mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
refactor CUDA CascadeClassifier
This commit is contained in:
parent
8257dc3c1e
commit
734212a402
@ -75,7 +75,7 @@ namespace cv { namespace cuda {
|
||||
- (Python) An example applying the HOG descriptor for people detection can be found at
|
||||
opencv_source_code/samples/python2/peopledetect.py
|
||||
*/
|
||||
class CV_EXPORTS HOG : public cv::Algorithm
|
||||
class CV_EXPORTS HOG : public Algorithm
|
||||
{
|
||||
public:
|
||||
enum
|
||||
@ -204,87 +204,84 @@ public:
|
||||
- A Nvidea API specific cascade classifier example can be found at
|
||||
opencv_source_code/samples/gpu/cascadeclassifier_nvidia_api.cpp
|
||||
*/
|
||||
class CV_EXPORTS CascadeClassifier_CUDA
|
||||
class CV_EXPORTS CascadeClassifier : public Algorithm
|
||||
{
|
||||
public:
|
||||
CascadeClassifier_CUDA();
|
||||
/** @brief Loads the classifier from a file. Cascade type is detected automatically by constructor parameter.
|
||||
|
||||
@param filename Name of the file from which the classifier is loaded. Only the old haar classifier
|
||||
(trained by the haar training application) and NVIDIA's nvbin are supported for HAAR and only new
|
||||
type of OpenCV XML cascade supported for LBP.
|
||||
*/
|
||||
CascadeClassifier_CUDA(const String& filename);
|
||||
~CascadeClassifier_CUDA();
|
||||
|
||||
/** @brief Checks whether the classifier is loaded or not.
|
||||
*/
|
||||
bool empty() const;
|
||||
/** @brief Loads the classifier from a file. The previous content is destroyed.
|
||||
|
||||
@param filename Name of the file from which the classifier is loaded. Only the old haar classifier
|
||||
(trained by the haar training application) and NVIDIA's nvbin are supported for HAAR and only new
|
||||
type of OpenCV XML cascade supported for LBP.
|
||||
static Ptr<CascadeClassifier> create(const String& filename);
|
||||
/** @overload
|
||||
*/
|
||||
bool load(const String& filename);
|
||||
/** @brief Destroys the loaded classifier.
|
||||
*/
|
||||
void release();
|
||||
static Ptr<CascadeClassifier> create(const FileStorage& file);
|
||||
|
||||
//! Maximum possible object size. Objects larger than that are ignored. Used for
|
||||
//! second signature and supported only for LBP cascades.
|
||||
virtual void setMaxObjectSize(Size maxObjectSize) = 0;
|
||||
virtual Size getMaxObjectSize() const = 0;
|
||||
|
||||
//! Minimum possible object size. Objects smaller than that are ignored.
|
||||
virtual void setMinObjectSize(Size minSize) = 0;
|
||||
virtual Size getMinObjectSize() const = 0;
|
||||
|
||||
//! Parameter specifying how much the image size is reduced at each image scale.
|
||||
virtual void setScaleFactor(double scaleFactor) = 0;
|
||||
virtual double getScaleFactor() const = 0;
|
||||
|
||||
//! Parameter specifying how many neighbors each candidate rectangle should have
|
||||
//! to retain it.
|
||||
virtual void setMinNeighbors(int minNeighbors) = 0;
|
||||
virtual int getMinNeighbors() const = 0;
|
||||
|
||||
virtual void setFindLargestObject(bool findLargestObject) = 0;
|
||||
virtual bool getFindLargestObject() = 0;
|
||||
|
||||
virtual void setMaxNumObjects(int maxNumObjects) = 0;
|
||||
virtual int getMaxNumObjects() const = 0;
|
||||
|
||||
virtual Size getClassifierSize() const = 0;
|
||||
|
||||
/** @overload */
|
||||
int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, double scaleFactor = 1.2, int minNeighbors = 4, Size minSize = Size());
|
||||
/** @brief Detects objects of different sizes in the input image.
|
||||
|
||||
@param image Matrix of type CV_8U containing an image where objects should be detected.
|
||||
@param objectsBuf Buffer to store detected objects (rectangles). If it is empty, it is allocated
|
||||
with the default size. If not empty, the function searches not more than N objects, where
|
||||
N = sizeof(objectsBufer's data)/sizeof(cv::Rect).
|
||||
@param maxObjectSize Maximum possible object size. Objects larger than that are ignored. Used for
|
||||
second signature and supported only for LBP cascades.
|
||||
@param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
|
||||
@param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
|
||||
to retain it.
|
||||
@param minSize Minimum possible object size. Objects smaller than that are ignored.
|
||||
@param objects Buffer to store detected objects (rectangles).
|
||||
|
||||
The detected objects are returned as a list of rectangles.
|
||||
To get final array of detected objects use CascadeClassifier::convert method.
|
||||
|
||||
The function returns the number of detected objects, so you can retrieve them as in the following
|
||||
example:
|
||||
@code
|
||||
cuda::CascadeClassifier_CUDA cascade_gpu(...);
|
||||
Ptr<cuda::CascadeClassifier> cascade_gpu = cuda::CascadeClassifier::create(...);
|
||||
|
||||
Mat image_cpu = imread(...)
|
||||
GpuMat image_gpu(image_cpu);
|
||||
|
||||
GpuMat objbuf;
|
||||
int detections_number = cascade_gpu.detectMultiScale( image_gpu,
|
||||
objbuf, 1.2, minNeighbors);
|
||||
cascade_gpu->detectMultiScale(image_gpu, objbuf);
|
||||
|
||||
Mat obj_host;
|
||||
// download only detected number of rectangles
|
||||
objbuf.colRange(0, detections_number).download(obj_host);
|
||||
std::vector<Rect> faces;
|
||||
cascade_gpu->convert(objbuf, faces);
|
||||
|
||||
Rect* faces = obj_host.ptr<Rect>();
|
||||
for(int i = 0; i < detections_num; ++i)
|
||||
cv::rectangle(image_cpu, faces[i], Scalar(255));
|
||||
|
||||
imshow("Faces", image_cpu);
|
||||
@endcode
|
||||
|
||||
@sa CascadeClassifier::detectMultiScale
|
||||
*/
|
||||
int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize = Size(), double scaleFactor = 1.1, int minNeighbors = 4);
|
||||
virtual void detectMultiScale(InputArray image,
|
||||
OutputArray objects,
|
||||
Stream& stream = Stream::Null()) = 0;
|
||||
|
||||
bool findLargestObject;
|
||||
bool visualizeInPlace;
|
||||
/** @brief Converts objects array from internal representation to standard vector.
|
||||
|
||||
Size getClassifierSize() const;
|
||||
|
||||
private:
|
||||
struct CascadeClassifierImpl;
|
||||
CascadeClassifierImpl* impl;
|
||||
struct HaarCascade;
|
||||
struct LbpCascade;
|
||||
friend class CascadeClassifier_CUDA_LBP;
|
||||
@param gpu_objects Objects array in internal representation.
|
||||
@param objects Resulting array.
