Hessian+ cayley2rotbar

This commit is contained in:
edgarriba 2014-07-22 17:56:25 +02:00
parent b1b9a29e48
commit 730fe9e582
3 changed files with 229 additions and 72 deletions

View File

@ -2,6 +2,17 @@
#include "dls.h"
#include <iostream>
#include <fstream>
/*
#ifdef HAVE_EIGEN
# if defined __GNUC__ && defined __APPLE__
# pragma GCC diagnostic ignored "-Wshadow"
# endif
# include <Eigen/Core>
# include "opencv2/core/eigen.hpp"
#endif
*/
#include <Eigen/Eigenvalues>
#include <Eigen/Core>
@ -14,25 +25,39 @@ void printSize(const cv::Mat& mat)
}
void printMat(const cv::Mat& mat)
{
ofstream outFile;
outFile.open("test.txt");
printSize(mat);
for (int i = 0; i < mat.rows; ++i) {
cout << "[";
outFile << "[";
for (int j = 0; j < mat.cols; ++j) {
cout << " " << mat.at<double>(i,j);
outFile << " " << mat.at<double>(i,j);
}
cout << ";]" << endl;
outFile << ";]" << endl;
}
outFile.close();
}
template<typename T>
void print(T var) { cout << var << endl; }
dls::dls(const cv::Mat& opoints, const cv::Mat& ipoints) : f1coeff(21), f2coeff(21), f3coeff(21)
dls::dls(const cv::Mat& opoints, const cv::Mat& ipoints)
{
N = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
p = cv::Mat(3, N, opoints.depth());
z = cv::Mat(3, N, ipoints.depth());
//OK
f1coeff.resize(21);
f2coeff.resize(21);
f3coeff.resize(21);
Mtilde = cv::Mat(27, 27, ipoints.depth());
V_r = cv::Mat(27, 27, ipoints.depth());
V_c = cv::Mat(27, 27, ipoints.depth());
if (opoints.depth() == ipoints.depth())
{
@ -46,10 +71,6 @@ dls::dls(const cv::Mat& opoints, const cv::Mat& ipoints) : f1coeff(21), f2coeff(
else
init_points<cv::Point3d,double,cv::Point2f,float>(opoints, ipoints);
H = cv::Mat::zeros(3, 3, ipoints.depth());
A = cv::Mat::zeros(3, 9, ipoints.depth());
D_mat = cv::Mat::zeros(9, 9, ipoints.depth());
norm_z_vector();
build_coeff_matrix();
@ -86,6 +107,10 @@ void dls::build_coeff_matrix()
// build coeff matrix
// An intermediate matrix, the inverse of what is called "H" in the paper
// (see eq. 25)
cv::Mat H = cv::Mat::zeros(3, 3, z.depth());
cv::Mat A = cv::Mat::zeros(3, 9, z.depth());
for (int i = 0; i < N; ++i)
{
cv::Mat z_dot = z.col(i)*z.col(i).t();
@ -99,21 +124,75 @@ void dls::build_coeff_matrix()
// OK
cv::Mat D = cv::Mat::zeros(9, 9, z.depth());
for (int i = 0; i < N; ++i)
{
cv::Mat z_dot = z.col(i)*z.col(i).t();
D_mat += cv::Mat( LeftMultVec(p.col(i)) + A ).t() * (eye-z_dot) * ( LeftMultVec(p.col(i)) + A );
D += cv::Mat( LeftMultVec(p.col(i)) + A ).t() * (eye-z_dot) * ( LeftMultVec(p.col(i)) + A );
}
// OK
// put D into array
double D[10][10] = { 0 };
for (int i = 0; i < 10; ++i)
// fill the coefficients
fill_coeff(&D);
// generate random samples
std::vector<double> u;
//cv::randn(u, 100, 0.1);
u.push_back(0.0); u.push_back(129.0); u.push_back(64.0); u.push_back(-33.0); u.push_back(-193.0);
