mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 20:50:25 +08:00
Replaced CV_PURE_PROPERTY macros with corresponding code
This commit is contained in:
parent
e12a04ac7e
commit
7335a40a61
@ -243,11 +243,7 @@ PREDEFINED = __cplusplus=1 \
|
||||
CV_NORETURN= \
|
||||
CV_DEFAULT(x)=" = x" \
|
||||
CV_NEON=1 \
|
||||
FLANN_DEPRECATED= \
|
||||
"CV_PURE_PROPERTY(type, name)= /** \@see set##name */ virtual type get##name() const = 0; /** \@copybrief get##name \@see get##name */ virtual void set##name(type val) = 0;" \
|
||||
"CV_IMPL_PROPERTY(type, name, x)= /** \@see set##name */ virtual type get##name() const = 0; /** \@copybrief get##name \@see get##name */ virtual void set##name(type val) = 0;" \
|
||||
"CV_IMPL_PROPERTY_S(type, name, x)= /** \@see set##name */ virtual type get##name() const = 0; /** \@copybrief get##name \@see get##name */ virtual void set##name(const type & val);" \
|
||||
"CV_IMPL_PROPERTY_RO(type, name, x)= virtual type get##name() const;"
|
||||
FLANN_DEPRECATED=
|
||||
EXPAND_AS_DEFINED =
|
||||
SKIP_FUNCTION_MACROS = YES
|
||||
TAGFILES =
|
||||
|
@ -2821,19 +2821,6 @@ public:
|
||||
virtual void read(const FileNode& fn) { (void)fn; }
|
||||
};
|
||||
|
||||
// define properties
|
||||
|
||||
#define CV_PURE_PROPERTY(type, name) \
|
||||
CV_WRAP virtual type get##name() const = 0; \
|
||||
CV_WRAP virtual void set##name(type val) = 0;
|
||||
|
||||
#define CV_PURE_PROPERTY_S(type, name) \
|
||||
CV_WRAP virtual type get##name() const = 0; \
|
||||
CV_WRAP virtual void set##name(const type & val) = 0;
|
||||
|
||||
#define CV_PURE_PROPERTY_RO(type, name) \
|
||||
CV_WRAP virtual type get##name() const = 0;
|
||||
|
||||
// basic property implementation
|
||||
|
||||
#define CV_IMPL_PROPERTY_RO(type, name, member) \
|
||||
|
@ -440,16 +440,28 @@ class CV_EXPORTS_W KNearest : public StatModel
|
||||
public:
|
||||
|
||||
/** Default number of neighbors to use in predict method. */
|
||||
CV_PURE_PROPERTY(int, DefaultK)
|
||||
/** @see setDefaultK */
|
||||
virtual int getDefaultK() const = 0;
|
||||
/** @copybrief getDefaultK @see getDefaultK */
|
||||
virtual void setDefaultK(int val) = 0;
|
||||
|
||||
/** Whether classification or regression model should be trained. */
|
||||
CV_PURE_PROPERTY(bool, IsClassifier)
|
||||
/** @see setIsClassifier */
|
||||
virtual bool getIsClassifier() const = 0;
|
||||
/** @copybrief getIsClassifier @see getIsClassifier */
|
||||
virtual void setIsClassifier(bool val) = 0;
|
||||
|
||||
/** Parameter for KDTree implementation. */
|
||||
CV_PURE_PROPERTY(int, Emax)
|
||||
/** @see setEmax */
|
||||
virtual int getEmax() const = 0;
|
||||
/** @copybrief getEmax @see getEmax */
|
||||
virtual void setEmax(int val) = 0;
|
||||
|
||||
/** %Algorithm type, one of KNearest::Types. */
|
||||
CV_PURE_PROPERTY(int, AlgorithmType)
|
||||
/** @see setAlgorithmType */
|
||||
virtual int getAlgorithmType() const = 0;
|
||||
/** @copybrief getAlgorithmType @see getAlgorithmType */
|
||||
virtual void setAlgorithmType(int val) = 0;
|
||||
|
||||
/** @brief Finds the neighbors and predicts responses for input vectors.
|
||||
|
||||
@ -518,44 +530,71 @@ public:
|
||||
|
||||
/** Type of a %SVM formulation.
|
||||
See SVM::Types. Default value is SVM::C_SVC. */
|
||||
CV_PURE_PROPERTY(int, Type)
|
||||
/** @see setType */
|
||||
virtual int getType() const = 0;
|
||||
/** @copybrief getType @see getType */
|
||||
virtual void setType(int val) = 0;
|
||||
|
||||
/** Parameter \f$\gamma\f$ of a kernel function.
|
||||
For SVM::POLY, SVM::RBF, SVM::SIGMOID or SVM::CHI2. Default value is 1. */
|
||||
CV_PURE_PROPERTY(double, Gamma)
|
||||
/** @see setGamma */
|
||||
virtual double getGamma() const = 0;
|
||||
/** @copybrief getGamma @see getGamma */
|
||||
virtual void setGamma(double val) = 0;
|
||||
|
||||
/** Parameter _coef0_ of a kernel function.
|
||||
For SVM::POLY or SVM::SIGMOID. Default value is 0.*/
|
||||
CV_PURE_PROPERTY(double, Coef0)
|
||||
/** @see setCoef0 */
|
||||
virtual double getCoef0() const = 0;
|
||||
/** @copybrief getCoef0 @see getCoef0 */
|
||||
virtual void setCoef0(double val) = 0;
|
||||
|
||||
/** Parameter _degree_ of a kernel function.
