mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 19:20:28 +08:00
Fixed tabs in whitespace.
This commit is contained in:
parent
12dcb1555e
commit
7376c5311b
@ -23,13 +23,11 @@ The following code will produce an iterator for a GpuMat
|
||||
@snippet samples/cpp/tutorial_code/gpu/gpu-thrust-interop/Thrust_interop.hpp begin_itr
|
||||
@snippet samples/cpp/tutorial_code/gpu/gpu-thrust-interop/Thrust_interop.hpp end_itr
|
||||
|
||||
Our goal is to have an iterator that will start at the beginning of the matrix, and increment correctly to access continuous matrix elements. This is trivial for a continuous row, but how about for a column
|
||||
of a pitched matrix? To do this we need the iterator to be aware of the matrix dimensions and step. This information is embedded in the step_functor.
|
||||
Our goal is to have an iterator that will start at the beginning of the matrix, and increment correctly to access continuous matrix elements. This is trivial for a continuous row, but how about for a column of a pitched matrix? To do this we need the iterator to be aware of the matrix dimensions and step. This information is embedded in the step_functor.
|
||||
@snippet samples/cpp/tutorial_code/gpu/gpu-thrust-interop/Thrust_interop.hpp step_functor
|
||||
The step functor takes in an index value and returns the appropriate
|
||||
offset from the beginning of the matrix. The counting iterator simply increments over the range of pixel elements. Combined into the transform_iterator we have an iterator that counts from 0 to M*N and correctly
|
||||
increments to account for the pitched memory of a GpuMat. Unfortunately this does not include any memory location information, for that we need a thrust::device_ptr. By combining a device pointer with the
|
||||
transform_iterator we can point thrust to the first element of our matrix and have it step accordingly.
|
||||
increments to account for the pitched memory of a GpuMat. Unfortunately this does not include any memory location information, for that we need a thrust::device_ptr. By combining a device pointer with the transform_iterator we can point thrust to the first element of our matrix and have it step accordingly.
|
||||
|
||||
Fill a GpuMat with random numbers
|
||||
----
|
||||
@ -47,13 +45,12 @@ Now we will populate our matrix with values between 0 and 10 with a thrust trans
|
||||
Sort a column of a GpuMat in place
|
||||
----
|
||||
|
||||
Lets fill matrix elements with random values and an index. Afterwards we will sort the random numbers and the indecies.
|
||||
Lets fill matrix elements with random values and an index. Afterwards we will sort the random numbers and the indecies.
|
||||
@snippet samples/cpp/tutorial_code/gpu/gpu-thrust-interop/main.cu sort
|
||||
|
||||
Copy values greater than 0 to a new gpu matrix while using streams
|
||||
----
|
||||
In this example we're going to see how cv::cuda::Streams can be used with thrust. Unfortunately this specific example uses functions that must return
|
||||
results to the CPU so it isn't the optimal use of streams.
|
||||
In this example we're going to see how cv::cuda::Streams can be used with thrust. Unfortunately this specific example uses functions that must return results to the CPU so it isn't the optimal use of streams.