cv::Mat M2 = cayley_LS_M(f1coeff, f2coeff, f3coeff, u);
cv::Mat M2_1 = M2(cv::Range(0,27), cv::Range(0,27)); // OK
cv::Mat M2_2 = M2(cv::Range(0,27), cv::Range(27,120)); // OK
cv::Mat M2_3 = M2(cv::Range(27,120), cv::Range(27,120)); // OK
cv::Mat M2_4 = M2(cv::Range(27,120), cv::Range(0,27)); // OK
cv::Mat M2_5;
cv::solve(M2_3.t(), M2_2.t(), M2_5); // A/B = B'\A'
// construct the multiplication matrix via schur compliment of the Macaulay
// matrix
Mtilde = M2_1 - M2_5.t()*M2_4; // 27x27 non-symmetric // OK
// EIGENVALUES AND EIGENVECTORS
Eigen::MatrixXd Mtilde_eig, zeros_eig;
cv::cv2eigen(Mtilde, Mtilde_eig);
cv::cv2eigen(cv::Mat::zeros(27, 27, CV_64F), zeros_eig);
Eigen::MatrixXcd Mtilde_eig_cmplx(27, 27);
Mtilde_eig_cmplx.real() = Mtilde_eig;
Mtilde_eig_cmplx.imag() = zeros_eig;
Eigen::ComplexEigenSolver<Eigen::MatrixXcd> ces(Mtilde_eig_cmplx);
Eigen::MatrixXd eigval_real = ces.eigenvalues().real(); // OK
Eigen::MatrixXd eigval_cmplx = ces.eigenvalues().imag();// OK
Eigen::MatrixXd eigvec_real = ces.eigenvectors().real();
Eigen::MatrixXd eigvec_cmplx = ces.eigenvectors().imag();
cv::Mat eigenvalues_real, eigenvalues_complex;
cv::Mat eigenvectors_real, eigenvectors_complex;
cv::eigen2cv(eigval_real, eigenvalues_real); // OK
cv::eigen2cv(eigval_cmplx, eigenvalues_complex); // OK
cv::eigen2cv(eigvec_real, V_r);
cv::eigen2cv(eigvec_cmplx, V_c);
}
void dls::fill_coeff(const cv::Mat * D_mat)
{
double D[10][10]; // put D_mat into array
for (int i = 0; i < D_mat->rows; ++i)
{
for (int j = 0; j < 10; ++j)
const double* Di = D_mat->ptr<double>(i);
for (int j = 0; j < D_mat->cols; ++j)
{
D[i+1][j+1] = D_mat.at<double>(i,j);
D[i+1][j+1] = Di[j];
}
}
@ -188,54 +267,14 @@ void dls::build_coeff_matrix()
f3coeff[19] = 4*D[1][9] - 4*D[1][1] + 8*D[3][3] + 8*D[3][7] + 4*D[5][5] + 8*D[7][3] + 8*D[7][7] + 4*D[9][1] - 4*D[9][9]; // s1^2 * s3
f3coeff[20] = 2*D[1][3] + 2*D[1][7] + 2*D[3][1] - 2*D[3][5] - 2*D[3][9] - 2*D[5][3] - 2*D[5][7] + 2*D[7][1] - 2*D[7][5] - 2*D[7][9] - 2*D[9][3] - 2*D[9][7]; // s1^3
cout << "end fill coeff function" << endl;
// generate random samples
std::vector<double> u;
//cv::randn(u, 100, 0.1);
u.push_back(0.0); u.push_back(-136.0); u.push_back(-63.0); u.push_back(-61.0); u.push_back(-249.0);
cv::Mat M2 = cayley_LS_M(f1coeff, f2coeff, f3coeff, u);
cv::Mat M2_1 = M2(cv::Range(0,27), cv::Range(0,27)); // OK
cv::Mat M2_2 = M2(cv::Range(0,27), cv::Range(27,120)); // OK
cv::Mat M2_3 = M2(cv::Range(27,120), cv::Range(27,120)); // OK
cv::Mat M2_4 = M2(cv::Range(27,120), cv::Range(0,27)); // OK
cv::Mat M2_5;
cv::solve(M2_3.t(), M2_2.t(), M2_5); // A/B = B'\A'
// construct the multiplication matrix via schur compliment of the Macaulay
// matrix
