Added some documentation for MSER

This commit is contained in:
Maksim Shabunin 2015-11-05 17:17:18 +03:00
parent b3ac274617
commit 7392ce0a81
2 changed files with 48 additions and 9 deletions

View File

@ -848,3 +848,19 @@
year={2007},
publisher={Springer}
}
@incollection{nister2008linear,
title={Linear time maximally stable extremal regions},
author={Nist{\'e}r, David and Stew{\'e}nius, Henrik},
booktitle={Computer Vision--ECCV 2008},
pages={183--196},
year={2008},
publisher={Springer}
}
@inproceedings{forssen2007maximally,
title={Maximally stable colour regions for recognition and matching},
author={Forss{\'e}n, Per-Erik},
booktitle={Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on},
pages={1--8},
year={2007},
organization={IEEE}
}

View File

@ -317,25 +317,48 @@ public:
CV_WRAP virtual int getFastThreshold() const = 0;
};
/** @brief Maximally stable extremal region extractor. :
/** @brief Maximally stable extremal region extractor
The class encapsulates all the parameters of the MSER extraction algorithm (see
<http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions>). Also see
<http://code.opencv.org/projects/opencv/wiki/MSER> for useful comments and parameters description.
The class encapsulates all the parameters of the %MSER extraction algorithm (see [wiki
article](http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions)).
@note
- (Python) A complete example showing the use of the MSER detector can be found at
opencv_source_code/samples/python2/mser.py
*/
- there are two different implementation of %MSER: one for grey image, one for color image
- the grey image algorithm is taken from: @cite nister2008linear ; the paper claims to be faster
than union-find method; it actually get 1.5~2m/s on my centrino L7200 1.2GHz laptop.
- the color image algorithm is taken from: @cite forssen2007maximally ; it should be much slower
than grey image method ( 3~4 times ); the chi_table.h file is taken directly from paper's source
code which is distributed under GPL.
- (Python) A complete example showing the use of the %MSER detector can be found at samples/python2/mser.py
*/
class CV_EXPORTS_W MSER : public Feature2D
{
public:
//! the full constructor
/** @brief Full consturctor for %MSER detector
@param _delta it compares \f$(size_{i}-size_{i-delta})/size_{i-delta}\f$
@param _min_area prune the area which smaller than minArea
@param _max_area prune the area which bigger than maxArea
@param _max_variation prune the area have simliar size to its children
@param _min_diversity for color image, trace back to cut off mser with diversity less than min_diversity
@param _max_evolution for color image, the evolution steps
@param _area_threshold for color image, the area threshold to cause re-initialize
@param _min_margin for color image, ignore too small margin
@param _edge_blur_size for color image, the aperture size for edge blur
*/
CV_WRAP static Ptr<MSER> create( int _delta=5, int _min_area=60, int _max_area=14400,
double _max_variation=0.25, double _min_diversity=.2,
int _max_evolution=200, double _area_threshold=1.01,
double _min_margin=0.003, int _edge_blur_size=5 );
/** @brief Detect %MSER regions
@param image input image (8UC1, 8UC3 or 8UC4)
@param msers resulting list of point sets
@param bboxes resulting bounding boxes
*/
CV_WRAP virtual void detectRegions( InputArray image,
CV_OUT std::vector<std::vector<Point> >& msers,
std::vector<Rect>& bboxes ) = 0;