|
||||
For SVM::POLY. Default value is 0. */
|
||||
CV_PURE_PROPERTY(double, Degree)
|
||||
/** @see setDegree */
|
||||
virtual double getDegree() const = 0;
|
||||
/** @copybrief getDegree @see getDegree */
|
||||
virtual void setDegree(double val) = 0;
|
||||
|
||||
/** Parameter _C_ of a %SVM optimization problem.
|
||||
For SVM::C_SVC, SVM::EPS_SVR or SVM::NU_SVR. Default value is 0. */
|
||||
CV_PURE_PROPERTY(double, C)
|
||||
/** @see setC */
|
||||
virtual double getC() const = 0;
|
||||
/** @copybrief getC @see getC */
|
||||
virtual void setC(double val) = 0;
|
||||
|
||||
/** Parameter \f$\nu\f$ of a %SVM optimization problem.
|
||||
For SVM::NU_SVC, SVM::ONE_CLASS or SVM::NU_SVR. Default value is 0. */
|
||||
CV_PURE_PROPERTY(double, Nu)
|
||||
/** @see setNu */
|
||||
virtual double getNu() const = 0;
|
||||
/** @copybrief getNu @see getNu */
|
||||
virtual void setNu(double val) = 0;
|
||||
|
||||
/** Parameter \f$\epsilon\f$ of a %SVM optimization problem.
|
||||
For SVM::EPS_SVR. Default value is 0. */
|
||||
CV_PURE_PROPERTY(double, P)
|
||||
/** @see setP */
|
||||
virtual double getP() const = 0;
|
||||
/** @copybrief getP @see getP */
|
||||
virtual void setP(double val) = 0;
|
||||
|
||||
/** Optional weights in the SVM::C_SVC problem, assigned to particular classes.
|
||||
They are multiplied by _C_ so the parameter _C_ of class _i_ becomes `classWeights(i) * C`. Thus
|
||||
these weights affect the misclassification penalty for different classes. The larger weight,
|
||||
the larger penalty on misclassification of data from the corresponding class. Default value is
|
||||
empty Mat. */
|
||||
CV_PURE_PROPERTY_S(cv::Mat, ClassWeights)
|
||||
/** @see setClassWeights */
|
||||
virtual cv::Mat getClassWeights() const = 0;
|
||||
/** @copybrief getClassWeights @see getClassWeights */
|
||||
virtual void setClassWeights(const cv::Mat &val) = 0;
|
||||
|
||||
/** Termination criteria of the iterative %SVM training procedure which solves a partial
|
||||
case of constrained quadratic optimization problem.
|
||||
You can specify tolerance and/or the maximum number of iterations. Default value is
|
||||
`TermCriteria( TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, FLT_EPSILON )`; */
|
||||
CV_PURE_PROPERTY_S(cv::TermCriteria, TermCriteria)
|
||||
/** @see setTermCriteria */
|
||||
virtual cv::TermCriteria getTermCriteria() const = 0;
|
||||
/** @copybrief getTermCriteria @see getTermCriteria */
|
||||
virtual void setTermCriteria(const cv::TermCriteria &val) = 0;
|
||||
|
||||
/** Type of a %SVM kernel.
|
||||
See SVM::KernelTypes. Default value is SVM::RBF. */
|
||||
@ -755,17 +794,26 @@ public:
|
||||
Default value of the parameter is EM::DEFAULT_NCLUSTERS=5. Some of %EM implementation could
|
||||
determine the optimal number of mixtures within a specified value range, but that is not the
|
||||
case in ML yet. */
|
||||
CV_PURE_PROPERTY(int, ClustersNumber)
|
||||
/** @see setClustersNumber */
|
||||
virtual int getClustersNumber() const = 0;
|
||||
/** @copybrief getClustersNumber @see getClustersNumber */
|
||||
virtual void setClustersNumber(int val) = 0;
|
||||
|
||||
/** Constraint on covariance matrices which defines type of matrices.
|
||||
See EM::Types. */
|
||||
CV_PURE_PROPERTY(int, CovarianceMatrixType)
|
||||
/** @see setCovarianceMatrixType */
|
||||
virtual int getCovarianceMatrixType() const = 0;
|
||||
/** @copybrief getCovarianceMatrixType @see getCovarianceMatrixType */
|
||||
virtual void setCovarianceMatrixType(int val) = 0;
|
||||
|
||||
/** The termination criteria of the %EM algorithm.
|
||||
The %EM algorithm can be terminated by the number of iterations termCrit.maxCount (number of
|
||||
M-steps) or when relative change of likelihood logarithm is less than termCrit.epsilon. Default
|
||||
maximum number of iterations is EM::DEFAULT_MAX_ITERS=100. */
|
||||
CV_PURE_PROPERTY_S(TermCriteria, TermCriteria)
|
||||
/** @see setTermCriteria */
|
||||
virtual TermCriteria getTermCriteria() const = 0;
|
||||
/** @copybrief getTermCriteria @see getTermCriteria */
|
||||
virtual void setTermCriteria(const TermCriteria &val) = 0;
|
||||
|
||||
/** @brief Returns weights of the mixtures
|
||||
|
||||
@ -926,46 +974,70 @@ public:
|
||||
values. In case of regression and 2-class classification the optimal split can be found
|
||||
efficiently without employing clustering, thus the parameter is not used in these cases.
|
||||
Default value is 10.*/
|
||||
CV_PURE_PROPERTY(int, MaxCategories)
|
||||
/** @see setMaxCategories */
|
||||
virtual int getMaxCategories() const = 0;
|
||||
/** @copybrief getMaxCategories @see getMaxCategories */
|
||||
virtual void setMaxCategories(int val) = 0;
|
||||
|
||||
/** The maximum possible depth of the tree.