|
||||
*/
|
||||
virtual void convert(OutputArray gpu_objects,
|
||||
std::vector<Rect>& objects) = 0;
|
||||
};
|
||||
|
||||
//! @}
|
||||
|
@ -107,18 +107,17 @@ PERF_TEST_P(ImageAndCascade, ObjDetect_HaarClassifier,
|
||||
|
||||
if (PERF_RUN_CUDA())
|
||||
{
|
||||
cv::cuda::CascadeClassifier_CUDA d_cascade;
|
||||
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second)));
|
||||
cv::Ptr<cv::cuda::CascadeClassifier> d_cascade =
|
||||
cv::cuda::CascadeClassifier::create(perf::TestBase::getDataPath(GetParam().second));
|
||||
|
||||
const cv::cuda::GpuMat d_img(img);
|
||||
cv::cuda::GpuMat objects_buffer;
|
||||
int detections_num = 0;
|
||||
|
||||
TEST_CYCLE() detections_num = d_cascade.detectMultiScale(d_img, objects_buffer);
|
||||
TEST_CYCLE() d_cascade->detectMultiScale(d_img, objects_buffer);
|
||||
|
||||
std::vector<cv::Rect> gpu_rects;
|
||||
d_cascade->convert(objects_buffer, gpu_rects);
|
||||
|
||||
std::vector<cv::Rect> gpu_rects(detections_num);
|
||||
cv::Mat gpu_rects_mat(1, detections_num, cv::DataType<cv::Rect>::type, &gpu_rects[0]);
|
||||
objects_buffer.colRange(0, detections_num).download(gpu_rects_mat);
|
||||
cv::groupRectangles(gpu_rects, 3, 0.2);
|
||||
SANITY_CHECK(gpu_rects);
|
||||
}
|
||||
@ -146,18 +145,17 @@ PERF_TEST_P(ImageAndCascade, ObjDetect_LBPClassifier,
|
||||
|
||||
if (PERF_RUN_CUDA())
|
||||
{
|
||||
cv::cuda::CascadeClassifier_CUDA d_cascade;
|
||||
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second)));
|
||||
cv::Ptr<cv::cuda::CascadeClassifier> d_cascade =
|
||||
cv::cuda::CascadeClassifier::create(perf::TestBase::getDataPath(GetParam().second));
|
||||
|
||||
const cv::cuda::GpuMat d_img(img);
|
||||
cv::cuda::GpuMat objects_buffer;
|
||||
int detections_num = 0;
|
||||
|
||||
TEST_CYCLE() detections_num = d_cascade.detectMultiScale(d_img, objects_buffer);
|
||||
TEST_CYCLE() d_cascade->detectMultiScale(d_img, objects_buffer);
|
||||
|
||||
std::vector<cv::Rect> gpu_rects;
|
||||
d_cascade->convert(objects_buffer, gpu_rects);
|
||||
|
||||
std::vector<cv::Rect> gpu_rects(detections_num);
|
||||
cv::Mat gpu_rects_mat(1, detections_num, cv::DataType<cv::Rect>::type, &gpu_rects[0]);
|
||||
objects_buffer.colRange(0, detections_num).download(gpu_rects_mat);
|
||||
cv::groupRectangles(gpu_rects, 3, 0.2);
|
||||
SANITY_CHECK(gpu_rects);
|
||||
}
|
||||
|
@ -48,160 +48,185 @@ using namespace cv::cuda;
|
||||
|
||||
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
||||
|
||||
cv::cuda::CascadeClassifier_CUDA::CascadeClassifier_CUDA() { throw_no_cuda(); }
|
||||
cv::cuda::CascadeClassifier_CUDA::CascadeClassifier_CUDA(const String&) { throw_no_cuda(); }
|
||||
cv::cuda::CascadeClassifier_CUDA::~CascadeClassifier_CUDA() { throw_no_cuda(); }
|
||||
bool cv::cuda::CascadeClassifier_CUDA::empty() const { throw_no_cuda(); return true; }
|
||||
bool cv::cuda::CascadeClassifier_CUDA::load(const String&) { throw_no_cuda(); return true; }
|
||||
Size cv::cuda::CascadeClassifier_CUDA::getClassifierSize() const { throw_no_cuda(); return Size();}
|
||||
void cv::cuda::CascadeClassifier_CUDA::release() { throw_no_cuda(); }
|
||||
int cv::cuda::CascadeClassifier_CUDA::detectMultiScale( const GpuMat&, GpuMat&, double, int, Size) {throw_no_cuda(); return -1;}
|
||||
int cv::cuda::CascadeClassifier_CUDA::detectMultiScale( const GpuMat&, GpuMat&, Size, Size, double, int) {throw_no_cuda(); return -1;}
|
||||
Ptr<cuda::CascadeClassifier> cv::cuda::CascadeClassifier::create(const String&) { throw_no_cuda(); return Ptr<cuda::CascadeClassifier>(); }
|
||||
Ptr<cuda::CascadeClassifier> cv::cuda::CascadeClassifier::create(const FileStorage&) { throw_no_cuda(); return Ptr<cuda::CascadeClassifier>(); }
|
||||
|
||||
#else
|
||||
|
||||
struct cv::cuda::CascadeClassifier_CUDA::CascadeClassifierImpl
|
||||
//
|
||||
// CascadeClassifierBase
|
||||
//
|
||||
|
||||
namespace
|
||||
{
|
||||
public:
|
||||
CascadeClassifierImpl(){}
|
||||
virtual ~CascadeClassifierImpl(){}
|
||||
class CascadeClassifierBase : public cuda::CascadeClassifier
|
||||
{
|
||||
public:
|
||||
CascadeClassifierBase();
|
||||
|
||||
virtual unsigned int process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors,
|
||||
bool findLargestObject, bool visualizeInPlace, cv::Size ncvMinSize, cv::Size maxObjectSize) = 0;
|
||||
virtual void setMaxObjectSize(Size maxObjectSize) { maxObjectSize_ = maxObjectSize; }
|
||||
virtual Size getMaxObjectSize() const { return maxObjectSize_; }
|
||||
|
||||
virtual cv::Size getClassifierCvSize() const = 0;
|
||||
virtual bool read(const String& classifierAsXml) = 0;
|
||||
};
|
||||
virtual void setMinObjectSize(Size minSize) { minObjectSize_ = minSize; }
|
||||
virtual Size getMinObjectSize() const { return minObjectSize_; }
|
||||
|
||||
#ifndef HAVE_OPENCV_CUDALEGACY
|
||||
virtual void setScaleFactor(double scaleFactor) { scaleFactor_ = scaleFactor; }
|
||||
virtual double getScaleFactor() const { return scaleFactor_; }
|
||||
|
||||
struct cv::cuda::CascadeClassifier_CUDA::HaarCascade : cv::cuda::CascadeClassifier_CUDA::CascadeClassifierImpl
|
||||
virtual void setMinNeighbors(int minNeighbors) { minNeighbors_ = minNeighbors; }
|
||||
virtual int getMinNeighbors() const { return minNeighbors_; }
|
||||
|
||||
virtual void setFindLargestObject(bool findLargestObject) { findLargestObject_ = findLargestObject; }
|
||||
virtual bool getFindLargestObject() { return findLargestObject_; }
|
||||
|
||||
virtual void setMaxNumObjects(int maxNumObjects) { maxNumObjects_ = maxNumObjects; }
|
||||
virtual int getMaxNumObjects() const { return maxNumObjects_; }
|
||||
|
||||
protected:
|
||||
Size maxObjectSize_;
|
||||
Size minObjectSize_;
|
||||
double scaleFactor_;
|
||||
int minNeighbors_;
