mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 11:10:21 +08:00
Merge pull request #6956 from mshabunin:fix-chessboard-bug
This commit is contained in:
commit
73e1d64ae0
File diff suppressed because it is too large
Load Diff
@ -46,28 +46,26 @@
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
|
||||
//#define DEBUG_WINDOWS
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
#if defined(DEBUG_WINDOWS)
|
||||
# include "opencv2/opencv_modules.hpp"
|
||||
# ifdef HAVE_OPENCV_HIGHGUI
|
||||
# include "opencv2/highgui.hpp"
|
||||
# else
|
||||
# undef DEBUG_WINDOWS
|
||||
# endif
|
||||
#endif
|
||||
|
||||
int cvCheckChessboardBinary(IplImage* src, CvSize size);
|
||||
|
||||
static void icvGetQuadrangleHypotheses(CvSeq* contours, std::vector<std::pair<float, int> >& quads, int class_id)
|
||||
static void icvGetQuadrangleHypotheses(const std::vector<std::vector< cv::Point > > & contours, const std::vector< cv::Vec4i > & hierarchy, std::vector<std::pair<float, int> >& quads, int class_id)
|
||||
{
|
||||
const float min_aspect_ratio = 0.3f;
|
||||
const float max_aspect_ratio = 3.0f;
|
||||
const float min_box_size = 10.0f;
|
||||
|
||||
for(CvSeq* seq = contours; seq != NULL; seq = seq->h_next)
|
||||
typedef std::vector< std::vector< cv::Point > >::const_iterator iter_t;
|
||||
iter_t i;
|
||||
for (i = contours.begin(); i != contours.end(); ++i)
|
||||
{
|
||||
CvBox2D box = cvMinAreaRect2(seq);
|
||||
const iter_t::difference_type idx = i - contours.begin();
|
||||
if (hierarchy.at(idx)[3] != -1)
|
||||
continue; // skip holes
|
||||
|
||||
const std::vector< cv::Point > & c = *i;
|
||||
cv::RotatedRect box = cv::minAreaRect(c);
|
||||
|
||||
float box_size = MAX(box.size.width, box.size.height);
|
||||
if(box_size < min_box_size)
|
||||
{
|
||||
@ -98,6 +96,64 @@ inline bool less_pred(const std::pair<float, int>& p1, const std::pair<float, in
|
||||
return p1.first < p2.first;
|
||||
}
|
||||
|
||||
static void fillQuads(Mat & white, Mat & black, double white_thresh, double black_thresh, vector<pair<float, int> > & quads)
|
||||
{
|
||||
Mat thresh;
|
||||
{
|
||||
vector< vector<Point> > contours;
|
||||
vector< Vec4i > hierarchy;
|
||||
threshold(white, thresh, white_thresh, 255, THRESH_BINARY);
|
||||
findContours(thresh, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);
|
||||
icvGetQuadrangleHypotheses(contours, hierarchy, quads, 1);
|
||||
}
|
||||
|
||||
{
|
||||
vector< vector<Point> > contours;
|
||||
vector< Vec4i > hierarchy;
|
||||
threshold(black, thresh, black_thresh, 255, THRESH_BINARY_INV);
|
||||
findContours(thresh, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);
|
||||
icvGetQuadrangleHypotheses(contours, hierarchy, quads, 0);
|
||||
}
|
||||
}
|
||||
|
||||
static bool checkQuads(vector<pair<float, int> > & quads, const cv::Size & size)
|
||||
{
|
||||
const size_t min_quads_count = size.width*size.height/2;
|
||||
std::sort(quads.begin(), quads.end(), less_pred);
|
||||
|
||||
// now check if there are many hypotheses with similar sizes
|
||||
// do this by floodfill-style algorithm
|
||||
const float size_rel_dev = 0.4f;
|
||||
|
||||
for(size_t i = 0; i < quads.size(); i++)
|
||||
{
|
||||
size_t j = i + 1;
|
||||
for(; j < quads.size(); j++)
|
||||
{
|
||||
if(quads[j].first/quads[i].first > 1.0f + size_rel_dev)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if(j + 1 > min_quads_count + i)
|
||||
{
|
||||
// check the number of black and white squares
|
||||
std::vector<int> counts;
|
||||
countClasses(quads, i, j, counts);
|
||||
const int black_count = cvRound(ceil(size.width/2.0)*ceil(size.height/2.0));
|
||||
const int white_count = cvRound(floor(size.width/2.0)*floor(size.height/2.0));
|
||||
if(counts[0] < black_count*0.75 ||
|
||||
counts[1] < white_count*0.75)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// does a fast check if a chessboard is in the input image. This is a workaround to
|
||||
// a problem of cvFindChessboardCorners being slow on images with no chessboard