|
||||
That is the training algorithms attempts to split a node while its depth is less than maxDepth.
|
||||
The root node has zero depth. The actual depth may be smaller if the other termination criteria
|
||||
are met (see the outline of the training procedure @ref ml_intro_trees "here"), and/or if the
|
||||
tree is pruned. Default value is INT_MAX.*/
|
||||
CV_PURE_PROPERTY(int, MaxDepth)
|
||||
/** @see setMaxDepth */
|
||||
virtual int getMaxDepth() const = 0;
|
||||
/** @copybrief getMaxDepth @see getMaxDepth */
|
||||
virtual void setMaxDepth(int val) = 0;
|
||||
|
||||
/** If the number of samples in a node is less than this parameter then the node will not be split.
|
||||
|
||||
Default value is 10.*/
|
||||
CV_PURE_PROPERTY(int, MinSampleCount)
|
||||
/** @see setMinSampleCount */
|
||||
virtual int getMinSampleCount() const = 0;
|
||||
/** @copybrief getMinSampleCount @see getMinSampleCount */
|
||||
virtual void setMinSampleCount(int val) = 0;
|
||||
|
||||
/** If CVFolds \> 1 then algorithms prunes the built decision tree using K-fold
|
||||
cross-validation procedure where K is equal to CVFolds.
|
||||
Default value is 10.*/
|
||||
CV_PURE_PROPERTY(int, CVFolds)
|
||||
/** @see setCVFolds */
|
||||
virtual int getCVFolds() const = 0;
|
||||
/** @copybrief getCVFolds @see getCVFolds */
|
||||
virtual void setCVFolds(int val) = 0;
|
||||
|
||||
/** If true then surrogate splits will be built.
|
||||
These splits allow to work with missing data and compute variable importance correctly.
|
||||
Default value is false.
|
||||
@note currently it's not implemented.*/
|
||||
CV_PURE_PROPERTY(bool, UseSurrogates)
|
||||
/** @see setUseSurrogates */
|
||||
virtual bool getUseSurrogates() const = 0;
|
||||
/** @copybrief getUseSurrogates @see getUseSurrogates */
|
||||
virtual void setUseSurrogates(bool val) = 0;
|
||||
|
||||
/** If true then a pruning will be harsher.
|
||||
This will make a tree more compact and more resistant to the training data noise but a bit less
|
||||
accurate. Default value is true.*/
|
||||
CV_PURE_PROPERTY(bool, Use1SERule)
|
||||
/** @see setUse1SERule */
|
||||
virtual bool getUse1SERule() const = 0;
|
||||
/** @copybrief getUse1SERule @see getUse1SERule */
|
||||
virtual void setUse1SERule(bool val) = 0;
|
||||
|
||||
/** If true then pruned branches are physically removed from the tree.
|
||||
Otherwise they are retained and it is possible to get results from the original unpruned (or
|
||||
pruned less aggressively) tree. Default value is true.*/
|
||||
CV_PURE_PROPERTY(bool, TruncatePrunedTree)
|
||||
/** @see setTruncatePrunedTree */
|
||||
virtual bool getTruncatePrunedTree() const = 0;
|
||||
/** @copybrief getTruncatePrunedTree @see getTruncatePrunedTree */
|
||||
virtual void setTruncatePrunedTree(bool val) = 0;
|
||||
|
||||
/** Termination criteria for regression trees.
|
||||
If all absolute differences between an estimated value in a node and values of train samples
|
||||
in this node are less than this parameter then the node will not be split further. Default
|
||||
value is 0.01f*/
|
||||
CV_PURE_PROPERTY(float, RegressionAccuracy)
|
||||
/** @see setRegressionAccuracy */
|
||||
virtual float getRegressionAccuracy() const = 0;
|
||||
/** @copybrief getRegressionAccuracy @see getRegressionAccuracy */
|
||||
virtual void setRegressionAccuracy(float val) = 0;
|
||||
|
||||
/** @brief The array of a priori class probabilities, sorted by the class label value.
|
||||
|
||||
@ -982,7 +1054,10 @@ public:
|
||||
category is 1 and the weight of the second category is 10, then each mistake in predicting
|
||||
the second category is equivalent to making 10 mistakes in predicting the first category.
|
||||
Default value is empty Mat.*/
|
||||
CV_PURE_PROPERTY_S(cv::Mat, Priors)
|
||||
/** @see setPriors */
|
||||
virtual cv::Mat getPriors() const = 0;
|
||||
/** @copybrief getPriors @see getPriors */
|
||||
virtual void setPriors(const cv::Mat &val) = 0;
|
||||
|
||||
/** @brief The class represents a decision tree node.
|
||||
*/
|
||||
@ -1071,13 +1146,19 @@ public:
|
||||
|
||||
/** If true then variable importance will be calculated and then it can be retrieved by RTrees::getVarImportance.
|
||||
Default value is false.*/
|
||||
CV_PURE_PROPERTY(bool, CalculateVarImportance)
|
||||
/** @see setCalculateVarImportance */
|
||||
virtual bool getCalculateVarImportance() const = 0;
|
||||
/** @copybrief getCalculateVarImportance @see getCalculateVarImportance */
|
||||
virtual void setCalculateVarImportance(bool val) = 0;
|
||||
|
||||
/** The size of the randomly selected subset of features at each tree node and that are used
|
||||
to find the best split(s).