|
||||
|
||||
@snippet samples/cpp/tutorial_code/gpu/gpu-thrust-interop/main.cu copy_greater
|
||||
|
||||
|
@ -7,63 +7,63 @@
|
||||
#include <thrust/device_ptr.h>
|
||||
|
||||
/*
|
||||
@Brief step_functor is an object to correctly step a thrust iterator according to the stride of a matrix
|
||||
@Brief step_functor is an object to correctly step a thrust iterator according to the stride of a matrix
|
||||
*/
|
||||
//! [step_functor]
|
||||
template<typename T> struct step_functor : public thrust::unary_function<int, int>
|
||||
{
|
||||
int columns;
|
||||
int step;
|
||||
int channels;
|
||||
__host__ __device__ step_functor(int columns_, int step_, int channels_ = 1) : columns(columns_), step(step_), channels(channels_) { };
|
||||
__host__ step_functor(cv::cuda::GpuMat& mat)
|
||||
{
|
||||
CV_Assert(mat.depth() == cv::DataType<T>::depth);
|
||||
columns = mat.cols;
|
||||
step = mat.step / sizeof(T);
|
||||
channels = mat.channels();
|
||||
}
|
||||
__host__ __device__
|
||||
int operator()(int x) const
|
||||
{
|
||||
int row = x / columns;
|
||||
int idx = (row * step) + (x % columns)*channels;
|
||||
return idx;
|
||||
}
|
||||
int columns;
|
||||
int step;
|
||||
int channels;
|
||||
__host__ __device__ step_functor(int columns_, int step_, int channels_ = 1) : columns(columns_), step(step_), channels(channels_) { };
|
||||
__host__ step_functor(cv::cuda::GpuMat& mat)
|
||||
{
|
||||
CV_Assert(mat.depth() == cv::DataType<T>::depth);
|
||||
columns = mat.cols;
|
||||
step = mat.step / sizeof(T);
|
||||
channels = mat.channels();
|
||||
}
|
||||
__host__ __device__
|
||||
int operator()(int x) const
|
||||
{
|
||||
int row = x / columns;
|
||||
int idx = (row * step) + (x % columns)*channels;
|
||||
return idx;
|
||||
}
|
||||
};
|
||||
//! [step_functor]
|
||||
//! [begin_itr]
|
||||
/*
|
||||
@Brief GpuMatBeginItr returns a thrust compatible iterator to the beginning of a GPU mat's memory.
|
||||
@Param mat is the input matrix
|
||||
@Param channel is the channel of the matrix that the iterator is accessing. If set to -1, the iterator will access every element in sequential order
|
||||
@Brief GpuMatBeginItr returns a thrust compatible iterator to the beginning of a GPU mat's memory.
|
||||
@Param mat is the input matrix
|
||||
@Param channel is the channel of the matrix that the iterator is accessing. If set to -1, the iterator will access every element in sequential order
|
||||
*/
|
||||
template<typename T>
|
||||
thrust::permutation_iterator<thrust::device_ptr<T>, thrust::transform_iterator<step_functor<T>, thrust::counting_iterator<int>>> GpuMatBeginItr(cv::cuda::GpuMat mat, int channel = 0)
|
||||
{
|
||||
if (channel == -1)
|
||||
mat = mat.reshape(1);
|
||||
CV_Assert(mat.depth() == cv::DataType<T>::depth);
|
||||
CV_Assert(channel < mat.channels());
|
||||
return thrust::make_permutation_iterator(thrust::device_pointer_cast(mat.ptr<T>(0) + channel),
|
||||
thrust::make_transform_iterator(thrust::make_counting_iterator(0), step_functor<T>(mat.cols, mat.step / sizeof(T), mat.channels())));
|
||||
if (channel == -1)
|
||||
mat = mat.reshape(1);
|
||||
CV_Assert(mat.depth() == cv::DataType<T>::depth);
|
||||
CV_Assert(channel < mat.channels());
|
||||
return thrust::make_permutation_iterator(thrust::device_pointer_cast(mat.ptr<T>(0) + channel),
|
||||
thrust::make_transform_iterator(thrust::make_counting_iterator(0), step_functor<T>(mat.cols, mat.step / sizeof(T), mat.channels())));
|
||||
}
|
||||
//! [begin_itr]
|
||||
//! [end_itr]
|
||||
/*
|
||||
@Brief GpuMatEndItr returns a thrust compatible iterator to the end of a GPU mat's memory.
|
||||
@Param mat is the input matrix
|
||||
@Param channel is the channel of the matrix that the iterator is accessing. If set to -1, the iterator will access every element in sequential order
|
||||
@Brief GpuMatEndItr returns a thrust compatible iterator to the end of a GPU mat's memory.
