROIGeneric_ThrowIncorrectLayout) {
|
||||
const auto in_mat = getRandomImage({300, 300});
|
||||
cv::Rect roi(cv::Rect(cv::Point{64, 60}, cv::Size{96, 96}));
|
||||
|
||||
// G-API
|
||||
auto comp = AGNetROIGenComp::create();
|
||||
auto pp = AGNetROIGenComp::params(xml_path, bin_path, device);
|
||||
|
||||
pp.cfgInputTensorLayout("NCHW");
|
||||
EXPECT_ANY_THROW(comp.apply(cv::gin(in_mat, roi), cv::gout(gapi_age, gapi_gender),
|
||||
cv::compile_args(cv::gapi::networks(pp))));
|
||||
}
|
||||
|
||||
TEST_F(TestAgeGenderOV, InferROIGeneric_ThrowTensorInput) {
|
||||
const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F);
|
||||
cv::Rect roi(cv::Rect(cv::Point{64, 60}, cv::Size{96, 96}));
|
||||
|
||||
// G-API
|
||||
auto comp = AGNetROIGenComp::create();
|
||||
auto pp = AGNetROIGenComp::params(xml_path, bin_path, device);
|
||||
|
||||
EXPECT_ANY_THROW(comp.apply(cv::gin(in_mat, roi), cv::gout(gapi_age, gapi_gender),
|
||||
cv::compile_args(cv::gapi::networks(pp))));
|
||||
}
|
||||
|
||||
TEST_F(TestAgeGenderOV, InferROIGeneric_ThrowExplicitResize) {
|
||||
const auto in_mat = getRandomImage({300, 300});
|
||||
cv::Rect roi(cv::Rect(cv::Point{64, 60}, cv::Size{96, 96}));
|
||||
|
||||
// G-API
|
||||
auto comp = AGNetROIGenComp::create();
|
||||
auto pp = AGNetROIGenComp::params(xml_path, bin_path, device);
|
||||
|
||||
pp.cfgResize(cv::INTER_LINEAR);
|
||||
EXPECT_ANY_THROW(comp.apply(cv::gin(in_mat, roi), cv::gout(gapi_age, gapi_gender),
|
||||
cv::compile_args(cv::gapi::networks(pp))));
|
||||
}
|
||||
|
||||
TEST_F(TestAgeGenderListOV, InferListGeneric_Image) {
|
||||
const auto in_mat = getRandomImage({300, 300});
|
||||
|
||||
// OpenVINO
|
||||
AGNetOVComp ref(xml_path, bin_path, device);
|
||||
ref.cfgPrePostProcessing([](ov::preprocess::PrePostProcessor &ppp) {
|
||||
ppp.input().tensor().set_element_type(ov::element::u8);
|
||||
ppp.input().tensor().set_layout("NHWC");
|
||||
});
|
||||
ref.compile()(in_mat, roi_list, ov_age, ov_gender);
|
||||
|
||||
// G-API
|
||||
auto comp = AGNetListGenComp::create();
|
||||
auto pp = AGNetListGenComp::params(xml_path, bin_path, device);
|
||||
|
||||
comp.apply(cv::gin(in_mat, roi_list), cv::gout(gapi_age, gapi_gender),
|
||||
cv::compile_args(cv::gapi::networks(pp)));
|
||||
|
||||
// Assert
|
||||
validate();
|
||||
}
|
||||
|
||||
TEST_F(TestAgeGenderListOV, InferList2Generic_Image) {
|
||||
const auto in_mat = getRandomImage({300, 300});
|
||||
|
||||
// OpenVINO
|
||||
AGNetOVComp ref(xml_path, bin_path, device);
|
||||
ref.cfgPrePostProcessing([](ov::preprocess::PrePostProcessor &ppp) {
|
||||
ppp.input().tensor().set_element_type(ov::element::u8);
|
||||
ppp.input().tensor().set_layout("NHWC");
|
||||
});
|
||||
ref.compile()(in_mat, roi_list, ov_age, ov_gender);
|
||||
|
||||
// G-API
|
||||
auto comp = AGNetList2GenComp::create();
|
||||
auto pp = AGNetList2GenComp::params(xml_path, bin_path, device);
|
||||
|
||||
comp.apply(cv::gin(in_mat, roi_list), cv::gout(gapi_age, gapi_gender),
|
||||
cv::compile_args(cv::gapi::networks(pp)));
|
||||
|
||||
// Assert
|
||||
validate();
|
||||
}
|
||||
|
||||
} // namespace opencv_test
|
||||
|
Loading…
Reference in New Issue
Block a user