|
||||
If you set it to 0 then the size will be set to the square root of the total number of
|
||||
features. Default value is 0.*/
|
||||
CV_PURE_PROPERTY(int, ActiveVarCount)
|
||||
/** @see setActiveVarCount */
|
||||
virtual int getActiveVarCount() const = 0;
|
||||
/** @copybrief getActiveVarCount @see getActiveVarCount */
|
||||
virtual void setActiveVarCount(int val) = 0;
|
||||
|
||||
/** The termination criteria that specifies when the training algorithm stops.
|
||||
Either when the specified number of trees is trained and added to the ensemble or when
|
||||
@ -1086,7 +1167,10 @@ public:
|
||||
pass a certain number of trees. Also to keep in mind, the number of tree increases the
|
||||
prediction time linearly. Default value is TermCriteria(TermCriteria::MAX_ITERS +
|
||||
TermCriteria::EPS, 50, 0.1)*/
|
||||
CV_PURE_PROPERTY_S(TermCriteria, TermCriteria)
|
||||
/** @see setTermCriteria */
|
||||
virtual TermCriteria getTermCriteria() const = 0;
|
||||
/** @copybrief getTermCriteria @see getTermCriteria */
|
||||
virtual void setTermCriteria(const TermCriteria &val) = 0;
|
||||
|
||||
/** Returns the variable importance array.
|
||||
The method returns the variable importance vector, computed at the training stage when
|
||||
@ -1115,16 +1199,25 @@ class CV_EXPORTS_W Boost : public DTrees
|
||||
public:
|
||||
/** Type of the boosting algorithm.
|
||||
See Boost::Types. Default value is Boost::REAL. */
|
||||
CV_PURE_PROPERTY(int, BoostType)
|
||||
/** @see setBoostType */
|
||||
virtual int getBoostType() const = 0;
|
||||
/** @copybrief getBoostType @see getBoostType */
|
||||
virtual void setBoostType(int val) = 0;
|
||||
|
||||
/** The number of weak classifiers.
|
||||
Default value is 100. */
|
||||
CV_PURE_PROPERTY(int, WeakCount)
|
||||
/** @see setWeakCount */
|
||||
virtual int getWeakCount() const = 0;
|
||||
/** @copybrief getWeakCount @see getWeakCount */
|
||||
virtual void setWeakCount(int val) = 0;
|
||||
|
||||
/** A threshold between 0 and 1 used to save computational time.
|
||||
Samples with summary weight \f$\leq 1 - weight_trim_rate\f$ do not participate in the *next*
|
||||
iteration of training. Set this parameter to 0 to turn off this functionality. Default value is 0.95.*/
|
||||
CV_PURE_PROPERTY(double, WeightTrimRate)
|
||||
/** @see setWeightTrimRate */
|
||||
virtual double getWeightTrimRate() const = 0;
|
||||
/** @copybrief getWeightTrimRate @see getWeightTrimRate */
|
||||
virtual void setWeightTrimRate(double val) = 0;
|
||||
|
||||
/** Boosting type.
|
||||
Gentle AdaBoost and Real AdaBoost are often the preferable choices. */
|
||||
@ -1232,37 +1325,61 @@ public:
|
||||
You can specify the maximum number of iterations (maxCount) and/or how much the error could
|
||||
change between the iterations to make the algorithm continue (epsilon). Default value is
|
||||
TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, 0.01).*/
|
||||
CV_PURE_PROPERTY(TermCriteria, TermCriteria)
|
||||
/** @see setTermCriteria */
|
||||
virtual TermCriteria getTermCriteria() const = 0;
|
||||
/** @copybrief getTermCriteria @see getTermCriteria */
|
||||
virtual void setTermCriteria(TermCriteria val) = 0;
|
||||
|
||||
/** BPROP: Strength of the weight gradient term.
|
||||
The recommended value is about 0.1. Default value is 0.1.*/
|
||||
CV_PURE_PROPERTY(double, BackpropWeightScale)
|
||||
/** @see setBackpropWeightScale */
|
||||
virtual double getBackpropWeightScale() const = 0;
|
||||
/** @copybrief getBackpropWeightScale @see getBackpropWeightScale */
|
||||
virtual void setBackpropWeightScale(double val) = 0;
|
||||
|
||||
/** BPROP: Strength of the momentum term (the difference between weights on the 2 previous iterations).
|
||||
This parameter provides some inertia to smooth the random fluctuations of the weights. It can
|
||||
vary from 0 (the feature is disabled) to 1 and beyond. The value 0.1 or so is good enough.
|
||||
Default value is 0.1.*/
|
||||
CV_PURE_PROPERTY(double, BackpropMomentumScale)
|
||||
/** @see setBackpropMomentumScale */
|
||||
virtual double getBackpropMomentumScale() const = 0;
|
||||
/** @copybrief getBackpropMomentumScale @see getBackpropMomentumScale */
|
||||
virtual void setBackpropMomentumScale(double val) = 0;
|
||||
|
||||
/** RPROP: Initial value \f$\Delta_0\f$ of update-values \f$\Delta_{ij}\f$.
|
||||
Default value is 0.1.*/
|
||||
CV_PURE_PROPERTY(double, RpropDW0)
|
||||
/** @see setRpropDW0 */
|
||||
virtual double getRpropDW0() const = 0;
|
||||
/** @copybrief getRpropDW0 @see getRpropDW0 */
|
||||
virtual void setRpropDW0(double val) = 0;
|
||||
|
||||
/** RPROP: Increase factor \f$\eta^+\f$.
