mirror of
https://github.com/opencv/opencv.git
synced 2025-06-10 19:24:07 +08:00
Merge pull request #22583 from TolyaTalamanov:at/add-cfg-output-precision-for-ie-backend
G-API: API for configuring model output precision for IE backend
This commit is contained in:
commit
7208f63221
@ -88,6 +88,19 @@ struct ParamDesc {
|
||||
|
||||
cv::optional<cv::gapi::wip::onevpl::Device> vpl_preproc_device;
|
||||
cv::optional<cv::gapi::wip::onevpl::Context> vpl_preproc_ctx;
|
||||
|
||||
using PrecisionT = int;
|
||||
using PrecisionMapT = std::unordered_map<std::string, PrecisionT>;
|
||||
// NB: This parameter can contain:
|
||||
// 1. cv::util::monostate - Don't specify precision, but use default from IR/Blob.
|
||||
// 2. PrecisionT (CV_8U, CV_32F, ...) - Specifies precision for all output layers.
|
||||
// 3. PrecisionMapT ({{"layer0", CV_32F}, {"layer1", CV_16F}} - Specifies precision for certain output layer.
|
||||
// cv::util::monostate is default value that means precision wasn't specified.
|
||||
using PrecisionVariantT = cv::util::variant<cv::util::monostate,
|
||||
PrecisionT,
|
||||
PrecisionMapT>;
|
||||
PrecisionVariantT output_precision;
|
||||
|
||||
};
|
||||
} // namespace detail
|
||||
|
||||
@ -132,6 +145,7 @@ public:
|
||||
, {}
|
||||
, {}
|
||||
, {}
|
||||
, {}
|
||||
, {}} {
|
||||
};
|
||||
|
||||
@ -156,6 +170,7 @@ public:
|
||||
, {}
|
||||
, {}
|
||||
, {}
|
||||
, {}
|
||||
, {}} {
|
||||
};
|
||||
|
||||
@ -351,6 +366,31 @@ public:
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** @brief Specifies the output precision for model.
|
||||
|
||||
The function is used to set an output precision for model.
|
||||
|
||||
@param precision Precision in OpenCV format (CV_8U, CV_32F, ...)
|
||||
will be applied to all output layers.
|
||||
@return reference to this parameter structure.
|
||||
*/
|
||||
Params<Net>& cfgOutputPrecision(detail::ParamDesc::PrecisionT precision) {
|
||||
desc.output_precision = precision;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** @overload
|
||||
|
||||
@param precision_map Map of pairs: name of corresponding output layer
|
||||
and its precision in OpenCV format (CV_8U, CV_32F, ...)
|
||||
@return reference to this parameter structure.
|
||||
*/
|
||||
Params<Net>&
|
||||
cfgOutputPrecision(detail::ParamDesc::PrecisionMapT precision_map) {
|
||||
desc.output_precision = precision_map;
|
||||
return *this;
|
||||
}
|
||||
|
||||
// BEGIN(G-API's network parametrization API)
|
||||
GBackend backend() const { return cv::gapi::ie::backend(); }
|
||||
std::string tag() const { return Net::tag(); }
|
||||
@ -385,7 +425,7 @@ public:
|
||||
const std::string &device)
|
||||
: desc{ model, weights, device, {}, {}, {}, 0u, 0u,
|
||||
detail::ParamDesc::Kind::Load, true, {}, {}, {}, 1u,
|
||||
{}, {}, {}, {}},
|
||||
{}, {}, {}, {}, {}},
|
||||
m_tag(tag) {
|
||||
};
|
||||
|
||||
@ -403,7 +443,7 @@ public:
|
||||
const std::string &device)
|
||||
: desc{ model, {}, device, {}, {}, {}, 0u, 0u,
|
||||
detail::ParamDesc::Kind::Import, true, {}, {}, {}, 1u,
|
||||
{}, {}, {}, {}},
|
||||
{}, {}, {}, {}, {}},
|
||||
m_tag(tag) {
|
||||
};
|
||||
|
||||
@ -476,6 +516,19 @@ public:
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** @see ie::Params::cfgOutputPrecision */
|
||||
Params& cfgOutputPrecision(detail::ParamDesc::PrecisionT precision) {
|
||||
desc.output_precision = precision;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** @overload */
|
||||
Params&
|
||||
cfgOutputPrecision(detail::ParamDesc::PrecisionMapT precision_map) {
|
||||
desc.output_precision = precision_map;
|
||||
return *this;