|
||||
@Param mat is the input matrix
|
||||
@Param channel is the channel of the matrix that the iterator is accessing. If set to -1, the iterator will access every element in sequential order
|
||||
*/
|
||||
template<typename T>
|
||||
thrust::permutation_iterator<thrust::device_ptr<T>, thrust::transform_iterator<step_functor<T>, thrust::counting_iterator<int>>> GpuMatEndItr(cv::cuda::GpuMat mat, int channel = 0)
|
||||
{
|
||||
if (channel == -1)
|
||||
mat = mat.reshape(1);
|
||||
CV_Assert(mat.depth() == cv::DataType<T>::depth);
|
||||
CV_Assert(channel < mat.channels());
|
||||
return thrust::make_permutation_iterator(thrust::device_pointer_cast(mat.ptr<T>(0) + channel),
|
||||
thrust::make_transform_iterator(thrust::make_counting_iterator(mat.rows*mat.cols), step_functor<T>(mat.cols, mat.step / sizeof(T), mat.channels())));
|
||||
if (channel == -1)
|
||||
mat = mat.reshape(1);
|
||||
CV_Assert(mat.depth() == cv::DataType<T>::depth);
|
||||
CV_Assert(channel < mat.channels());
|
||||
return thrust::make_permutation_iterator(thrust::device_pointer_cast(mat.ptr<T>(0) + channel),
|
||||
thrust::make_transform_iterator(thrust::make_counting_iterator(mat.rows*mat.cols), step_functor<T>(mat.cols, mat.step / sizeof(T), mat.channels())));
|
||||
}
|
||||
//! [end_itr]
|
||||
|
||||
|
@ -8,20 +8,19 @@
|
||||
//! [prg]
|
||||
struct prg
|
||||
{
|
||||
float a, b;
|
||||
float a, b;
|
||||
|
||||
__host__ __device__
|
||||
prg(float _a = 0.f, float _b = 1.f) : a(_a), b(_b) {};
|
||||
__host__ __device__
|
||||
prg(float _a = 0.f, float _b = 1.f) : a(_a), b(_b) {};
|
||||
|
||||
__host__ __device__
|
||||
float operator()(const unsigned int n) const
|
||||
{
|
||||
thrust::default_random_engine rng;
|
||||
thrust::uniform_real_distribution<float> dist(a, b);
|
||||
rng.discard(n);
|
||||
|
||||
return dist(rng);
|
||||
}
|
||||
__host__ __device__
|
||||
float operator()(const unsigned int n) const
|
||||
{
|
||||
thrust::default_random_engine rng;
|
||||
thrust::uniform_real_distribution<float> dist(a, b);
|
||||
rng.discard(n);
|
||||
return dist(rng);
|
||||
}
|
||||
};
|
||||
//! [prg]
|
||||
|
||||
@ -29,83 +28,83 @@ struct prg
|
||||
//! [pred_greater]
|
||||
template<typename T> struct pred_greater
|
||||
{
|
||||
T value;
|
||||
__host__ __device__ pred_greater(T value_) : value(value_){}
|
||||
__host__ __device__ bool operator()(const T& val) const
|
||||
{
|
||||
return val > value;
|
||||
}
|
||||
T value;
|
||||
__host__ __device__ pred_greater(T value_) : value(value_){}
|
||||
__host__ __device__ bool operator()(const T& val) const
|
||||
{
|
||||
return val > value;
|
||||
}
|
||||
};
|
||||
//! [pred_greater]
|
||||
|
||||
|
||||
int main(void)
|
||||
{
|
||||
// Generate a 2 channel row matrix with 100 elements. Set the first channel to be the element index, and the second to be a randomly
|
||||
// generated value. Sort by the randomly generated value while maintaining index association.