|
||||
bool findLargestObject_;
|
||||
int maxNumObjects_;
|
||||
};
|
||||
|
||||
CascadeClassifierBase::CascadeClassifierBase() :
|
||||
maxObjectSize_(),
|
||||
minObjectSize_(),
|
||||
scaleFactor_(1.2),
|
||||
minNeighbors_(4),
|
||||
findLargestObject_(false),
|
||||
maxNumObjects_(100)
|
||||
{
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// HaarCascade
|
||||
//
|
||||
|
||||
#ifdef HAVE_OPENCV_CUDALEGACY
|
||||
|
||||
namespace
|
||||
{
|
||||
public:
|
||||
HaarCascade()
|
||||
class HaarCascade_Impl : public CascadeClassifierBase
|
||||
{
|
||||
throw_no_cuda();
|
||||
public:
|
||||
explicit HaarCascade_Impl(const String& filename);
|
||||
|
||||
virtual Size getClassifierSize() const;
|
||||
|
||||
virtual void detectMultiScale(InputArray image,
|
||||
OutputArray objects,
|
||||
Stream& stream);
|
||||
|
||||
virtual void convert(OutputArray gpu_objects,
|
||||
std::vector<Rect>& objects);
|
||||
|
||||
private:
|
||||
NCVStatus load(const String& classifierFile);
|
||||
NCVStatus calculateMemReqsAndAllocate(const Size& frameSize);
|
||||
NCVStatus process(const GpuMat& src, GpuMat& objects, cv::Size ncvMinSize, /*out*/ unsigned int& numDetections);
|
||||
|
||||
Size lastAllocatedFrameSize;
|
||||
|
||||
Ptr<NCVMemStackAllocator> gpuAllocator;
|
||||
Ptr<NCVMemStackAllocator> cpuAllocator;
|
||||
|
||||
cudaDeviceProp devProp;
|
||||
NCVStatus ncvStat;
|
||||
|
||||
Ptr<NCVMemNativeAllocator> gpuCascadeAllocator;
|
||||
Ptr<NCVMemNativeAllocator> cpuCascadeAllocator;
|
||||
|
||||
Ptr<NCVVectorAlloc<HaarStage64> > h_haarStages;
|
||||
Ptr<NCVVectorAlloc<HaarClassifierNode128> > h_haarNodes;
|
||||
Ptr<NCVVectorAlloc<HaarFeature64> > h_haarFeatures;
|
||||
|
||||
HaarClassifierCascadeDescriptor haar;
|
||||
|
||||
Ptr<NCVVectorAlloc<HaarStage64> > d_haarStages;
|
||||
Ptr<NCVVectorAlloc<HaarClassifierNode128> > d_haarNodes;
|
||||
Ptr<NCVVectorAlloc<HaarFeature64> > d_haarFeatures;
|
||||
};
|
||||
|
||||
static void NCVDebugOutputHandler(const String &msg)
|
||||
{
|
||||
CV_Error(Error::GpuApiCallError, msg.c_str());
|
||||
}
|
||||
|
||||
unsigned int process(const GpuMat&, GpuMat&, float, int, bool, bool, cv::Size, cv::Size)
|
||||
{
|
||||
throw_no_cuda();
|
||||
return 0;
|
||||
}
|
||||
|
||||
cv::Size getClassifierCvSize() const
|
||||
{
|
||||
throw_no_cuda();
|
||||
return cv::Size();
|
||||
}
|
||||
|
||||
bool read(const String&)
|
||||
{
|
||||
throw_no_cuda();
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
#else
|
||||
|
||||
struct cv::cuda::CascadeClassifier_CUDA::HaarCascade : cv::cuda::CascadeClassifier_CUDA::CascadeClassifierImpl
|
||||
{
|
||||
public:
|
||||
HaarCascade() : lastAllocatedFrameSize(-1, -1)
|
||||
HaarCascade_Impl::HaarCascade_Impl(const String& filename) :
|
||||
lastAllocatedFrameSize(-1, -1)
|
||||
{
|
||||
ncvSetDebugOutputHandler(NCVDebugOutputHandler);
|
||||
}
|
||||
|
||||
bool read(const String& filename)
|
||||
{
|
||||
ncvSafeCall( load(filename) );
|
||||
return true;
|
||||
}
|
||||
|
||||
NCVStatus process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors,
|
||||
bool findLargestObject, bool visualizeInPlace, cv::Size ncvMinSize,
|
||||
/*out*/unsigned int& numDetections)
|
||||
Size HaarCascade_Impl::getClassifierSize() const
|
||||
{
|
||||
calculateMemReqsAndAllocate(src.size());
|
||||
|
||||
NCVMemPtr src_beg;
|
||||
src_beg.ptr = (void*)src.ptr<Ncv8u>();
|
||||
src_beg.memtype = NCVMemoryTypeDevice;
|
||||
|
||||
NCVMemSegment src_seg;
|
||||
src_seg.begin = src_beg;
|
||||
src_seg.size = src.step * src.rows;
|
||||
|
||||
NCVMatrixReuse<Ncv8u> d_src(src_seg, static_cast<int>(devProp.textureAlignment), src.cols, src.rows, static_cast<int>(src.step), true);
|
||||
ncvAssertReturn(d_src.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
|
||||
|
||||
CV_Assert(objects.rows == 1);
|
||||
|
||||
NCVMemPtr objects_beg;
|
||||
objects_beg.ptr = (void*)objects.ptr<NcvRect32u>();
|
||||
objects_beg.memtype = NCVMemoryTypeDevice;
|
||||
|
||||
NCVMemSegment objects_seg;
|
||||
objects_seg.begin = objects_beg;
|
||||
objects_seg.size = objects.step * objects.rows;
|
||||
NCVVectorReuse<NcvRect32u> d_rects(objects_seg, objects.cols);
|
||||
ncvAssertReturn(d_rects.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
|
||||
|
||||
NcvSize32u roi;
|
||||
roi.width = d_src.width();
|
||||
roi.height = d_src.height();
|
||||
|
||||
NcvSize32u winMinSize(ncvMinSize.width, ncvMinSize.height);
|
||||
|
||||
Ncv32u flags = 0;
|
||||
flags |= findLargestObject? NCVPipeObjDet_FindLargestObject : 0;
|
||||
flags |= visualizeInPlace ? NCVPipeObjDet_VisualizeInPlace : 0;
|
||||
|
||||
ncvStat = ncvDetectObjectsMultiScale_device(
|
||||
d_src, roi, d_rects, numDetections, haar, *h_haarStages,
|
||||
*d_haarStages, *d_haarNodes, *d_haarFeatures,
|
||||
winMinSize,
|
||||
minNeighbors,
|
||||
scaleStep, 1,
|
||||
flags,
|
||||
*gpuAllocator, *cpuAllocator, devProp, 0);
|
||||
ncvAssertReturnNcvStat(ncvStat);
|
||||
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
|
||||
|
||||
return NCV_SUCCESS;
|
||||
return Size(haar.ClassifierSize.width, haar.ClassifierSize.height);
|
||||
}
|
||||
|
||||
unsigned int process(const GpuMat& image, GpuMat& objectsBuf, float scaleFactor, int minNeighbors,
|
||||
bool findLargestObject, bool visualizeInPlace, cv::Size minSize, cv::Size /*maxObjectSize*/)
|
||||
void HaarCascade_Impl::detectMultiScale(InputArray _image,
|
||||
OutputArray _objects,
|
||||
Stream& stream)
|
||||
{
|
||||
CV_Assert( scaleFactor > 1 && image.depth() == CV_8U);
|
||||
const GpuMat image = _image.getGpuMat();
|
||||
|
||||
const int defaultObjSearchNum = 100;
|
||||
if (objectsBuf.empty())
|
||||
CV_Assert( image.depth() == CV_8U);
|
||||