|
||||
}
|
||||
|
||||
// BEGIN(G-API's network parametrization API)
|
||||
GBackend backend() const { return cv::gapi::ie::backend(); }
|
||||
std::string tag() const { return m_tag; }
|
||||
|
@ -210,6 +210,12 @@ InferParams read<InferParams>(const cv::FileNode& fn) {
|
||||
params.input_layers = readList<std::string>(fn, "input_layers", name);
|
||||
params.output_layers = readList<std::string>(fn, "output_layers", name);
|
||||
params.config = readMap<std::string>(fn["config"]);
|
||||
|
||||
auto out_prec_str = readOpt<std::string>(fn["output_precision"]);
|
||||
if (out_prec_str.has_value()) {
|
||||
params.out_precision =
|
||||
cv::optional<int>(strToPrecision(out_prec_str.value()));
|
||||
}
|
||||
return params;
|
||||
}
|
||||
|
||||
|
@ -258,6 +258,7 @@ struct InferParams {
|
||||
std::vector<std::string> input_layers;
|
||||
std::vector<std::string> output_layers;
|
||||
std::map<std::string, std::string> config;
|
||||
cv::util::optional<int> out_precision;
|
||||
};
|
||||
|
||||
class PipelineBuilder {
|
||||
@ -362,6 +363,9 @@ void PipelineBuilder::addInfer(const CallParams& call_params,
|
||||
}
|
||||
|
||||
pp->pluginConfig(infer_params.config);
|
||||
if (infer_params.out_precision) {
|
||||
pp->cfgOutputPrecision(infer_params.out_precision.value());
|
||||
}
|
||||
m_state->networks += cv::gapi::networks(*pp);
|
||||
|
||||
addCall(call_params,
|
||||
|
@ -197,6 +197,16 @@ inline IE::Blob::Ptr wrapIE(const cv::MediaFrame::View& view,
|
||||
|
||||
template<class MatType>
|
||||
inline void copyFromIE(const IE::Blob::Ptr &blob, MatType &mat) {
|
||||
const auto& desc = blob->getTensorDesc();
|
||||
const auto ie_type = toCV(desc.getPrecision());
|
||||
if (ie_type != mat.type()) {
|
||||
std::stringstream ss;
|
||||
ss << "Failed to copy blob from IE to OCV: "
|
||||
<< "Blobs have different data types "
|
||||
<< "(IE type: " << ie_type
|
||||
<< " vs OCV type: " << mat.type() << ")." << std::endl;
|
||||
throw std::logic_error(ss.str());
|
||||
}
|
||||
switch (blob->getTensorDesc().getPrecision()) {
|
||||
#define HANDLE(E,T) \
|
||||
case IE::Precision::E: std::copy_n(blob->buffer().as<T*>(), \
|
||||
@ -365,6 +375,13 @@ struct IEUnit {
|
||||
cv::util::throw_error(std::logic_error("Unsupported ParamDesc::Kind"));
|
||||
}
|
||||
|
||||
if (params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Import &&
|
||||
!cv::util::holds_alternative<cv::util::monostate>(params.output_precision)) {
|
||||
cv::util::throw_error(
|
||||
std::logic_error("Setting output precision isn't supported for imported network"));
|
||||
}
|
||||
|
||||
|
||||
using namespace cv::gapi::wip::onevpl;
|
||||
if (params.vpl_preproc_device.has_value() && params.vpl_preproc_ctx.has_value()) {
|
||||
using namespace cv::gapi::wip;
|
||||
@ -1122,6 +1139,28 @@ static IE::PreProcessInfo configurePreProcInfo(const IE::InputInfo::CPtr& ii,
|
||||
return info;
|
||||
}
|
||||
|
||||
using namespace cv::gapi::ie::detail;
|
||||
static void configureOutputPrecision(const IE::OutputsDataMap &outputs_info,
|
||||
const ParamDesc::PrecisionVariantT &output_precision) {
|
||||
cv::util::visit(cv::util::overload_lambdas(
|
||||
[&outputs_info](ParamDesc::PrecisionT cvdepth) {
|
||||
auto precision = toIE(cvdepth);
|
||||
for (auto it : outputs_info) {
|
||||
it.second->setPrecision(precision);
|
||||
}
|
||||
},
|
||||
[&outputs_info](const ParamDesc::PrecisionMapT& precision_map) {
|
||||
for (auto it : precision_map) {
|
||||
outputs_info.at(it.first)->setPrecision(toIE(it.second));
|
||||
}
|
||||
},
|
||||
[&outputs_info](cv::util::monostate) {
|
||||
// Do nothing.