|
||||
//! [sort]
|
||||
{
|
||||
cv::cuda::GpuMat d_data(1, 100, CV_32SC2);
|
||||
// Thrust compatible begin and end iterators to channel 1 of this matrix
|
||||
auto keyBegin = GpuMatBeginItr<int>(d_data, 1);
|
||||
auto keyEnd = GpuMatEndItr<int>(d_data, 1);
|
||||
// Thrust compatible begin and end iterators to channel 0 of this matrix
|
||||
auto idxBegin = GpuMatBeginItr<int>(d_data, 0);
|
||||
auto idxEnd = GpuMatEndItr<int>(d_data, 0);
|
||||
// Fill the index channel with a sequence of numbers from 0 to 100
|
||||
thrust::sequence(idxBegin, idxEnd);
|
||||
// Fill the key channel with random numbers between 0 and 10. A counting iterator is used here to give an integer value for each location as an input to prg::operator()
|
||||
thrust::transform(thrust::make_counting_iterator(0), thrust::make_counting_iterator(d_data.cols), keyBegin, prg(0, 10));
|
||||
// Sort the key channel and index channel such that the keys and indecies stay together
|
||||
thrust::sort_by_key(keyBegin, keyEnd, idxBegin);
|
||||
// Generate a 2 channel row matrix with 100 elements. Set the first channel to be the element index, and the second to be a randomly
|
||||
// generated value. Sort by the randomly generated value while maintaining index association.
|
||||
//! [sort]
|
||||
{
|
||||
cv::cuda::GpuMat d_data(1, 100, CV_32SC2);
|
||||
// Thrust compatible begin and end iterators to channel 1 of this matrix
|
||||
auto keyBegin = GpuMatBeginItr<int>(d_data, 1);
|
||||
auto keyEnd = GpuMatEndItr<int>(d_data, 1);
|
||||
// Thrust compatible begin and end iterators to channel 0 of this matrix
|
||||
auto idxBegin = GpuMatBeginItr<int>(d_data, 0);
|
||||
auto idxEnd = GpuMatEndItr<int>(d_data, 0);
|
||||
// Fill the index channel with a sequence of numbers from 0 to 100
|
||||
thrust::sequence(idxBegin, idxEnd);
|
||||
// Fill the key channel with random numbers between 0 and 10. A counting iterator is used here to give an integer value for each location as an input to prg::operator()
|
||||
thrust::transform(thrust::make_counting_iterator(0), thrust::make_counting_iterator(d_data.cols), keyBegin, prg(0, 10));
|
||||
// Sort the key channel and index channel such that the keys and indecies stay together
|
||||
thrust::sort_by_key(keyBegin, keyEnd, idxBegin);
|
||||
|
||||
cv::Mat h_idx(d_data);
|
||||
}
|
||||
//! [sort]
|
||||
cv::Mat h_idx(d_data);
|
||||
}
|
||||
//! [sort]
|
||||
|
||||
// Randomly fill a row matrix with 100 elements between -1 and 1
|
||||
//! [random]
|
||||
{
|
||||
cv::cuda::GpuMat d_value(1, 100, CV_32F);
|
||||
auto valueBegin = GpuMatBeginItr<float>(d_value);
|
||||
auto valueEnd = GpuMatEndItr<float>(d_value);
|
||||
thrust::transform(thrust::make_counting_iterator(0), thrust::make_counting_iterator(d_value.cols), valueBegin, prg(-1, 1));
|
||||
// Randomly fill a row matrix with 100 elements between -1 and 1
|
||||
//! [random]
|
||||
{
|
||||
cv::cuda::GpuMat d_value(1, 100, CV_32F);
|
||||
auto valueBegin = GpuMatBeginItr<float>(d_value);
|
||||
auto valueEnd = GpuMatEndItr<float>(d_value);
|
||||
thrust::transform(thrust::make_counting_iterator(0), thrust::make_counting_iterator(d_value.cols), valueBegin, prg(-1, 1));
|
||||
|
||||
cv::Mat h_value(d_value);
|
||||
}
|
||||
//! [random]
|
||||
cv::Mat h_value(d_value);
|
||||
}
|
||||
//! [random]
|
||||
|
||||
// OpenCV has count non zero, but what if you want to count a specific value?
|
||||
//! [count_value]
|
||||
{
|
||||
cv::cuda::GpuMat d_value(1, 100, CV_32S);
|
||||
d_value.setTo(cv::Scalar(0));
|
||||
d_value.colRange(10, 50).setTo(cv::Scalar(15));
|
||||
auto count = thrust::count(GpuMatBeginItr<int>(d_value), GpuMatEndItr<int>(d_value), 15);
|
||||
std::cout << count << std::endl;
|
||||
}
|
||||
//! [count_value]
|
||||
// OpenCV has count non zero, but what if you want to count a specific value?