|
||||
It must be \>1. Default value is 1.2.*/
|
||||
CV_PURE_PROPERTY(double, RpropDWPlus)
|
||||
/** @see setRpropDWPlus */
|
||||
virtual double getRpropDWPlus() const = 0;
|
||||
/** @copybrief getRpropDWPlus @see getRpropDWPlus */
|
||||
virtual void setRpropDWPlus(double val) = 0;
|
||||
|
||||
/** RPROP: Decrease factor \f$\eta^-\f$.
|
||||
It must be \<1. Default value is 0.5.*/
|
||||
CV_PURE_PROPERTY(double, RpropDWMinus)
|
||||
/** @see setRpropDWMinus */
|
||||
virtual double getRpropDWMinus() const = 0;
|
||||
/** @copybrief getRpropDWMinus @see getRpropDWMinus */
|
||||
virtual void setRpropDWMinus(double val) = 0;
|
||||
|
||||
/** RPROP: Update-values lower limit \f$\Delta_{min}\f$.
|
||||
It must be positive. Default value is FLT_EPSILON.*/
|
||||
CV_PURE_PROPERTY(double, RpropDWMin)
|
||||
/** @see setRpropDWMin */
|
||||
virtual double getRpropDWMin() const = 0;
|
||||
/** @copybrief getRpropDWMin @see getRpropDWMin */
|
||||
virtual void setRpropDWMin(double val) = 0;
|
||||
|
||||
/** RPROP: Update-values upper limit \f$\Delta_{max}\f$.
|
||||
It must be \>1. Default value is 50.*/
|
||||
CV_PURE_PROPERTY(double, RpropDWMax)
|
||||
/** @see setRpropDWMax */
|
||||
virtual double getRpropDWMax() const = 0;
|
||||
/** @copybrief getRpropDWMax @see getRpropDWMax */
|
||||
virtual void setRpropDWMax(double val) = 0;
|
||||
|
||||
/** possible activation functions */
|
||||
enum ActivationFunctions {
|
||||
@ -1318,24 +1435,42 @@ class CV_EXPORTS LogisticRegression : public StatModel
|
||||
public:
|
||||
|
||||
/** Learning rate. */
|
||||
CV_PURE_PROPERTY(double, LearningRate)
|
||||
/** @see setLearningRate */
|
||||
virtual double getLearningRate() const = 0;
|
||||
/** @copybrief getLearningRate @see getLearningRate */
|
||||
virtual void setLearningRate(double val) = 0;
|
||||
|
||||
/** Number of iterations. */
|
||||
CV_PURE_PROPERTY(int, Iterations)
|
||||
/** @see setIterations */
|
||||
virtual int getIterations() const = 0;
|
||||
/** @copybrief getIterations @see getIterations */
|
||||
virtual void setIterations(int val) = 0;
|
||||
|
||||
/** Kind of regularization to be applied. See LogisticRegression::RegKinds. */
|
||||
CV_PURE_PROPERTY(int, Regularization)
|
||||
/** @see setRegularization */
|
||||
virtual int getRegularization() const = 0;
|
||||
/** @copybrief getRegularization @see getRegularization */
|
||||
virtual void setRegularization(int val) = 0;
|
||||
|
||||
/** Kind of training method used. See LogisticRegression::Methods. */
|
||||
CV_PURE_PROPERTY(int, TrainMethod)
|
||||
/** @see setTrainMethod */
|
||||
virtual int getTrainMethod() const = 0;
|
||||
/** @copybrief getTrainMethod @see getTrainMethod */
|
||||
virtual void setTrainMethod(int val) = 0;
|
||||
|
||||
/** Specifies the number of training samples taken in each step of Mini-Batch Gradient
|
||||
Descent. Will only be used if using LogisticRegression::MINI_BATCH training algorithm. It
|
||||
has to take values less than the total number of training samples. */
|
||||
CV_PURE_PROPERTY(int, MiniBatchSize)
|
||||
/** @see setMiniBatchSize */
|
||||
virtual int getMiniBatchSize() const = 0;
|
||||
/** @copybrief getMiniBatchSize @see getMiniBatchSize */
|
||||
virtual void setMiniBatchSize(int val) = 0;
|
||||
|
||||
/** Termination criteria of the algorithm. */
|
||||
CV_PURE_PROPERTY(TermCriteria, TermCriteria)
|
||||
/** @see setTermCriteria */
|
||||
virtual TermCriteria getTermCriteria() const = 0;
|
||||
/** @copybrief getTermCriteria @see getTermCriteria */
|
||||
virtual void setTermCriteria(TermCriteria val) = 0;
|
||||
|
||||
//! Regularization kinds
|
||||
enum RegKinds {
|
||||
|
@ -105,34 +105,64 @@ namespace cv
|
||||
virtual void collectGarbage();
|
||||
|
||||
//! @brief Scale factor
|
||||
CV_PURE_PROPERTY(int, Scale)
|
||||
/** @see setScale */
|
||||
virtual int getScale() const = 0;
|
||||
/** @copybrief getScale @see getScale */
|
||||
virtual void setScale(int val) = 0;
|
||||
|
||||
//! @brief Iterations count
|
||||
CV_PURE_PROPERTY(int, Iterations)
|
||||
/** @see setIterations */
|
||||
virtual int getIterations() const = 0;
|
||||
/** @copybrief getIterations @see getIterations */
|
||||
virtual void setIterations(int val) = 0;
|
||||
|
||||
//! @brief Asymptotic value of steepest descent method
|