|
||||
// - src: input image
|
||||
@ -106,105 +162,32 @@ inline bool less_pred(const std::pair<float, int>& p1, const std::pair<float, in
|
||||
// 0 if there is no chessboard, -1 in case of error
|
||||
int cvCheckChessboard(IplImage* src, CvSize size)
|
||||
{
|
||||
if(src->nChannels > 1)
|
||||
{
|
||||
cvError(CV_BadNumChannels, "cvCheckChessboard", "supports single-channel images only",
|
||||
__FILE__, __LINE__);
|
||||
}
|
||||
cv::Mat img = cv::cvarrToMat(src);
|
||||
return checkChessboard(img, size);
|
||||
}
|
||||
|
||||
if(src->depth != 8)
|
||||
{
|
||||
cvError(CV_BadDepth, "cvCheckChessboard", "supports depth=8 images only",
|
||||
__FILE__, __LINE__);
|
||||
}
|
||||
int checkChessboard(const cv::Mat & img, const cv::Size & size)
|
||||
{
|
||||
CV_Assert(img.channels() == 1 && img.depth() == CV_8U);
|
||||
|
||||
const int erosion_count = 1;
|
||||
const float black_level = 20.f;
|
||||
const float white_level = 130.f;
|
||||
const float black_white_gap = 70.f;
|
||||
|
||||
#if defined(DEBUG_WINDOWS)
|
||||
cvNamedWindow("1", 1);
|
||||
cvShowImage("1", src);
|
||||
cvWaitKey(0);
|
||||
#endif //DEBUG_WINDOWS
|
||||
|
||||
CvMemStorage* storage = cvCreateMemStorage();
|
||||
|
||||
IplImage* white = cvCloneImage(src);
|
||||
IplImage* black = cvCloneImage(src);
|
||||
|
||||
cvErode(white, white, NULL, erosion_count);
|
||||
cvDilate(black, black, NULL, erosion_count);
|
||||
IplImage* thresh = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
|
||||
Mat white;
|
||||
Mat black;
|
||||
erode(img, white, Mat(), Point(-1, -1), erosion_count);
|
||||
dilate(img, black, Mat(), Point(-1, -1), erosion_count);
|
||||
|
||||
int result = 0;
|
||||
for(float thresh_level = black_level; thresh_level < white_level && !result; thresh_level += 20.0f)
|
||||
{
|
||||
cvThreshold(white, thresh, thresh_level + black_white_gap, 255, CV_THRESH_BINARY);
|
||||
|
||||
#if defined(DEBUG_WINDOWS)
|
||||
cvShowImage("1", thresh);
|
||||
cvWaitKey(0);
|
||||
#endif //DEBUG_WINDOWS
|
||||
|
||||
CvSeq* first = 0;
|
||||
std::vector<std::pair<float, int> > quads;
|
||||
cvFindContours(thresh, storage, &first, sizeof(CvContour), CV_RETR_CCOMP);
|
||||
icvGetQuadrangleHypotheses(first, quads, 1);
|
||||
|
||||
cvThreshold(black, thresh, thresh_level, 255, CV_THRESH_BINARY_INV);
|
||||
|
||||
#if defined(DEBUG_WINDOWS)
|
||||
cvShowImage("1", thresh);
|
||||
cvWaitKey(0);
|
||||
#endif //DEBUG_WINDOWS
|
||||
|
||||
cvFindContours(thresh, storage, &first, sizeof(CvContour), CV_RETR_CCOMP);
|
||||
icvGetQuadrangleHypotheses(first, quads, 0);
|
||||
|
||||
const size_t min_quads_count = size.width*size.height/2;
|
||||
std::sort(quads.begin(), quads.end(), less_pred);
|
||||
|
||||
// now check if there are many hypotheses with similar sizes
|
||||
// do this by floodfill-style algorithm
|
||||
const float size_rel_dev = 0.4f;
|
||||
|
||||
for(size_t i = 0; i < quads.size(); i++)
|
||||
{
|
||||
size_t j = i + 1;
|
||||
for(; j < quads.size(); j++)
|
||||
{
|
||||
if(quads[j].first/quads[i].first > 1.0f + size_rel_dev)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if(j + 1 > min_quads_count + i)
|
||||
{
|
||||
// check the number of black and white squares
|
||||
std::vector<int> counts;
|
||||
countClasses(quads, i, j, counts);
|
||||
const int black_count = cvRound(ceil(size.width/2.0)*ceil(size.height/2.0));
|
||||
const int white_count = cvRound(floor(size.width/2.0)*floor(size.height/2.0));
|
||||
if(counts[0] < black_count*0.75 ||
|
||||
counts[1] < white_count*0.75)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
result = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
vector<pair<float, int> > quads;
|
||||
fillQuads(white, black, thresh_level + black_white_gap, thresh_level, quads);
|
||||
if (checkQuads(quads, size))
|
||||
result = 1;
|
||||
}
|
||||
|
||||
|
||||
cvReleaseImage(&thresh);
|
||||
cvReleaseImage(&white);
|
||||
cvReleaseImage(&black);
|
||||