CV_Assert( scaleFactor_ > 1 );
|
||||
CV_Assert( !stream );
|
||||
|
||||
Size ncvMinSize = getClassifierSize();
|
||||
if (ncvMinSize.width < minObjectSize_.width && ncvMinSize.height < minObjectSize_.height)
|
||||
{
|
||||
objectsBuf.create(1, defaultObjSearchNum, DataType<Rect>::type);
|
||||
ncvMinSize.width = minObjectSize_.width;
|
||||
ncvMinSize.height = minObjectSize_.height;
|
||||
}
|
||||
|
||||
cv::Size ncvMinSize = this->getClassifierCvSize();
|
||||
|
||||
if (ncvMinSize.width < minSize.width && ncvMinSize.height < minSize.height)
|
||||
{
|
||||
ncvMinSize.width = minSize.width;
|
||||
ncvMinSize.height = minSize.height;
|
||||
}
|
||||
BufferPool pool(stream);
|
||||
GpuMat objectsBuf = pool.getBuffer(1, maxNumObjects_, DataType<Rect>::type);
|
||||
|
||||
unsigned int numDetections;
|
||||
ncvSafeCall(this->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, ncvMinSize, numDetections));
|
||||
ncvSafeCall( process(image, objectsBuf, ncvMinSize, numDetections) );
|
||||
|
||||
return numDetections;
|
||||
if (numDetections > 0)
|
||||
{
|
||||
objectsBuf.colRange(0, numDetections).copyTo(_objects);
|
||||
}
|
||||
else
|
||||
{
|
||||
_objects.release();
|
||||
}
|
||||
}
|
||||
|
||||
cv::Size getClassifierCvSize() const { return cv::Size(haar.ClassifierSize.width, haar.ClassifierSize.height); }
|
||||
void HaarCascade_Impl::convert(OutputArray _gpu_objects, std::vector<Rect>& objects)
|
||||
{
|
||||
if (_gpu_objects.empty())
|
||||
{
|
||||
objects.clear();
|
||||
return;
|
||||
}
|
||||
|
||||
private:
|
||||
static void NCVDebugOutputHandler(const String &msg) { CV_Error(cv::Error::GpuApiCallError, msg.c_str()); }
|
||||
Mat gpu_objects;
|
||||
if (_gpu_objects.kind() == _InputArray::CUDA_GPU_MAT)
|
||||
{
|
||||
_gpu_objects.getGpuMat().download(gpu_objects);
|
||||
}
|
||||
else
|
||||
{
|
||||
gpu_objects = _gpu_objects.getMat();
|
||||
}
|
||||
|
||||
NCVStatus load(const String& classifierFile)
|
||||
CV_Assert( gpu_objects.rows == 1 );
|
||||
CV_Assert( gpu_objects.type() == DataType<Rect>::type );
|
||||
|
||||
Rect* ptr = gpu_objects.ptr<Rect>();
|
||||
objects.assign(ptr, ptr + gpu_objects.cols);
|
||||
}
|
||||
|
||||
NCVStatus HaarCascade_Impl::load(const String& classifierFile)
|
||||
{
|
||||
int devId = cv::cuda::getDevice();
|
||||
ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), NCV_CUDA_ERROR);
|
||||
@ -246,7 +271,7 @@ private:
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
NCVStatus calculateMemReqsAndAllocate(const Size& frameSize)
|
||||
NCVStatus HaarCascade_Impl::calculateMemReqsAndAllocate(const Size& frameSize)
|
||||
{
|
||||
if (lastAllocatedFrameSize == frameSize)
|
||||
{
|
||||
@ -289,88 +314,62 @@ private:
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
cudaDeviceProp devProp;
|
||||
NCVStatus ncvStat;
|
||||
NCVStatus HaarCascade_Impl::process(const GpuMat& src, GpuMat& objects, cv::Size ncvMinSize, /*out*/ unsigned int& numDetections)
|
||||
{
|
||||
calculateMemReqsAndAllocate(src.size());
|
||||
|
||||
Ptr<NCVMemNativeAllocator> gpuCascadeAllocator;
|
||||
Ptr<NCVMemNativeAllocator> cpuCascadeAllocator;
|
||||
NCVMemPtr src_beg;
|
||||
src_beg.ptr = (void*)src.ptr<Ncv8u>();
|
||||
src_beg.memtype = NCVMemoryTypeDevice;
|
||||
|
||||
Ptr<NCVVectorAlloc<HaarStage64> > h_haarStages;
|
||||
Ptr<NCVVectorAlloc<HaarClassifierNode128> > h_haarNodes;
|
||||
Ptr<NCVVectorAlloc<HaarFeature64> > h_haarFeatures;
|
||||
NCVMemSegment src_seg;
|
||||
src_seg.begin = src_beg;
|
||||
src_seg.size = src.step * src.rows;
|
||||
|
||||
HaarClassifierCascadeDescriptor haar;
|
||||
NCVMatrixReuse<Ncv8u> d_src(src_seg, static_cast<int>(devProp.textureAlignment), src.cols, src.rows, static_cast<int>(src.step), true);
|
||||
ncvAssertReturn(d_src.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
|
||||
|
||||
Ptr<NCVVectorAlloc<HaarStage64> > d_haarStages;
|
||||
Ptr<NCVVectorAlloc<HaarClassifierNode128> > d_haarNodes;
|
||||
Ptr<NCVVectorAlloc<HaarFeature64> > d_haarFeatures;
|
||||
CV_Assert(objects.rows == 1);
|
||||
|
||||
Size lastAllocatedFrameSize;
|
||||
NCVMemPtr objects_beg;
|
||||
objects_beg.ptr = (void*)objects.ptr<NcvRect32u>();
|
||||
objects_beg.memtype = NCVMemoryTypeDevice;
|
||||
|
||||
Ptr<NCVMemStackAllocator> gpuAllocator;
|
||||
Ptr<NCVMemStackAllocator> cpuAllocator;
|
||||
NCVMemSegment objects_seg;
|
||||
objects_seg.begin = objects_beg;
|
||||
objects_seg.size = objects.step * objects.rows;
|
||||
NCVVectorReuse<NcvRect32u> d_rects(objects_seg, objects.cols);
|
||||
ncvAssertReturn(d_rects.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
|
||||
|
||||
virtual ~HaarCascade(){}
|
||||
};
|
||||
NcvSize32u roi;
|
||||
roi.width = d_src.width();
|
||||
roi.height = d_src.height();
|
||||
|
||||
NcvSize32u winMinSize(ncvMinSize.width, ncvMinSize.height);
|
||||
|
||||
Ncv32u flags = 0;
|
||||
flags |= findLargestObject_ ? NCVPipeObjDet_FindLargestObject : 0;
|
||||
|
||||
ncvStat = ncvDetectObjectsMultiScale_device(
|
||||
d_src, roi, d_rects, numDetections, haar, *h_haarStages,
|
||||
*d_haarStages, *d_haarNodes, *d_haarFeatures,
|
||||
winMinSize,
|
||||
minNeighbors_,
|
||||
scaleFactor_, 1,
|
||||
flags,
|
||||
*gpuAllocator, *cpuAllocator, devProp, 0);
|
||||
ncvAssertReturnNcvStat(ncvStat);
|
||||
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
|
||||
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
cv::Size operator -(const cv::Size& a, const cv::Size& b)
|
||||
{
|
||||
return cv::Size(a.width - b.width, a.height - b.height);
|
||||
}
|
||||
|
||||
cv::Size operator +(const cv::Size& a, const int& i)
|
||||
{
|
||||
return cv::Size(a.width + i, a.height + i);
|
||||
}
|
||||
|
||||
cv::Size operator *(const cv::Size& a, const float& f)