||||
CV_PURE_PROPERTY(double, Tau)
|
||||
/** @see setTau */
|
||||
virtual double getTau() const = 0;
|
||||
/** @copybrief getTau @see getTau */
|
||||
virtual void setTau(double val) = 0;
|
||||
|
||||
//! @brief Weight parameter to balance data term and smoothness term
|
||||
CV_PURE_PROPERTY(double, Labmda)
|
||||
/** @see setLabmda */
|
||||
virtual double getLabmda() const = 0;
|
||||
/** @copybrief getLabmda @see getLabmda */
|
||||
virtual void setLabmda(double val) = 0;
|
||||
|
||||
//! @brief Parameter of spacial distribution in Bilateral-TV
|
||||
CV_PURE_PROPERTY(double, Alpha)
|
||||
/** @see setAlpha */
|
||||
virtual double getAlpha() const = 0;
|
||||
/** @copybrief getAlpha @see getAlpha */
|
||||
virtual void setAlpha(double val) = 0;
|
||||
|
||||
//! @brief Kernel size of Bilateral-TV filter
|
||||
CV_PURE_PROPERTY(int, KernelSize)
|
||||
/** @see setKernelSize */
|
||||
virtual int getKernelSize() const = 0;
|
||||
/** @copybrief getKernelSize @see getKernelSize */
|
||||
virtual void setKernelSize(int val) = 0;
|
||||
|
||||
//! @brief Gaussian blur kernel size
|
||||
CV_PURE_PROPERTY(int, BlurKernelSize)
|
||||
/** @see setBlurKernelSize */
|
||||
virtual int getBlurKernelSize() const = 0;
|
||||
/** @copybrief getBlurKernelSize @see getBlurKernelSize */
|
||||
virtual void setBlurKernelSize(int val) = 0;
|
||||
|
||||
//! @brief Gaussian blur sigma
|
||||
CV_PURE_PROPERTY(double, BlurSigma)
|
||||
/** @see setBlurSigma */
|
||||
virtual double getBlurSigma() const = 0;
|
||||
/** @copybrief getBlurSigma @see getBlurSigma */
|
||||
virtual void setBlurSigma(double val) = 0;
|
||||
|
||||
//! @brief Radius of the temporal search area
|
||||
CV_PURE_PROPERTY(int, TemporalAreaRadius)
|
||||
/** @see setTemporalAreaRadius */
|
||||
virtual int getTemporalAreaRadius() const = 0;
|
||||
/** @copybrief getTemporalAreaRadius @see getTemporalAreaRadius */
|
||||
virtual void setTemporalAreaRadius(int val) = 0;
|
||||
|
||||
//! @brief Dense optical flow algorithm
|
||||
CV_PURE_PROPERTY_S(Ptr<cv::superres::DenseOpticalFlowExt>, OpticalFlow)
|
||||
/** @see setOpticalFlow */
|
||||
virtual Ptr<cv::superres::DenseOpticalFlowExt> getOpticalFlow() const = 0;
|
||||
/** @copybrief getOpticalFlow @see getOpticalFlow */
|
||||
virtual void setOpticalFlow(const Ptr<cv::superres::DenseOpticalFlowExt> &val) = 0;
|
||||
|
||||
protected:
|
||||
SuperResolution();
|
||||
|
@ -64,13 +64,34 @@ namespace cv
|
||||
class CV_EXPORTS FarnebackOpticalFlow : public virtual DenseOpticalFlowExt
|
||||
{
|
||||
public:
|
||||
CV_PURE_PROPERTY(double, PyrScale)
|
||||
CV_PURE_PROPERTY(int, LevelsNumber)
|
||||
CV_PURE_PROPERTY(int, WindowSize)
|
||||
CV_PURE_PROPERTY(int, Iterations)
|
||||
CV_PURE_PROPERTY(int, PolyN)
|
||||
CV_PURE_PROPERTY(double, PolySigma)
|
||||
CV_PURE_PROPERTY(int, Flags)
|
||||
/** @see setPyrScale */
|
||||
virtual double getPyrScale() const = 0;
|
||||
/** @copybrief getPyrScale @see getPyrScale */
|
||||
virtual void setPyrScale(double val) = 0;
|
||||
/** @see setLevelsNumber */
|
||||
virtual int getLevelsNumber() const = 0;
|
||||
/** @copybrief getLevelsNumber @see getLevelsNumber */
|
||||
virtual void setLevelsNumber(int val) = 0;
|
||||
/** @see setWindowSize */
|
||||
virtual int getWindowSize() const = 0;
|
||||
/** @copybrief getWindowSize @see getWindowSize */
|
||||
virtual void setWindowSize(int val) = 0;
|
||||
/** @see setIterations */
|
||||
virtual int getIterations() const = 0;
|
||||
/** @copybrief getIterations @see getIterations */
|
||||
virtual void setIterations(int val) = 0;
|
||||
/** @see setPolyN */
|
||||
virtual int getPolyN() const = 0;
|
||||
/** @copybrief getPolyN @see getPolyN */
|
||||
virtual void setPolyN(int val) = 0;
|
||||
/** @see setPolySigma */
|
||||
virtual double getPolySigma() const = 0;
|
||||
/** @copybrief getPolySigma @see getPolySigma */
|
||||
virtual void setPolySigma(double val) = 0;
|
||||
/** @see setFlags */
|
||||
virtual int getFlags() const = 0;
|
||||
/** @copybrief getFlags @see getFlags */
|
||||
virtual void setFlags(int val) = 0;
|
||||
};
|
||||
CV_EXPORTS Ptr<FarnebackOpticalFlow> createOptFlow_Farneback();
|
||||
CV_EXPORTS Ptr<FarnebackOpticalFlow> createOptFlow_Farneback_CUDA();
|
||||
@ -82,14 +103,38 @@ namespace cv
|
||||