|
||||
//! [count_value]
|
||||
{
|
||||
cv::cuda::GpuMat d_value(1, 100, CV_32S);
|
||||
d_value.setTo(cv::Scalar(0));
|
||||
d_value.colRange(10, 50).setTo(cv::Scalar(15));
|
||||
auto count = thrust::count(GpuMatBeginItr<int>(d_value), GpuMatEndItr<int>(d_value), 15);
|
||||
std::cout << count << std::endl;
|
||||
}
|
||||
//! [count_value]
|
||||
|
||||
// Randomly fill an array then copy only values greater than 0. Perform these tasks on a stream.
|
||||
//! [copy_greater]
|
||||
{
|
||||
cv::cuda::GpuMat d_value(1, 100, CV_32F);
|
||||
auto valueBegin = GpuMatBeginItr<float>(d_value);
|
||||
auto valueEnd = GpuMatEndItr<float>(d_value);
|
||||
cv::cuda::Stream stream;
|
||||
//! [random_gen_stream]
|
||||
// Same as the random generation code from before except now the transformation is being performed on a stream
|
||||
thrust::transform(thrust::system::cuda::par.on(cv::cuda::StreamAccessor::getStream(stream)), thrust::make_counting_iterator(0), thrust::make_counting_iterator(d_value.cols), valueBegin, prg(-1, 1));
|
||||
//! [random_gen_stream]
|
||||
// Count the number of values we are going to copy
|
||||
int count = thrust::count_if(thrust::system::cuda::par.on(cv::cuda::StreamAccessor::getStream(stream)), valueBegin, valueEnd, pred_greater<float>(0.0));
|
||||
// Allocate a destination for copied values
|
||||
cv::cuda::GpuMat d_valueGreater(1, count, CV_32F);
|
||||
// Copy values that satisfy the predicate.
|
||||
thrust::copy_if(thrust::system::cuda::par.on(cv::cuda::StreamAccessor::getStream(stream)), valueBegin, valueEnd, GpuMatBeginItr<float>(d_valueGreater), pred_greater<float>(0.0));
|
||||
cv::Mat h_greater(d_valueGreater);
|
||||
}
|
||||
//! [copy_greater]
|
||||
|
||||
return 0;
|
||||
// Randomly fill an array then copy only values greater than 0. Perform these tasks on a stream.
|
||||
//! [copy_greater]
|
||||
{
|
||||
cv::cuda::GpuMat d_value(1, 100, CV_32F);
|
||||
auto valueBegin = GpuMatBeginItr<float>(d_value);
|
||||
auto valueEnd = GpuMatEndItr<float>(d_value);
|
||||
cv::cuda::Stream stream;
|
||||
//! [random_gen_stream]
|
||||
// Same as the random generation code from before except now the transformation is being performed on a stream
|
||||
thrust::transform(thrust::system::cuda::par.on(cv::cuda::StreamAccessor::getStream(stream)), thrust::make_counting_iterator(0), thrust::make_counting_iterator(d_value.cols), valueBegin, prg(-1, 1));
|
||||
//! [random_gen_stream]
|
||||
// Count the number of values we are going to copy
|
||||
int count = thrust::count_if(thrust::system::cuda::par.on(cv::cuda::StreamAccessor::getStream(stream)), valueBegin, valueEnd, pred_greater<float>(0.0));
|
||||
// Allocate a destination for copied values
|
||||
cv::cuda::GpuMat d_valueGreater(1, count, CV_32F);
|
||||
// Copy values that satisfy the predicate.
|
||||
thrust::copy_if(thrust::system::cuda::par.on(cv::cuda::StreamAccessor::getStream(stream)), valueBegin, valueEnd, GpuMatBeginItr<float>(d_valueGreater), pred_greater<float>(0.0));
|
||||
cv::Mat h_greater(d_valueGreater);
|
||||
}
|
||||
//! [copy_greater]
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user