|
||||
{
|
||||
return cv::Size(cvRound(a.width * f), cvRound(a.height * f));
|
||||
}
|
||||
|
||||
cv::Size operator /(const cv::Size& a, const float& f)
|
||||
{
|
||||
return cv::Size(cvRound(a.width / f), cvRound(a.height / f));
|
||||
}
|
||||
|
||||
bool operator <=(const cv::Size& a, const cv::Size& b)
|
||||
{
|
||||
return a.width <= b.width && a.height <= b.width;
|
||||
}
|
||||
|
||||
struct PyrLavel
|
||||
{
|
||||
PyrLavel(int _order, float _scale, cv::Size frame, cv::Size window, cv::Size minObjectSize)
|
||||
{
|
||||
do
|
||||
{
|
||||
order = _order;
|
||||
scale = pow(_scale, order);
|
||||
sFrame = frame / scale;
|
||||
workArea = sFrame - window + 1;
|
||||
sWindow = window * scale;
|
||||
_order++;
|
||||
} while (sWindow <= minObjectSize);
|
||||
}
|
||||
|
||||
bool isFeasible(cv::Size maxObj)
|
||||
{
|
||||
return workArea.width > 0 && workArea.height > 0 && sWindow <= maxObj;
|
||||
}
|
||||
|
||||
PyrLavel next(float factor, cv::Size frame, cv::Size window, cv::Size minObjectSize)
|
||||
{
|
||||
return PyrLavel(order + 1, factor, frame, window, minObjectSize);
|
||||
}
|
||||
|
||||
int order;
|
||||
float scale;
|
||||
cv::Size sFrame;
|
||||
cv::Size workArea;
|
||||
cv::Size sWindow;
|
||||
};
|
||||
//
|
||||
// LbpCascade
|
||||
//
|
||||
|
||||
namespace cv { namespace cuda { namespace device
|
||||
{
|
||||
@ -394,42 +393,154 @@ namespace cv { namespace cuda { namespace device
|
||||
unsigned int* classified,
|
||||
PtrStepSzi integral);
|
||||
|
||||
void connectedConmonents(PtrStepSz<int4> candidates, int ncandidates, PtrStepSz<int4> objects,int groupThreshold, float grouping_eps, unsigned int* nclasses);
|
||||
void connectedConmonents(PtrStepSz<int4> candidates,
|
||||
int ncandidates,
|
||||
PtrStepSz<int4> objects,
|
||||
int groupThreshold,
|
||||
float grouping_eps,
|
||||
unsigned int* nclasses);
|
||||
}
|
||||
}}}
|
||||
|
||||
struct cv::cuda::CascadeClassifier_CUDA::LbpCascade : cv::cuda::CascadeClassifier_CUDA::CascadeClassifierImpl
|
||||
namespace
|
||||
{
|
||||
public:
|
||||
struct Stage
|
||||
cv::Size operator -(const cv::Size& a, const cv::Size& b)
|
||||
{
|
||||
int first;
|
||||
int ntrees;
|
||||
float threshold;
|
||||
return cv::Size(a.width - b.width, a.height - b.height);
|
||||
}
|
||||
|
||||
cv::Size operator +(const cv::Size& a, const int& i)
|
||||
{
|
||||
return cv::Size(a.width + i, a.height + i);
|
||||
}
|
||||
|
||||
cv::Size operator *(const cv::Size& a, const float& f)
|
||||
{
|
||||
return cv::Size(cvRound(a.width * f), cvRound(a.height * f));
|
||||
}
|
||||
|
||||
cv::Size operator /(const cv::Size& a, const float& f)
|
||||
{
|
||||
return cv::Size(cvRound(a.width / f), cvRound(a.height / f));
|
||||
}
|
||||
|
||||
bool operator <=(const cv::Size& a, const cv::Size& b)
|
||||
{
|
||||
return a.width <= b.width && a.height <= b.width;
|
||||
}
|
||||
|
||||
struct PyrLavel
|
||||
{
|
||||
PyrLavel(int _order, float _scale, cv::Size frame, cv::Size window, cv::Size minObjectSize)
|
||||
{
|
||||
do
|
||||
{
|
||||
order = _order;
|
||||
scale = pow(_scale, order);
|
||||
sFrame = frame / scale;
|
||||
workArea = sFrame - window + 1;
|
||||
sWindow = window * scale;
|
||||
_order++;
|
||||
} while (sWindow <= minObjectSize);
|
||||
}
|
||||
|
||||
bool isFeasible(cv::Size maxObj)
|
||||
{
|
||||
return workArea.width > 0 && workArea.height > 0 && sWindow <= maxObj;
|
||||
}
|
||||
|
||||
PyrLavel next(float factor, cv::Size frame, cv::Size window, cv::Size minObjectSize)
|
||||
{
|
||||
return PyrLavel(order + 1, factor, frame, window, minObjectSize);
|
||||
}
|
||||
|
||||
int order;
|
||||
float scale;
|
||||
cv::Size sFrame;
|
||||
cv::Size workArea;
|
||||
cv::Size sWindow;
|
||||
};
|
||||
|
||||
LbpCascade(){}
|
||||
virtual ~LbpCascade(){}
|
||||
|
||||
virtual unsigned int process(const GpuMat& image, GpuMat& objects, float scaleFactor, int groupThreshold, bool /*findLargestObject*/,
|
||||
bool /*visualizeInPlace*/, cv::Size minObjectSize, cv::Size maxObjectSize)
|
||||
class LbpCascade_Impl : public CascadeClassifierBase
|
||||
{
|
||||
CV_Assert(scaleFactor > 1 && image.depth() == CV_8U);
|
||||
public:
|
||||
explicit LbpCascade_Impl(const FileStorage& file);
|
||||
|
||||
virtual Size getClassifierSize() const { return NxM; }
|
||||
|
||||
virtual void detectMultiScale(InputArray image,
|
||||
OutputArray objects,
|
||||
Stream& stream);
|
||||
|
||||
virtual void convert(OutputArray gpu_objects,
|
||||
std::vector<Rect>& objects);
|
||||
|
||||
private:
|
||||
bool load(const FileNode &root);
|
||||
void allocateBuffers(cv::Size frame);
|
||||
|
||||
private:
|
||||
struct Stage
|
||||
{
|
||||
int first;
|
||||
int ntrees;
|
||||
float threshold;
|
||||
};
|
||||
|
||||
enum stage { BOOST = 0 };
|
||||
enum feature { LBP = 1, HAAR = 2 };
|
||||
|
||||
static const stage stageType = BOOST;
|
||||
static const feature featureType = LBP;
|
||||
|
||||
cv::Size NxM;
|
||||
bool isStumps;
|
||||
int ncategories;
|
||||
int subsetSize;
|
||||
int nodeStep;
|
||||
|
||||
// gpu representation of classifier
|
||||
GpuMat stage_mat;
|
||||
GpuMat trees_mat;
|
||||
GpuMat nodes_mat;
|
||||
GpuMat leaves_mat;
|
||||
GpuMat subsets_mat;
|
||||
GpuMat features_mat;
|
||||
|
||||
GpuMat integral;
|
||||
GpuMat integralBuffer;
|
||||
GpuMat resuzeBuffer;
|
||||
|
||||
GpuMat candidates;
|
||||
static const int integralFactor = 4;
|
||||
};
|
||||
|
||||
LbpCascade_Impl::LbpCascade_Impl(const FileStorage& file)
|
||||
{
|
||||
load(file.getFirstTopLevelNode());
|
||||
}
|
||||
|
||||
void LbpCascade_Impl::detectMultiScale(InputArray _image,
|
||||
OutputArray _objects,
|
||||
Stream& stream)
|
||||
{
|
||||
const GpuMat image = _image.getGpuMat();