cv::Mat Mtilde = M2_1 - M2_5.t()*M2_4; // 27x27 non-symmetric // OK
// EIGENVALUES AND EIGENVECTORS
Eigen::MatrixXd Mtilde_eig, zeros_eig;
cv::cv2eigen(Mtilde, Mtilde_eig);
cv::cv2eigen(cv::Mat::zeros(27, 27, CV_64F), zeros_eig);
Eigen::MatrixXcd Mtilde_eig_cmplx(27, 27);
Mtilde_eig_cmplx.real() = Mtilde_eig;
Mtilde_eig_cmplx.imag() = zeros_eig;
Eigen::ComplexEigenSolver<Eigen::MatrixXcd> ces(Mtilde_eig_cmplx);
Eigen::MatrixXd eigval_real = ces.eigenvalues().real();
Eigen::MatrixXd eigval_cmplx = ces.eigenvalues().imag();
Eigen::MatrixXd eigvec_real = ces.eigenvectors().real();
Eigen::MatrixXd eigvec_cmplx = ces.eigenvectors().imag();
cv::Mat eigenvalues_real, eigenvalues_complex;
cv::Mat eigenvectors_real, eigenvectors_complex;
cv::eigen2cv(eigval_real, eigenvalues_real);
cv::eigen2cv(eigval_cmplx, eigenvalues_complex);
cv::eigen2cv(eigvec_real, eigenvectors_real);
cv::eigen2cv(eigvec_cmplx, eigenvectors_complex);
cv::Mat V = eigenvectors_real;
cv::Mat v = eigenvalues_real;
// until here works
// then crashes
}
void dls::compute_pose(cv::Mat& R, cv::Mat& t)
{
/*
* Now check the solutions
*/
@ -248,23 +287,43 @@ void dls::build_coeff_matrix()
int i = 0;
for (int k = 0; k < 27; ++k)
{
// V(:,k) = V(:,k)/V(1,k);
cv::Mat V_kA = V.col(k); // 27x1
cv::Mat V_kA = V_r.col(k); // 27x1
cv::Mat V_kB = cv::Mat(1, 1, z.depth(), V_kA.at<double>(0, k)); // 1x1
cv::Mat V_k; cv::solve(V_kB.t(), V_kA.t(), V_k); // A/B = B'\A'
cv::Mat(V_k.t()).col(0).copyTo( V.col(0) );
cv::Mat(V_k.t()).col(0).copyTo( V_r.col(0) );
cout << eigenvectors_complex.at<double>(1,k) << endl;
const double epsilon = 1e-4;
if(eigenvectors_complex.at<double>(1,k) == 0) //if (imag(V(2,k)) == 0)
if( V_c.at<double>(1,k) >= -epsilon && V_c.at<double>(1,k) <= epsilon ) //if (imag(V(2,k)) == 0)
{
//TODO: check for pure real part
cout << eigenvectors_complex.at<double>(1,k) << endl;
}
double stmp[3];
stmp[0] = V_r.at<double>(9, k);
stmp[1] = V_r.at<double>(3, k);
stmp[2] = V_r.at<double>(1, k);
cv::Mat H = Hessian(stmp); // OK is symmetric
cv::Mat eigenvalues, eigenvectors;
cv::eigen(H, eigenvalues, eigenvectors);
if(positive_eigenvalues(eigenvalues))
{
// sols(:,i) = stmp;
cv::Mat(3, 1, z.depth(), &stmp).col(0).copyTo( sols.col(i) );
// TODO: check cayley2rotbar function -> CRASHES!!
cv::Mat Cbar = cayley2rotbar(stmp);
printMat(Cbar);
i++;
}
}
}
exit(-1);
cout << "end for compute_pose" << endl;
}
cv::Mat dls::LeftMultVec(const cv::Mat& v)
@ -534,3 +593,85 @@ cv::Mat dls::cayley_LS_M(const std::vector<double>& a, const std::vector<double>
*/
return M.t();
}
cv::Mat dls::Hessian(const double s[])
{
// the vector of monomials is
// m = [ const ; s1^2 * s2 ; s1 * s2 ; s1 * s3 ; s2 * s3 ; s2^2 * s3 ; s2^3 ; ...
// s1 * s3^2 ; s1 ; s3 ; s2 ; s2 * s3^2 ; s1^2 ; s3^2 ; s2^2 ; s3^3 ; ...