|
||||
}
|
||||
), output_precision
|
||||
);
|
||||
}
|
||||
|
||||
// NB: This is a callback used by async infer
|
||||
// to post outputs blobs (cv::GMat's).
|
||||
static void PostOutputs(InferenceEngine::InferRequest &request,
|
||||
@ -1241,7 +1280,7 @@ struct Infer: public cv::detail::KernelTag {
|
||||
GAPI_Assert(uu.params.input_names.size() == in_metas.size()
|
||||
&& "Known input layers count doesn't match input meta count");
|
||||
|
||||
// NB: Configuring input precision and network reshape must be done
|
||||
// NB: Configuring input/output precision and network reshape must be done
|
||||
// only in the loadNetwork case.
|
||||
using namespace cv::gapi::ie::detail;
|
||||
if (uu.params.kind == ParamDesc::Kind::Load) {
|
||||
@ -1275,6 +1314,7 @@ struct Infer: public cv::detail::KernelTag {
|
||||
if (!input_reshape_table.empty()) {
|
||||
const_cast<IE::CNNNetwork *>(&uu.net)->reshape(input_reshape_table);
|
||||
}
|
||||
configureOutputPrecision(uu.net.getOutputsInfo(), uu.params.output_precision);
|
||||
} else {
|
||||
GAPI_Assert(uu.params.kind == ParamDesc::Kind::Import);
|
||||
auto inputs = uu.this_network.GetInputsInfo();
|
||||
@ -1393,6 +1433,7 @@ struct InferROI: public cv::detail::KernelTag {
|
||||
const_cast<IEUnit::InputFramesDesc &>(uu.net_input_params)
|
||||
.set_param(input_name, ii->getTensorDesc());
|
||||
}
|
||||
configureOutputPrecision(uu.net.getOutputsInfo(), uu.params.output_precision);
|
||||
} else {
|
||||
GAPI_Assert(uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Import);
|
||||
auto inputs = uu.this_network.GetInputsInfo();
|
||||
@ -1513,6 +1554,7 @@ struct InferList: public cv::detail::KernelTag {
|
||||
if (!input_reshape_table.empty()) {
|
||||
const_cast<IE::CNNNetwork *>(&uu.net)->reshape(input_reshape_table);
|
||||
}
|
||||
configureOutputPrecision(uu.net.getOutputsInfo(), uu.params.output_precision);
|
||||
} else {
|
||||
GAPI_Assert(uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Import);
|
||||
std::size_t idx = 1u;
|
||||
@ -1667,6 +1709,7 @@ struct InferList2: public cv::detail::KernelTag {
|
||||
if (!input_reshape_table.empty()) {
|
||||
const_cast<IE::CNNNetwork *>(&uu.net)->reshape(input_reshape_table);
|
||||
}
|
||||
configureOutputPrecision(uu.net.getOutputsInfo(), uu.params.output_precision);
|
||||
} else {
|
||||
GAPI_Assert(uu.params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Import);
|
||||
auto inputs = uu.this_network.GetInputsInfo();
|
||||
|
@ -2956,6 +2956,111 @@ TEST(TestAgeGender, ThrowBlobAndInputPrecisionMismatchStreaming)
|
||||
}
|
||||
}
|
||||
|
||||
TEST(TestAgeGenderIE, ChangeOutputPrecision)
|
||||
{
|
||||
initDLDTDataPath();
|
||||
|
||||
cv::gapi::ie::detail::ParamDesc params;
|
||||
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
params.device_id = "CPU";
|
||||
|
||||
cv::Mat in_mat(cv::Size(320, 240), CV_8UC3);
|
||||
cv::randu(in_mat, 0, 255);
|
||||
|
||||
cv::Mat gapi_age, gapi_gender;
|
||||
|
||||
// Load & run IE network
|
||||
IE::Blob::Ptr ie_age, ie_gender;
|
||||
{
|
||||
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
|
||||
auto net = cv::gimpl::ie::wrap::readNetwork(params);
|
||||
setNetParameters(net);
|
||||
for (auto it : net.getOutputsInfo()) {
|
||||
it.second->setPrecision(IE::Precision::U8);
|
||||
}
|
||||