|
||||
|
||||
CV_Assert( image.depth() == CV_8U);
|
||||
CV_Assert( scaleFactor_ > 1 );
|
||||
CV_Assert( !stream );
|
||||
|
||||
// const int defaultObjSearchNum = 100;
|
||||
const float grouping_eps = 0.2f;
|
||||
|
||||
if( !objects.empty() && objects.depth() == CV_32S)
|
||||
objects.reshape(4, 1);
|
||||
else
|
||||
objects.create(1 , image.cols >> 4, CV_32SC4);
|
||||
BufferPool pool(stream);
|
||||
GpuMat objects = pool.getBuffer(1, maxNumObjects_, DataType<Rect>::type);
|
||||
|
||||
// used for debug
|
||||
// candidates.setTo(cv::Scalar::all(0));
|
||||
// objects.setTo(cv::Scalar::all(0));
|
||||
|
||||
if (maxObjectSize == cv::Size())
|
||||
maxObjectSize = image.size();
|
||||
if (maxObjectSize_ == cv::Size())
|
||||
maxObjectSize_ = image.size();
|
||||
|
||||
allocateBuffers(image.size());
|
||||
|
||||
@ -437,9 +548,9 @@ public:
|
||||
GpuMat dclassified(1, 1, CV_32S);
|
||||
cudaSafeCall( cudaMemcpy(dclassified.ptr(), &classified, sizeof(int), cudaMemcpyHostToDevice) );
|
||||
|
||||
PyrLavel level(0, scaleFactor, image.size(), NxM, minObjectSize);
|
||||
PyrLavel level(0, scaleFactor_, image.size(), NxM, minObjectSize_);
|
||||
|
||||
while (level.isFeasible(maxObjectSize))
|
||||
while (level.isFeasible(maxObjectSize_))
|
||||
{
|
||||
int acc = level.sFrame.width + 1;
|
||||
float iniScale = level.scale;
|
||||
@ -449,7 +560,7 @@ public:
|
||||
|
||||
int total = 0, prev = 0;
|
||||
|
||||
while (acc <= integralFactor * (image.cols + 1) && level.isFeasible(maxObjectSize))
|
||||
while (acc <= integralFactor * (image.cols + 1) && level.isFeasible(maxObjectSize_))
|
||||
{
|
||||
// create sutable matrix headers
|
||||
GpuMat src = resuzeBuffer(cv::Rect(0, 0, level.sFrame.width, level.sFrame.height));
|
||||
@ -465,7 +576,7 @@ public:
|
||||
total += totalWidth * (level.workArea.height / step);
|
||||
|
||||
// go to next pyramide level
|
||||
level = level.next(scaleFactor, image.size(), NxM, minObjectSize);
|
||||
level = level.next(scaleFactor_, image.size(), NxM, minObjectSize_);
|
||||
area = level.workArea;
|
||||
|
||||
step = (1 + (level.scale <= 2.f));
|
||||
@ -473,60 +584,55 @@ public:
|
||||
acc += level.sFrame.width + 1;
|
||||
}
|
||||
|
||||
device::lbp::classifyPyramid(image.cols, image.rows, NxM.width - 1, NxM.height - 1, iniScale, scaleFactor, total, stage_mat, stage_mat.cols / sizeof(Stage), nodes_mat,
|
||||
device::lbp::classifyPyramid(image.cols, image.rows, NxM.width - 1, NxM.height - 1, iniScale, scaleFactor_, total, stage_mat, stage_mat.cols / sizeof(Stage), nodes_mat,
|
||||
leaves_mat, subsets_mat, features_mat, subsetSize, candidates, dclassified.ptr<unsigned int>(), integral);
|
||||
}
|
||||
|
||||
if (groupThreshold <= 0 || objects.empty())
|
||||
return 0;
|
||||
if (minNeighbors_ <= 0 || objects.empty())
|
||||
return;
|
||||
|
||||
cudaSafeCall( cudaMemcpy(&classified, dclassified.ptr(), sizeof(int), cudaMemcpyDeviceToHost) );
|
||||
device::lbp::connectedConmonents(candidates, classified, objects, groupThreshold, grouping_eps, dclassified.ptr<unsigned int>());
|
||||
device::lbp::connectedConmonents(candidates, classified, objects, minNeighbors_, grouping_eps, dclassified.ptr<unsigned int>());
|
||||
|
||||
cudaSafeCall( cudaMemcpy(&classified, dclassified.ptr(), sizeof(int), cudaMemcpyDeviceToHost) );
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
return classified;
|
||||
}
|
||||
|
||||
virtual cv::Size getClassifierCvSize() const { return NxM; }
|
||||
|
||||
bool read(const String& classifierAsXml)
|
||||
{
|
||||
FileStorage fs(classifierAsXml, FileStorage::READ);
|
||||
return fs.isOpened() ? read(fs.getFirstTopLevelNode()) : false;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
void allocateBuffers(cv::Size frame)
|
||||
{
|
||||
if (frame == cv::Size())
|
||||
return;
|
||||
|
||||
if (resuzeBuffer.empty() || frame.width > resuzeBuffer.cols || frame.height > resuzeBuffer.rows)
|
||||
if (classified > 0)
|
||||
{
|
||||
resuzeBuffer.create(frame, CV_8UC1);
|
||||
|
||||
integral.create(frame.height + 1, integralFactor * (frame.width + 1), CV_32SC1);
|
||||
|
||||
#ifdef HAVE_OPENCV_CUDALEGACY
|
||||
NcvSize32u roiSize;
|
||||
roiSize.width = frame.width;
|
||||
roiSize.height = frame.height;
|
||||
|
||||
cudaDeviceProp prop;
|
||||
cudaSafeCall( cudaGetDeviceProperties(&prop, cv::cuda::getDevice()) );
|
||||
|
||||
Ncv32u bufSize;
|
||||
ncvSafeCall( nppiStIntegralGetSize_8u32u(roiSize, &bufSize, prop) );
|
||||
integralBuffer.create(1, bufSize, CV_8UC1);
|
||||
#endif
|
||||
|
||||
candidates.create(1 , frame.width >> 1, CV_32SC4);
|
||||
objects.colRange(0, classified).copyTo(_objects);
|
||||
}
|
||||
else
|
||||
{
|
||||
_objects.release();
|
||||
}
|
||||
}
|
||||
|
||||
bool read(const FileNode &root)
|
||||
void LbpCascade_Impl::convert(OutputArray _gpu_objects, std::vector<Rect>& objects)
|
||||
{
|
||||
if (_gpu_objects.empty())
|
||||
{
|
||||
objects.clear();
|
||||
return;
|
||||
}
|
||||
|
||||
Mat gpu_objects;
|
||||
if (_gpu_objects.kind() == _InputArray::CUDA_GPU_MAT)
|
||||
{
|
||||
_gpu_objects.getGpuMat().download(gpu_objects);
|
||||
}
|
||||
else
|
||||
{
|
||||
gpu_objects = _gpu_objects.getMat();
|
||||
}
|
||||
|
||||
CV_Assert( gpu_objects.rows == 1 );
|
||||
CV_Assert( gpu_objects.type() == DataType<Rect>::type );
|
||||
|
||||
Rect* ptr = gpu_objects.ptr<Rect>();
|
||||
objects.assign(ptr, ptr + gpu_objects.cols);
|
||||
}
|
||||
|
||||
bool LbpCascade_Impl::load(const FileNode &root)
|
||||
{
|
||||
const char *CUDA_CC_STAGE_TYPE = "stageType";
|
||||
const char *CUDA_CC_FEATURE_TYPE = "featureType";
|
||||
@ -667,92 +773,90 @@ private:
|
||||
return true;
|
||||
}
|
||||
|
||||
enum stage { BOOST = 0 };
|
||||