// s1 * s2 * s3 ; s1 * s2^2 ; s1^2 * s3 ; s1^3]
//
// deriv of m w.r.t. s1
//Hs3 = [0 ; 2 * s(1) * s(2) ; s(2) ; s(3) ; 0 ; 0 ; 0 ; ...
// s(3)^2 ; 1 ; 0 ; 0 ; 0 ; 2 * s(1) ; 0 ; 0 ; 0 ; ...
// s(2) * s(3) ; s(2)^2 ; 2*s(1)*s(3); 3 * s(1)^2];
double Hs1[20];
Hs1[0]=0; Hs1[1]=2*s[0]*s[1]; Hs1[2]=s[1]; Hs1[3]=s[2]; Hs1[4]=0; Hs1[5]=0; Hs1[6]=0;
Hs1[7]=s[2]*s[2]; Hs1[8]=1; Hs1[9]=0; Hs1[10]=0; Hs1[11]=0; Hs1[12]=2*s[0]; Hs1[13]=0;
Hs1[14]=0; Hs1[15]=0; Hs1[16]=s[1]*s[2]; Hs1[17]=s[1]*s[1]; Hs1[18]=2*s[0]*s[2]; Hs1[19]=3*s[0]*s[0];
// deriv of m w.r.t. s2
//Hs2 = [0 ; s(1)^2 ; s(1) ; 0 ; s(3) ; 2 * s(2) * s(3) ; 3 * s(2)^2 ; ...
// 0 ; 0 ; 0 ; 1 ; s(3)^2 ; 0 ; 0 ; 2 * s(2) ; 0 ; ...
// s(1) * s(3) ; s(1) * 2 * s(2) ; 0 ; 0];
double Hs2[20];
Hs2[0]=0; Hs2[1]=s[0]*s[0]; Hs2[2]=s[0]; Hs2[3]=0; Hs2[4]=s[2]; Hs2[5]=2*s[1]*s[2]; Hs2[6]=3*s[1]*s[1];
Hs2[7]=0; Hs2[8]=0; Hs2[9]=0; Hs2[10]=1; Hs2[11]=s[2]*s[2]; Hs2[12]=0; Hs2[13]=0;
Hs2[14]=2*s[1]; Hs2[15]=0; Hs2[16]=s[0]*s[2]; Hs2[17]=2*s[0]*s[1]; Hs2[18]=0; Hs2[19]=0;
// deriv of m w.r.t. s3
//Hs3 = [0 ; 0 ; 0 ; s(1) ; s(2) ; s(2)^2 ; 0 ; ...
// s(1) * 2 * s(3) ; 0 ; 1 ; 0 ; s(2) * 2 * s(3) ; 0 ; 2 * s(3) ; 0 ; 3 * s(3)^2 ; ...
// s(1) * s(2) ; 0 ; s(1)^2 ; 0];
double Hs3[20];
Hs3[0]=0; Hs3[1]=0; Hs3[2]=0; Hs3[3]=s[0]; Hs3[4]=s[1]; Hs3[5]=s[1]*s[1]; Hs3[6]=0;
Hs3[7]=2*s[0]*s[2]; Hs3[8]=0; Hs3[9]=1; Hs3[10]=0; Hs3[11]=2*s[1]*s[2]; Hs3[12]=0; Hs3[13]=2*s[2];
Hs3[14]=0; Hs3[15]=3*s[2]*s[2]; Hs3[16]=s[0]*s[1]; Hs3[17]=0; Hs3[18]=s[0]*s[0]; Hs3[19]=0;
// fill Hessian matrix
cv::Mat H(3, 3, z.depth());
H.at<double>(0,0) = cv::Mat(cv::Mat(f1coeff).rowRange(1,21).t()*cv::Mat(20, 1, z.depth(), &Hs1)).at<double>(0,0);
H.at<double>(0,1) = cv::Mat(cv::Mat(f1coeff).rowRange(1,21).t()*cv::Mat(20, 1, z.depth(), &Hs2)).at<double>(0,0);
H.at<double>(0,2) = cv::Mat(cv::Mat(f1coeff).rowRange(1,21).t()*cv::Mat(20, 1, z.depth(), &Hs3)).at<double>(0,0);
H.at<double>(1,0) = cv::Mat(cv::Mat(f2coeff).rowRange(1,21).t()*cv::Mat(20, 1, z.depth(), &Hs1)).at<double>(0,0);
H.at<double>(1,1) = cv::Mat(cv::Mat(f2coeff).rowRange(1,21).t()*cv::Mat(20, 1, z.depth(), &Hs2)).at<double>(0,0);
H.at<double>(1,2) = cv::Mat(cv::Mat(f2coeff).rowRange(1,21).t()*cv::Mat(20, 1, z.depth(), &Hs3)).at<double>(0,0);
H.at<double>(2,0) = cv::Mat(cv::Mat(f3coeff).rowRange(1,21).t()*cv::Mat(20, 1, z.depth(), &Hs1)).at<double>(0,0);
H.at<double>(2,1) = cv::Mat(cv::Mat(f3coeff).rowRange(1,21).t()*cv::Mat(20, 1, z.depth(), &Hs2)).at<double>(0,0);