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
|
||||
auto infer_request = this_network.CreateInferRequest();
|
||||
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat));
|
||||
infer_request.Infer();
|
||||
ie_age = infer_request.GetBlob("age_conv3");
|
||||
ie_gender = infer_request.GetBlob("prob");
|
||||
}
|
||||
|
||||
// Configure & run G-API
|
||||
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
|
||||
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
|
||||
|
||||
cv::GMat in;
|
||||
cv::GMat age, gender;
|
||||
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
|
||||
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
|
||||
|
||||
auto pp = cv::gapi::ie::Params<AgeGender> {
|
||||
params.model_path, params.weights_path, params.device_id
|
||||
}.cfgOutputLayers({ "age_conv3", "prob" })
|
||||
.cfgOutputPrecision(CV_8U);
|
||||
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
|
||||
cv::compile_args(cv::gapi::networks(pp)));
|
||||
|
||||
// Validate with IE itself (avoid DNN module dependency here)
|
||||
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" );
|
||||
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output");
|
||||
}
|
||||
|
||||
TEST(TestAgeGenderIE, ChangeSpecificOutputPrecison)
|
||||
{
|
||||
initDLDTDataPath();
|
||||
|
||||
cv::gapi::ie::detail::ParamDesc params;
|
||||
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
params.device_id = "CPU";
|
||||
|
||||
cv::Mat in_mat(cv::Size(320, 240), CV_8UC3);
|
||||
cv::randu(in_mat, 0, 255);
|
||||
|
||||
cv::Mat gapi_age, gapi_gender;
|
||||
|
||||
// Load & run IE network
|
||||
IE::Blob::Ptr ie_age, ie_gender;
|
||||
{
|
||||
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
|
||||
auto net = cv::gimpl::ie::wrap::readNetwork(params);
|
||||
setNetParameters(net);
|
||||
|
||||
// NB: Specify precision only for "prob" output.
|
||||
net.getOutputsInfo().at("prob")->setPrecision(IE::Precision::U8);
|
||||
|
||||
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
|
||||
auto infer_request = this_network.CreateInferRequest();
|
||||
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat));
|
||||
infer_request.Infer();
|
||||
ie_age = infer_request.GetBlob("age_conv3");
|
||||
ie_gender = infer_request.GetBlob("prob");
|
||||
}
|
||||
|
||||
// Configure & run G-API
|
||||
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
|
||||
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
|
||||
|
||||
cv::GMat in;
|
||||
cv::GMat age, gender;
|
||||
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
|
||||
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
|
||||
|
||||
auto pp = cv::gapi::ie::Params<AgeGender> {
|
||||
params.model_path, params.weights_path, params.device_id
|
||||
}.cfgOutputLayers({ "age_conv3", "prob" })
|
||||
.cfgOutputPrecision({{"prob", CV_8U}});
|
||||
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
|
||||
cv::compile_args(cv::gapi::networks(pp)));
|
||||
|
||||
// Validate with IE itself (avoid DNN module dependency here)
|
||||
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" );
|
||||
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output");
|
||||
}
|
||||
|
||||
} // namespace opencv_test
|
||||
|
||||
#endif // HAVE_INF_ENGINE
|
||||
|
Loading…
Reference in New Issue
Block a user