enum feature { LBP = 1, HAAR = 2 };
|
||||
static const stage stageType = BOOST;
|
||||
static const feature featureType = LBP;
|
||||
void LbpCascade_Impl::allocateBuffers(cv::Size frame)
|
||||
{
|
||||
if (frame == cv::Size())
|
||||
return;
|
||||
|
||||
cv::Size NxM;
|
||||
bool isStumps;
|
||||
int ncategories;
|
||||
int subsetSize;
|
||||
int nodeStep;
|
||||
if (resuzeBuffer.empty() || frame.width > resuzeBuffer.cols || frame.height > resuzeBuffer.rows)
|
||||
{
|
||||
resuzeBuffer.create(frame, CV_8UC1);
|
||||
|
||||
// gpu representation of classifier
|
||||
GpuMat stage_mat;
|
||||
GpuMat trees_mat;
|
||||
GpuMat nodes_mat;
|
||||
GpuMat leaves_mat;
|
||||
GpuMat subsets_mat;
|
||||
GpuMat features_mat;
|
||||
integral.create(frame.height + 1, integralFactor * (frame.width + 1), CV_32SC1);
|
||||
|
||||
GpuMat integral;
|
||||
GpuMat integralBuffer;
|
||||
GpuMat resuzeBuffer;
|
||||
#ifdef HAVE_OPENCV_CUDALEGACY
|
||||
NcvSize32u roiSize;
|
||||
roiSize.width = frame.width;
|
||||
roiSize.height = frame.height;
|
||||
|
||||
GpuMat candidates;
|
||||
static const int integralFactor = 4;
|
||||
};
|
||||
cudaDeviceProp prop;
|
||||
cudaSafeCall( cudaGetDeviceProperties(&prop, cv::cuda::getDevice()) );
|
||||
|
||||
cv::cuda::CascadeClassifier_CUDA::CascadeClassifier_CUDA()
|
||||
: findLargestObject(false), visualizeInPlace(false), impl(0) {}
|
||||
Ncv32u bufSize;
|
||||
ncvSafeCall( nppiStIntegralGetSize_8u32u(roiSize, &bufSize, prop) );
|
||||
integralBuffer.create(1, bufSize, CV_8UC1);
|
||||
#endif
|
||||
|
||||
cv::cuda::CascadeClassifier_CUDA::CascadeClassifier_CUDA(const String& filename)
|
||||
: findLargestObject(false), visualizeInPlace(false), impl(0) { load(filename); }
|
||||
candidates.create(1 , frame.width >> 1, CV_32SC4);
|
||||
}
|
||||
}
|
||||
|
||||
cv::cuda::CascadeClassifier_CUDA::~CascadeClassifier_CUDA() { release(); }
|
||||
|
||||
void cv::cuda::CascadeClassifier_CUDA::release() { if (impl) { delete impl; impl = 0; } }
|
||||
|
||||
bool cv::cuda::CascadeClassifier_CUDA::empty() const { return impl == 0; }
|
||||
|
||||
Size cv::cuda::CascadeClassifier_CUDA::getClassifierSize() const
|
||||
{
|
||||
return this->empty() ? Size() : impl->getClassifierCvSize();
|
||||
}
|
||||
|
||||
int cv::cuda::CascadeClassifier_CUDA::detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, double scaleFactor, int minNeighbors, Size minSize)
|
||||
{
|
||||
CV_Assert( !this->empty());
|
||||
return impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, minSize, cv::Size());
|
||||
}
|
||||
//
|
||||
// create
|
||||
//
|
||||
|
||||
int cv::cuda::CascadeClassifier_CUDA::detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize, double scaleFactor, int minNeighbors)
|
||||
Ptr<cuda::CascadeClassifier> cv::cuda::CascadeClassifier::create(const String& filename)
|
||||
{
|
||||
CV_Assert( !this->empty());
|
||||
return impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, minSize, maxObjectSize);
|
||||
}
|
||||
|
||||
bool cv::cuda::CascadeClassifier_CUDA::load(const String& filename)
|
||||
{
|
||||
release();
|
||||
|
||||
String fext = filename.substr(filename.find_last_of(".") + 1);
|
||||
fext = fext.toLowerCase();
|
||||
|
||||
if (fext == "nvbin")
|
||||
{
|
||||
impl = new HaarCascade();
|
||||
return impl->read(filename);
|
||||
#ifndef HAVE_OPENCV_CUDALEGACY
|
||||
CV_Error(Error::StsUnsupportedFormat, "OpenCV CUDA objdetect was built without HaarCascade");
|
||||
return Ptr<cuda::CascadeClassifier>();
|
||||
#else
|
||||
return makePtr<HaarCascade_Impl>(filename);
|
||||
#endif
|
||||
}
|
||||
|
||||
FileStorage fs(filename, FileStorage::READ);
|
||||
|
||||
if (!fs.isOpened())
|
||||
{
|
||||
impl = new HaarCascade();
|
||||
return impl->read(filename);
|
||||
#ifndef HAVE_OPENCV_CUDALEGACY
|
||||
CV_Error(Error::StsUnsupportedFormat, "OpenCV CUDA objdetect was built without HaarCascade");
|
||||
return Ptr<cuda::CascadeClassifier>();
|
||||
#else
|
||||
return makePtr<HaarCascade_Impl>(filename);
|
||||
#endif
|
||||
}
|
||||
|
||||
const char *CUDA_CC_LBP = "LBP";
|
||||
String featureTypeStr = (String)fs.getFirstTopLevelNode()["featureType"];
|
||||
if (featureTypeStr == CUDA_CC_LBP)
|
||||
impl = new LbpCascade();
|
||||
{
|
||||
return makePtr<LbpCascade_Impl>(fs);
|
||||
}
|
||||
else
|
||||
impl = new HaarCascade();
|
||||
{
|
||||
#ifndef HAVE_OPENCV_CUDALEGACY
|
||||
CV_Error(Error::StsUnsupportedFormat, "OpenCV CUDA objdetect was built without HaarCascade");
|
||||
return Ptr<cuda::CascadeClassifier>();
|
||||
#else
|
||||
return makePtr<HaarCascade_Impl>(filename);
|
||||
#endif
|
||||
}
|
||||
|
||||
impl->read(filename);
|
||||
return !this->empty();
|
||||
CV_Error(Error::StsUnsupportedFormat, "Unsupported format for CUDA CascadeClassifier");
|
||||
return Ptr<cuda::CascadeClassifier>();
|
||||
}
|
||||
|
||||
Ptr<cuda::CascadeClassifier> cv::cuda::CascadeClassifier::create(const FileStorage& file)
|
||||
{
|
||||
return makePtr<LbpCascade_Impl>(file);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -287,9 +287,15 @@ PARAM_TEST_CASE(LBP_Read_classifier, cv::cuda::DeviceInfo, int)
|
||||
|
||||
CUDA_TEST_P(LBP_Read_classifier, Accuracy)
|
||||
{
|
||||
cv::cuda::CascadeClassifier_CUDA classifier;
|
||||
std::string classifierXmlPath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/lbpcascade_frontalface.xml";
|
||||
ASSERT_TRUE(classifier.load(classifierXmlPath));
|
||||
|
||||
cv::Ptr<cv::cuda::CascadeClassifier> d_cascade;
|
||||
|
||||
ASSERT_NO_THROW(
|
||||
d_cascade = cv::cuda::CascadeClassifier::create(classifierXmlPath);
|
||||
);
|
||||
|
||||
ASSERT_FALSE(d_cascade.empty());
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(CUDA_ObjDetect, LBP_Read_classifier,