H.at<double>(2,2) = cv::Mat(cv::Mat(f3coeff).rowRange(1,21).t()*cv::Mat(20, 1, z.depth(), &Hs3)).at<double>(0,0);
return H; // OK, is symmetric
}
bool dls::positive_eigenvalues(const cv::Mat& eigenvalues)
{
return eigenvalues.at<double>(0) > 0 &&
eigenvalues.at<double>(1) > 0 &&
eigenvalues.at<double>(2) > 0;
}
cv::Mat dls::cayley2rotbar(const double s[])
{
// s -> 3x1
cv::Mat s_mat(3, 1, z.depth(), &s);
return cv::Mat( (1-s_mat.t()*s_mat) * cv::Mat::eye(3, 3, z.depth()) + 2 * skewsymm(s) + 2 * (s_mat*s_mat.t())).t();
}
cv::Mat dls::skewsymm(const double X1[])
{
cv::Mat C = cv::Mat::zeros(3, 3, z.depth());
C.at<double>(0,1) = -X1[2]; C.at<double>(1,0) = X1[2];
C.at<double>(0,2) = X1[1]; C.at<double>(2,0) = -X1[1];
C.at<double>(1,2) = -X1[0]; C.at<double>(2,1) = X1[0];
return C;
}

View File

@ -10,7 +10,11 @@ class dls
{
public:
dls(const cv::Mat& opoints, const cv::Mat& ipoints);
virtual ~dls();
~dls();
void compute_pose(cv::Mat& R, cv::Mat& t);
private:
template <typename OpointType, typename O, typename IpointType, typename I>
void init_points(const cv::Mat& opoints, const cv::Mat& ipoints)
@ -29,15 +33,20 @@ public:
void norm_z_vector();
void build_coeff_matrix();
void fill_coeff(const cv::Mat * D);
cv::Mat LeftMultVec(const cv::Mat& v);
cv::Mat cayley_LS_M(const std::vector<double>& a, const std::vector<double>& b,
const std::vector<double>& c, const std::vector<double>& u);
bool positive_eigenvalues(const cv::Mat& eigenvalues);
cv::Mat Hessian(const double s[]);
cv::Mat cayley2rotbar(const double s[]);
cv::Mat skewsymm(const double X1[]);
private:
cv::Mat H, A, D_mat; // coeff matrix
cv::Mat p; // object points
cv::Mat z; // image points
int N; // number of input points
cv::Mat Mtilde; // coeff matrix
cv::Mat V_r, V_c; // eigen
cv::Mat p; // object points
cv::Mat z; // image points
int N; // number of input points
std::vector<double> f1coeff, f2coeff, f3coeff;
};

View File

@ -100,10 +100,17 @@ bool cv::solvePnP( InputArray _opoints, InputArray _ipoints,
cv::Mat undistortedPoints;
cv::undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs);
cv::Mat R, rvec = _rvec.getMat(), tvec = _tvec.getMat();
//dls PnP(opoints, undistortedPoints);
dls PnP(opoints, ipoints); // FOR TESTING
PnP.compute_pose(R, tvec);
cout << "after dls compute pose" << endl;
//TODO: DO SOMETHING WITH R and t
//cv::Rodrigues(R, rvec);
return true;
}