class CV_EXPORTS DualTVL1OpticalFlow : public virtual DenseOpticalFlowExt
|
||||
{
|
||||
public:
|
||||
CV_PURE_PROPERTY(double, Tau)
|
||||
CV_PURE_PROPERTY(double, Lambda)
|
||||
CV_PURE_PROPERTY(double, Theta)
|
||||
CV_PURE_PROPERTY(int, ScalesNumber)
|
||||
CV_PURE_PROPERTY(int, WarpingsNumber)
|
||||
CV_PURE_PROPERTY(double, Epsilon)
|
||||
CV_PURE_PROPERTY(int, Iterations)
|
||||
CV_PURE_PROPERTY(bool, UseInitialFlow)
|
||||
/** @see setTau */
|
||||
virtual double getTau() const = 0;
|
||||
/** @copybrief getTau @see getTau */
|
||||
virtual void setTau(double val) = 0;
|
||||
/** @see setLambda */
|
||||
virtual double getLambda() const = 0;
|
||||
/** @copybrief getLambda @see getLambda */
|
||||
virtual void setLambda(double val) = 0;
|
||||
/** @see setTheta */
|
||||
virtual double getTheta() const = 0;
|
||||
/** @copybrief getTheta @see getTheta */
|
||||
virtual void setTheta(double val) = 0;
|
||||
/** @see setScalesNumber */
|
||||
virtual int getScalesNumber() const = 0;
|
||||
/** @copybrief getScalesNumber @see getScalesNumber */
|
||||
virtual void setScalesNumber(int val) = 0;
|
||||
/** @see setWarpingsNumber */
|
||||
virtual int getWarpingsNumber() const = 0;
|
||||
/** @copybrief getWarpingsNumber @see getWarpingsNumber */
|
||||
virtual void setWarpingsNumber(int val) = 0;
|
||||
/** @see setEpsilon */
|
||||
virtual double getEpsilon() const = 0;
|
||||
/** @copybrief getEpsilon @see getEpsilon */
|
||||
virtual void setEpsilon(double val) = 0;
|
||||
/** @see setIterations */
|
||||
virtual int getIterations() const = 0;
|
||||
/** @copybrief getIterations @see getIterations */
|
||||
virtual void setIterations(int val) = 0;
|
||||
/** @see setUseInitialFlow */
|
||||
virtual bool getUseInitialFlow() const = 0;
|
||||
/** @copybrief getUseInitialFlow @see getUseInitialFlow */
|
||||
virtual void setUseInitialFlow(bool val) = 0;
|
||||
};
|
||||
CV_EXPORTS Ptr<DualTVL1OpticalFlow> createOptFlow_DualTVL1();
|
||||
CV_EXPORTS Ptr<DualTVL1OpticalFlow> createOptFlow_DualTVL1_CUDA();
|
||||
@ -99,17 +144,35 @@ namespace cv
|
||||
{
|
||||
public:
|
||||
//! @brief Flow smoothness
|
||||
CV_PURE_PROPERTY(double, Alpha)
|
||||
/** @see setAlpha */
|
||||
virtual double getAlpha() const = 0;
|
||||
/** @copybrief getAlpha @see getAlpha */
|
||||
virtual void setAlpha(double val) = 0;
|
||||
//! @brief Gradient constancy importance
|
||||
CV_PURE_PROPERTY(double, Gamma)
|
||||
/** @see setGamma */
|
||||
virtual double getGamma() const = 0;
|
||||
/** @copybrief getGamma @see getGamma */
|
||||
virtual void setGamma(double val) = 0;
|
||||
//! @brief Pyramid scale factor
|
||||
CV_PURE_PROPERTY(double, ScaleFactor)
|
||||
/** @see setScaleFactor */
|
||||
virtual double getScaleFactor() const = 0;
|
||||
/** @copybrief getScaleFactor @see getScaleFactor */
|
||||
virtual void setScaleFactor(double val) = 0;
|
||||
//! @brief Number of lagged non-linearity iterations (inner loop)
|
||||
CV_PURE_PROPERTY(int, InnerIterations)
|
||||
/** @see setInnerIterations */
|
||||
virtual int getInnerIterations() const = 0;
|
||||
/** @copybrief getInnerIterations @see getInnerIterations */
|
||||
virtual void setInnerIterations(int val) = 0;
|
||||
//! @brief Number of warping iterations (number of pyramid levels)
|
||||
CV_PURE_PROPERTY(int, OuterIterations)
|
||||
/** @see setOuterIterations */
|
||||
virtual int getOuterIterations() const = 0;
|
||||
/** @copybrief getOuterIterations @see getOuterIterations */
|
||||
virtual void setOuterIterations(int val) = 0;
|
||||
//! @brief Number of linear system solver iterations
|
||||
CV_PURE_PROPERTY(int, SolverIterations)
|
||||
/** @see setSolverIterations */
|
||||
virtual int getSolverIterations() const = 0;
|
||||
/** @copybrief getSolverIterations @see getSolverIterations */
|
||||
virtual void setSolverIterations(int val) = 0;
|
||||
};
|
||||
CV_EXPORTS Ptr<BroxOpticalFlow> createOptFlow_Brox_CUDA();
|
||||
|
||||
@ -117,9 +180,18 @@ namespace cv
|
||||
class PyrLKOpticalFlow : public virtual DenseOpticalFlowExt
|
||||
{
|
||||
public:
|
||||
CV_PURE_PROPERTY(int, WindowSize)
|
||||
CV_PURE_PROPERTY(int, MaxLevel)
|
||||
CV_PURE_PROPERTY(int, Iterations)
|
||||
/** @see setWindowSize */
|
||||
virtual int getWindowSize() const = 0;
|
||||
/** @copybrief getWindowSize @see getWindowSize */
