mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
Added some documentation for MSER
This commit is contained in:
parent
b3ac274617
commit
7392ce0a81
@ -848,3 +848,19 @@
|
||||
year={2007},
|
||||
publisher={Springer}
|
||||
}
|
||||
@incollection{nister2008linear,
|
||||
title={Linear time maximally stable extremal regions},
|
||||
author={Nist{\'e}r, David and Stew{\'e}nius, Henrik},
|
||||
booktitle={Computer Vision--ECCV 2008},
|
||||
pages={183--196},
|
||||
year={2008},
|
||||
publisher={Springer}
|
||||
}
|
||||
@inproceedings{forssen2007maximally,
|
||||
title={Maximally stable colour regions for recognition and matching},
|
||||
author={Forss{\'e}n, Per-Erik},
|
||||
booktitle={Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on},
|
||||
pages={1--8},
|
||||
year={2007},
|
||||
organization={IEEE}
|
||||
}
|
||||
|
@ -317,25 +317,48 @@ public:
|
||||
CV_WRAP virtual int getFastThreshold() const = 0;
|
||||
};
|
||||
|
||||
/** @brief Maximally stable extremal region extractor. :
|
||||
/** @brief Maximally stable extremal region extractor
|
||||
|
||||
The class encapsulates all the parameters of the MSER extraction algorithm (see
|
||||
<http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions>). Also see
|
||||
<http://code.opencv.org/projects/opencv/wiki/MSER> for useful comments and parameters description.
|
||||
The class encapsulates all the parameters of the %MSER extraction algorithm (see [wiki
|
||||
article](http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions)).
|
||||
|
||||
@note
|
||||
- (Python) A complete example showing the use of the MSER detector can be found at
|
||||
opencv_source_code/samples/python2/mser.py
|
||||
*/
|
||||
- there are two different implementation of %MSER: one for grey image, one for color image
|
||||
|
||||
- the grey image algorithm is taken from: @cite nister2008linear ; the paper claims to be faster
|
||||
than union-find method; it actually get 1.5~2m/s on my centrino L7200 1.2GHz laptop.
|
||||
|
||||
- the color image algorithm is taken from: @cite forssen2007maximally ; it should be much slower
|
||||
than grey image method ( 3~4 times ); the chi_table.h file is taken directly from paper's source
|
||||
code which is distributed under GPL.
|
||||
|
||||
- (Python) A complete example showing the use of the %MSER detector can be found at samples/python2/mser.py
|
||||
*/
|
||||
class CV_EXPORTS_W MSER : public Feature2D
|
||||
{
|
||||
public:
|
||||
//! the full constructor
|
||||
/** @brief Full consturctor for %MSER detector
|
||||
|
||||
@param _delta it compares \f$(size_{i}-size_{i-delta})/size_{i-delta}\f$
|
||||
@param _min_area prune the area which smaller than minArea
|
||||
@param _max_area prune the area which bigger than maxArea
|
||||
@param _max_variation prune the area have simliar size to its children
|
||||
@param _min_diversity for color image, trace back to cut off mser with diversity less than min_diversity
|
||||
@param _max_evolution for color image, the evolution steps
|
||||
@param _area_threshold for color image, the area threshold to cause re-initialize
|
||||
@param _min_margin for color image, ignore too small margin
|
||||
@param _edge_blur_size for color image, the aperture size for edge blur
|
||||
*/
|
||||
CV_WRAP static Ptr<MSER> create( int _delta=5, int _min_area=60, int _max_area=14400,
|
||||
double _max_variation=0.25, double _min_diversity=.2,
|
||||
int _max_evolution=200, double _area_threshold=1.01,
|
||||
double _min_margin=0.003, int _edge_blur_size=5 );
|
||||
|
||||
/** @brief Detect %MSER regions
|
||||
|
||||
@param image input image (8UC1, 8UC3 or 8UC4)
|
||||
@param msers resulting list of point sets
|
||||
@param bboxes resulting bounding boxes
|
||||
*/
|
||||
CV_WRAP virtual void detectRegions( InputArray image,
|
||||
CV_OUT std::vector<std::vector<Point> >& msers,
|
||||
std::vector<Rect>& bboxes ) = 0;
|
||||
|
Loading…
Reference in New Issue
Block a user