diff --git a/apps/traincascade/boost.cpp b/apps/traincascade/boost.cpp index d1a2b3e0f7..17eb5ce8fd 100644 --- a/apps/traincascade/boost.cpp +++ b/apps/traincascade/boost.cpp @@ -374,7 +374,7 @@ CvDTreeNode* CvCascadeBoostTrainData::subsample_data( const CvMat* _subsample_id if (is_buf_16u) { unsigned short* udst_idx = (unsigned short*)(buf->data.s + root->buf_idx*get_length_subbuf() + - vi*sample_count + data_root->offset); + (size_t)vi*sample_count + data_root->offset); for( int i = 0; i < num_valid; i++ ) { idx = src_idx[i]; @@ -387,7 +387,7 @@ CvDTreeNode* CvCascadeBoostTrainData::subsample_data( const CvMat* _subsample_id else { int* idst_idx = buf->data.i + root->buf_idx*get_length_subbuf() + - vi*sample_count + root->offset; + (size_t)vi*sample_count + root->offset; for( int i = 0; i < num_valid; i++ ) { idx = src_idx[i]; @@ -404,14 +404,14 @@ CvDTreeNode* CvCascadeBoostTrainData::subsample_data( const CvMat* _subsample_id if (is_buf_16u) { unsigned short* udst = (unsigned short*)(buf->data.s + root->buf_idx*get_length_subbuf() + - (workVarCount-1)*sample_count + root->offset); + (size_t)(workVarCount-1)*sample_count + root->offset); for( int i = 0; i < count; i++ ) udst[i] = (unsigned short)src_lbls[sidx[i]]; } else { int* idst = buf->data.i + root->buf_idx*get_length_subbuf() + - (workVarCount-1)*sample_count + root->offset; + (size_t)(workVarCount-1)*sample_count + root->offset; for( int i = 0; i < count; i++ ) idst[i] = src_lbls[sidx[i]]; } @@ -421,14 +421,14 @@ CvDTreeNode* CvCascadeBoostTrainData::subsample_data( const CvMat* _subsample_id if (is_buf_16u) { unsigned short* sample_idx_dst = (unsigned short*)(buf->data.s + root->buf_idx*get_length_subbuf() + - workVarCount*sample_count + root->offset); + (size_t)workVarCount*sample_count + root->offset); for( int i = 0; i < count; i++ ) sample_idx_dst[i] = (unsigned short)sample_idx_src[sidx[i]]; } else { int* sample_idx_dst = buf->data.i + root->buf_idx*get_length_subbuf() + - workVarCount*sample_count + root->offset; + (size_t)workVarCount*sample_count + root->offset; for( int i = 0; i < count; i++ ) sample_idx_dst[i] = sample_idx_src[sidx[i]]; } @@ -614,9 +614,9 @@ void CvCascadeBoostTrainData::setData( const CvFeatureEvaluator* _featureEvaluat // set sample labels if (is_buf_16u) - udst = (unsigned short*)(buf->data.s + work_var_count*sample_count); + udst = (unsigned short*)(buf->data.s + (size_t)work_var_count*sample_count); else - idst = buf->data.i + work_var_count*sample_count; + idst = buf->data.i + (size_t)work_var_count*sample_count; for (int si = 0; si < sample_count; si++) { @@ -684,11 +684,11 @@ void CvCascadeBoostTrainData::get_ord_var_data( CvDTreeNode* n, int vi, float* o if ( vi < numPrecalcIdx ) { if( !is_buf_16u ) - *sortedIndices = buf->data.i + n->buf_idx*get_length_subbuf() + vi*sample_count + n->offset; + *sortedIndices = buf->data.i + n->buf_idx*get_length_subbuf() + (size_t)vi*sample_count + n->offset; else { const unsigned short* shortIndices = (const unsigned short*)(buf->data.s + n->buf_idx*get_length_subbuf() + - vi*sample_count + n->offset ); + (size_t)vi*sample_count + n->offset ); for( int i = 0; i < nodeSampleCount; i++ ) sortedIndicesBuf[i] = shortIndices[i]; @@ -799,14 +799,14 @@ struct FeatureIdxOnlyPrecalc : ParallelLoopBody { valCachePtr[si] = (*featureEvaluator)( fi, si ); if ( is_buf_16u ) - *(udst + fi*sample_count + si) = (unsigned short)si; + *(udst + (size_t)fi*sample_count + si) = (unsigned short)si; else - *(idst + fi*sample_count + si) = si; + *(idst + (size_t)fi*sample_count + si) = si; } if ( is_buf_16u ) - icvSortUShAux( udst + fi*sample_count, sample_count, valCachePtr ); + icvSortUShAux( udst + (size_t)fi*sample_count, sample_count, valCachePtr ); else - icvSortIntAux( idst + fi*sample_count, sample_count, valCachePtr ); + icvSortIntAux( idst + (size_t)fi*sample_count, sample_count, valCachePtr ); } } const CvFeatureEvaluator* featureEvaluator; @@ -835,14 +835,14 @@ struct FeatureValAndIdxPrecalc : ParallelLoopBody { valCache->at(fi,si) = (*featureEvaluator)( fi, si ); if ( is_buf_16u ) - *(udst + fi*sample_count + si) = (unsigned short)si; + *(udst + (size_t)fi*sample_count + si) = (unsigned short)si; else - *(idst + fi*sample_count + si) = si; + *(idst + (size_t)fi*sample_count + si) = si; } if ( is_buf_16u ) - icvSortUShAux( udst + fi*sample_count, sample_count, valCache->ptr(fi) ); + icvSortUShAux( udst + (size_t)fi*sample_count, sample_count, valCache->ptr(fi) ); else - icvSortIntAux( idst + fi*sample_count, sample_count, valCache->ptr(fi) ); + icvSortIntAux( idst + (size_t)fi*sample_count, sample_count, valCache->ptr(fi) ); } } const CvFeatureEvaluator* featureEvaluator; @@ -1165,9 +1165,9 @@ void CvCascadeBoostTree::split_node_data( CvDTreeNode* node ) if (data->is_buf_16u) { unsigned short *ldst = (unsigned short *)(buf->data.s + left->buf_idx*length_buf_row + - (workVarCount-1)*scount + left->offset); + (size_t)(workVarCount-1)*scount + left->offset); unsigned short *rdst = (unsigned short *)(buf->data.s + right->buf_idx*length_buf_row + - (workVarCount-1)*scount + right->offset); + (size_t)(workVarCount-1)*scount + right->offset); for( int i = 0; i < n; i++ ) { @@ -1188,9 +1188,9 @@ void CvCascadeBoostTree::split_node_data( CvDTreeNode* node ) else { int *ldst = buf->data.i + left->buf_idx*length_buf_row + - (workVarCount-1)*scount + left->offset; + (size_t)(workVarCount-1)*scount + left->offset; int *rdst = buf->data.i + right->buf_idx*length_buf_row + - (workVarCount-1)*scount + right->offset; + (size_t)(workVarCount-1)*scount + right->offset; for( int i = 0; i < n; i++ ) { @@ -1218,9 +1218,9 @@ void CvCascadeBoostTree::split_node_data( CvDTreeNode* node ) if (data->is_buf_16u) { unsigned short* ldst = (unsigned short*)(buf->data.s + left->buf_idx*length_buf_row + - workVarCount*scount + left->offset); + (size_t)workVarCount*scount + left->offset); unsigned short* rdst = (unsigned short*)(buf->data.s + right->buf_idx*length_buf_row + - workVarCount*scount + right->offset); + (size_t)workVarCount*scount + right->offset); for (int i = 0; i < n; i++) { unsigned short idx = (unsigned short)tempBuf[i]; @@ -1239,9 +1239,9 @@ void CvCascadeBoostTree::split_node_data( CvDTreeNode* node ) else { int* ldst = buf->data.i + left->buf_idx*length_buf_row + - workVarCount*scount + left->offset; + (size_t)workVarCount*scount + left->offset; int* rdst = buf->data.i + right->buf_idx*length_buf_row + - workVarCount*scount + right->offset; + (size_t)workVarCount*scount + right->offset; for (int i = 0; i < n; i++) { int idx = tempBuf[i]; @@ -1410,7 +1410,7 @@ void CvCascadeBoost::update_weights( CvBoostTree* tree ) if (data->is_buf_16u) { unsigned short* labels = (unsigned short*)(buf->data.s + data->data_root->buf_idx*length_buf_row + - data->data_root->offset + (data->work_var_count-1)*data->sample_count); + data->data_root->offset + (size_t)(data->work_var_count-1)*data->sample_count); for( int i = 0; i < n; i++ ) { // save original categorical responses {0,1}, convert them to {-1,1} @@ -1428,7 +1428,7 @@ void CvCascadeBoost::update_weights( CvBoostTree* tree ) else { int* labels = buf->data.i + data->data_root->buf_idx*length_buf_row + - data->data_root->offset + (data->work_var_count-1)*data->sample_count; + data->data_root->offset + (size_t)(data->work_var_count-1)*data->sample_count; for( int i = 0; i < n; i++ ) {