|
||||
virtual void setWindowSize(int val) = 0;
|
||||
/** @see setMaxLevel */
|
||||
virtual int getMaxLevel() const = 0;
|
||||
/** @copybrief getMaxLevel @see getMaxLevel */
|
||||
virtual void setMaxLevel(int val) = 0;
|
||||
/** @see setIterations */
|
||||
virtual int getIterations() const = 0;
|
||||
/** @copybrief getIterations @see getIterations */
|
||||
virtual void setIterations(int val) = 0;
|
||||
};
|
||||
CV_EXPORTS Ptr<PyrLKOpticalFlow> createOptFlow_PyrLK_CUDA();
|
||||
|
||||
|
@ -441,29 +441,65 @@ class CV_EXPORTS_W DualTVL1OpticalFlow : public DenseOpticalFlow
|
||||
{
|
||||
public:
|
||||
//! @brief Time step of the numerical scheme
|
||||
CV_PURE_PROPERTY(double, Tau)
|
||||
/** @see setTau */
|
||||
virtual double getTau() const = 0;
|
||||
/** @copybrief getTau @see getTau */
|
||||
virtual void setTau(double val) = 0;
|
||||
//! @brief Weight parameter for the data term, attachment parameter
|
||||
CV_PURE_PROPERTY(double, Lambda)
|
||||
/** @see setLambda */
|
||||
virtual double getLambda() const = 0;
|
||||
/** @copybrief getLambda @see getLambda */
|
||||
virtual void setLambda(double val) = 0;
|
||||
//! @brief Weight parameter for (u - v)^2, tightness parameter
|
||||
CV_PURE_PROPERTY(double, Theta)
|
||||
/** @see setTheta */
|
||||
virtual double getTheta() const = 0;
|
||||
/** @copybrief getTheta @see getTheta */
|
||||
virtual void setTheta(double val) = 0;
|
||||
//! @brief coefficient for additional illumination variation term
|
||||
CV_PURE_PROPERTY(double, Gamma)
|
||||
/** @see setGamma */
|
||||
virtual double getGamma() const = 0;
|
||||
/** @copybrief getGamma @see getGamma */
|
||||
virtual void setGamma(double val) = 0;
|
||||
//! @brief Number of scales used to create the pyramid of images
|
||||
CV_PURE_PROPERTY(int, ScalesNumber)
|
||||
/** @see setScalesNumber */
|
||||
virtual int getScalesNumber() const = 0;
|
||||
/** @copybrief getScalesNumber @see getScalesNumber */
|
||||
virtual void setScalesNumber(int val) = 0;
|
||||
//! @brief Number of warpings per scale
|
||||
CV_PURE_PROPERTY(int, WarpingsNumber)
|
||||
/** @see setWarpingsNumber */
|
||||
virtual int getWarpingsNumber() const = 0;
|
||||
/** @copybrief getWarpingsNumber @see getWarpingsNumber */
|
||||
virtual void setWarpingsNumber(int val) = 0;
|
||||
//! @brief Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time
|
||||
CV_PURE_PROPERTY(double, Epsilon)
|
||||
/** @see setEpsilon */
|
||||
virtual double getEpsilon() const = 0;
|
||||
/** @copybrief getEpsilon @see getEpsilon */
|
||||
virtual void setEpsilon(double val) = 0;
|
||||
//! @brief Inner iterations (between outlier filtering) used in the numerical scheme
|
||||
CV_PURE_PROPERTY(int, InnerIterations)
|
||||
/** @see setInnerIterations */
|
||||
virtual int getInnerIterations() const = 0;
|
||||
/** @copybrief getInnerIterations @see getInnerIterations */
|
||||
virtual void setInnerIterations(int val) = 0;
|
||||
//! @brief Outer iterations (number of inner loops) used in the numerical scheme
|
||||
CV_PURE_PROPERTY(int, OuterIterations)
|
||||
/** @see setOuterIterations */
|
||||
virtual int getOuterIterations() const = 0;
|
||||
/** @copybrief getOuterIterations @see getOuterIterations */
|
||||
virtual void setOuterIterations(int val) = 0;
|
||||
//! @brief Use initial flow
|
||||
CV_PURE_PROPERTY(bool, UseInitialFlow)
|
||||
/** @see setUseInitialFlow */
|
||||
virtual bool getUseInitialFlow() const = 0;
|
||||
/** @copybrief getUseInitialFlow @see getUseInitialFlow */
|
||||
virtual void setUseInitialFlow(bool val) = 0;
|
||||
//! @brief Step between scales (<1)
|
||||
CV_PURE_PROPERTY(double, ScaleStep)
|
||||
/** @see setScaleStep */
|
||||
virtual double getScaleStep() const = 0;
|
||||
/** @copybrief getScaleStep @see getScaleStep */
|
||||
virtual void setScaleStep(double val) = 0;
|
||||
//! @brief Median filter kernel size (1 = no filter) (3 or 5)
|
||||
CV_PURE_PROPERTY(int, MedianFiltering)
|
||||
/** @see setMedianFiltering */
|
||||
virtual int getMedianFiltering() const = 0;
|
||||
/** @copybrief getMedianFiltering @see getMedianFiltering */
|
||||
virtual void setMedianFiltering(int val) = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates instance of cv::DenseOpticalFlow
|
||||
|
Loading…
Reference in New Issue
Block a user