|
||||
@ -329,29 +335,28 @@ CUDA_TEST_P(LBP_classify, Accuracy)
|
||||
for (; it != rects.end(); ++it)
|
||||
cv::rectangle(markedImage, *it, cv::Scalar(255, 0, 0));
|
||||
|
||||
cv::cuda::CascadeClassifier_CUDA gpuClassifier;
|
||||
ASSERT_TRUE(gpuClassifier.load(classifierXmlPath));
|
||||
cv::Ptr<cv::cuda::CascadeClassifier> gpuClassifier =
|
||||
cv::cuda::CascadeClassifier::create(classifierXmlPath);
|
||||
|
||||
cv::cuda::GpuMat gpu_rects;
|
||||
cv::cuda::GpuMat tested(grey);
|
||||
int count = gpuClassifier.detectMultiScale(tested, gpu_rects);
|
||||
cv::cuda::GpuMat gpu_rects_buf;
|
||||
gpuClassifier->detectMultiScale(tested, gpu_rects_buf);
|
||||
|
||||
std::vector<cv::Rect> gpu_rects;
|
||||
gpuClassifier->convert(gpu_rects_buf, gpu_rects);
|
||||
|
||||
#if defined (LOG_CASCADE_STATISTIC)
|
||||
cv::Mat downloaded(gpu_rects);
|
||||
const cv::Rect* faces = downloaded.ptr<cv::Rect>();
|
||||
for (int i = 0; i < count; i++)
|
||||
for (size_t i = 0; i < gpu_rects.size(); i++)
|
||||
{
|
||||
cv::Rect r = faces[i];
|
||||
cv::Rect r = gpu_rects[i];
|
||||
|
||||
std::cout << r.x << " " << r.y << " " << r.width << " " << r.height << std::endl;
|
||||
cv::rectangle(markedImage, r , CV_RGB(255, 0, 0));
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined (LOG_CASCADE_STATISTIC)
|
||||
cv::imshow("Res", markedImage); cv::waitKey();
|
||||
cv::imshow("Res", markedImage);
|
||||
cv::waitKey();
|
||||
#endif
|
||||
(void)count;
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(CUDA_ObjDetect, LBP_classify,
|
||||
|
@ -173,13 +173,9 @@ int main(int argc, const char *argv[])
|
||||
}
|
||||
}
|
||||
|
||||
CascadeClassifier_CUDA cascade_gpu;
|
||||
if (!cascade_gpu.load(cascadeName))
|
||||
{
|
||||
return cerr << "ERROR: Could not load cascade classifier \"" << cascadeName << "\"" << endl, help(), -1;
|
||||
}
|
||||
Ptr<cuda::CascadeClassifier> cascade_gpu = cuda::CascadeClassifier::create(cascadeName);
|
||||
|
||||
CascadeClassifier cascade_cpu;
|
||||
cv::CascadeClassifier cascade_cpu;
|
||||
if (!cascade_cpu.load(cascadeName))
|
||||
{
|
||||
return cerr << "ERROR: Could not load cascade classifier \"" << cascadeName << "\"" << endl, help(), -1;
|
||||
@ -206,8 +202,8 @@ int main(int argc, const char *argv[])
|
||||
|
||||
namedWindow("result", 1);
|
||||
|
||||
Mat frame, frame_cpu, gray_cpu, resized_cpu, faces_downloaded, frameDisp;
|
||||
vector<Rect> facesBuf_cpu;
|
||||
Mat frame, frame_cpu, gray_cpu, resized_cpu, frameDisp;
|
||||
vector<Rect> faces;
|
||||
|
||||
GpuMat frame_gpu, gray_gpu, resized_gpu, facesBuf_gpu;
|
||||
|
||||
@ -218,7 +214,6 @@ int main(int argc, const char *argv[])
|
||||
bool filterRects = true;
|
||||
bool helpScreen = false;
|
||||
|
||||
int detections_num;
|
||||
for (;;)
|
||||
{
|
||||
if (isInputCamera || isInputVideo)
|
||||
@ -241,40 +236,26 @@ int main(int argc, const char *argv[])
|
||||
|
||||
if (useGPU)
|
||||
{
|
||||
//cascade_gpu.visualizeInPlace = true;
|
||||
cascade_gpu.findLargestObject = findLargestObject;
|
||||
cascade_gpu->setFindLargestObject(findLargestObject);
|
||||
cascade_gpu->setScaleFactor(1.2);
|
||||
cascade_gpu->setMinNeighbors((filterRects || findLargestObject) ? 4 : 0);
|
||||
|
||||
detections_num = cascade_gpu.detectMultiScale(resized_gpu, facesBuf_gpu, 1.2,
|
||||
(filterRects || findLargestObject) ? 4 : 0);
|
||||
facesBuf_gpu.colRange(0, detections_num).download(faces_downloaded);
|
||||
cascade_gpu->detectMultiScale(resized_gpu, facesBuf_gpu);
|
||||
cascade_gpu->convert(facesBuf_gpu, faces);
|
||||
}
|
||||
else
|
||||
{
|
||||
Size minSize = cascade_gpu.getClassifierSize();
|
||||
cascade_cpu.detectMultiScale(resized_cpu, facesBuf_cpu, 1.2,
|
||||
Size minSize = cascade_gpu->getClassifierSize();
|
||||
cascade_cpu.detectMultiScale(resized_cpu, faces, 1.2,
|
||||
(filterRects || findLargestObject) ? 4 : 0,
|
||||
(findLargestObject ? CASCADE_FIND_BIGGEST_OBJECT : 0)
|
||||
| CASCADE_SCALE_IMAGE,
|
||||
minSize);
|
||||
detections_num = (int)facesBuf_cpu.size();
|
||||
}
|
||||
|
||||
if (!useGPU && detections_num)
|
||||
for (size_t i = 0; i < faces.size(); ++i)
|
||||
{
|
||||
for (int i = 0; i < detections_num; ++i)
|
||||
{
|
||||
rectangle(resized_cpu, facesBuf_cpu[i], Scalar(255));
|
||||
}
|
||||
}
|
||||
|
||||
if (useGPU)
|
||||
{
|
||||
resized_gpu.download(resized_cpu);
|
||||
|
||||
for (int i = 0; i < detections_num; ++i)
|
||||
{
|
||||
rectangle(resized_cpu, faces_downloaded.ptr<cv::Rect>()[i], Scalar(255));
|
||||
}
|
||||
rectangle(resized_cpu, faces[i], Scalar(255));
|
||||
}
|
||||
|
||||
tm.stop();
|
||||
@ -283,16 +264,15 @@ int main(int argc, const char *argv[])
|
||||
|
||||
//print detections to console
|
||||
cout << setfill(' ') << setprecision(2);
|
||||
cout << setw(6) << fixed << fps << " FPS, " << detections_num << " det";
|
||||
if ((filterRects || findLargestObject) && detections_num > 0)
|
||||
cout << setw(6) << fixed << fps << " FPS, " << faces.size() << " det";
|
||||
if ((filterRects || findLargestObject) && !faces.empty())
|
||||
{
|
||||
Rect *faceRects = useGPU ? faces_downloaded.ptr<Rect>() : &facesBuf_cpu[0];
|
||||
for (int i = 0; i < min(detections_num, 2); ++i)
|
||||
for (size_t i = 0; i < faces.size(); ++i)
|
||||
{
|
||||
cout << ", [" << setw(4) << faceRects[i].x
|
||||
<< ", " << setw(4) << faceRects[i].y
|
||||
<< ", " << setw(4) << faceRects[i].width
|
||||
<< ", " << setw(4) << faceRects[i].height << "]";
|
||||
cout << ", [" << setw(4) << faces[i].x
|
||||
<< ", " << setw(4) << faces[i].y
|
||||
<< ", " << setw(4) << faces[i].width
|
||||
<< ", " << setw(4) << faces[i].height << "]";
|
||||
}
|
||||
}
|
||||
cout << endl;
|
||||
|
Loading…
Reference in New Issue
Block a user