cvReleaseMemStorage(&storage);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -214,90 +197,29 @@ int cvCheckChessboard(IplImage* src, CvSize size)
|
||||
// - size: chessboard size
|
||||
// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,
|
||||
// 0 if there is no chessboard, -1 in case of error
|
||||
int cvCheckChessboardBinary(IplImage* src, CvSize size)
|
||||
int checkChessboardBinary(const cv::Mat & img, const cv::Size & size)
|
||||
{
|
||||
if(src->nChannels > 1)
|
||||
{
|
||||
cvError(CV_BadNumChannels, "cvCheckChessboard", "supports single-channel images only",
|
||||
__FILE__, __LINE__);
|
||||
}
|
||||
CV_Assert(img.channels() == 1 && img.depth() == CV_8U);
|
||||
|
||||
if(src->depth != 8)
|
||||
{
|
||||
cvError(CV_BadDepth, "cvCheckChessboard", "supports depth=8 images only",
|
||||
__FILE__, __LINE__);
|
||||
}
|
||||
|
||||
CvMemStorage* storage = cvCreateMemStorage();
|
||||
|
||||
IplImage* white = cvCloneImage(src);
|
||||
IplImage* black = cvCloneImage(src);
|
||||
IplImage* thresh = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
|
||||
Mat white = img.clone();
|
||||
Mat black = img.clone();
|
||||
|
||||
int result = 0;
|
||||
|
||||
for ( int erosion_count = 0; erosion_count <= 3; erosion_count++ )
|
||||
{
|
||||
if ( 1 == result )
|
||||
break;
|
||||
if ( 1 == result )
|
||||
break;
|
||||
|
||||
if ( 0 != erosion_count ) // first iteration keeps original images
|
||||
{
|
||||
cvErode(white, white, NULL, 1);
|
||||
cvDilate(black, black, NULL, 1);
|
||||
}
|
||||
if ( 0 != erosion_count ) // first iteration keeps original images
|
||||
{
|
||||
erode(white, white, Mat(), Point(-1, -1), 1);
|
||||
dilate(black, black, Mat(), Point(-1, -1), 1);
|
||||
}
|
||||
|
||||
cvThreshold(white, thresh, 128, 255, CV_THRESH_BINARY);
|
||||
|
||||
CvSeq* first = 0;
|
||||
std::vector<std::pair<float, int> > quads;
|
||||
cvFindContours(thresh, storage, &first, sizeof(CvContour), CV_RETR_CCOMP);
|
||||
icvGetQuadrangleHypotheses(first, quads, 1);
|
||||
|
||||
cvThreshold(black, thresh, 128, 255, CV_THRESH_BINARY_INV);
|
||||
cvFindContours(thresh, storage, &first, sizeof(CvContour), CV_RETR_CCOMP);
|
||||
icvGetQuadrangleHypotheses(first, quads, 0);
|
||||
|
||||
const size_t min_quads_count = size.width*size.height/2;
|
||||
std::sort(quads.begin(), quads.end(), less_pred);
|
||||
|
||||
// now check if there are many hypotheses with similar sizes
|
||||
// do this by floodfill-style algorithm
|
||||
const float size_rel_dev = 0.4f;
|
||||
|
||||
for(size_t i = 0; i < quads.size(); i++)
|
||||
{
|
||||
size_t j = i + 1;
|
||||
for(; j < quads.size(); j++)
|
||||
{
|
||||
if(quads[j].first/quads[i].first > 1.0f + size_rel_dev)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if(j + 1 > min_quads_count + i)
|
||||
{
|
||||
// check the number of black and white squares
|
||||
std::vector<int> counts;
|
||||
countClasses(quads, i, j, counts);
|
||||
const int black_count = cvRound(ceil(size.width/2.0)*ceil(size.height/2.0));
|
||||
const int white_count = cvRound(floor(size.width/2.0)*floor(size.height/2.0));
|
||||
if(counts[0] < black_count*0.75 ||
|
||||
counts[1] < white_count*0.75)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
result = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
vector<pair<float, int> > quads;
|
||||
fillQuads(white, black, 128, 128, quads);
|
||||
if (checkQuads(quads, size))
|
||||
result = 1;
|
||||
}
|
||||
|
||||
cvReleaseImage(&thresh);
|
||||
cvReleaseImage(&white);
|
||||
cvReleaseImage(&black);
|
||||
cvReleaseMemStorage(&storage);
|
||||
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
@ -117,4 +117,7 @@ template<typename T> inline int compressElems( T* ptr, const uchar* mask, int ms
|
||||
|
||||
}
|
||||
|
||||
int checkChessboard(const cv::Mat & img, const cv::Size & size);
|
||||
int checkChessboardBinary(const cv::Mat & img, const cv::Size & size);
|
||||
|
||||
#endif
|
||||
|
@ -51,29 +51,31 @@ using namespace cv;
|
||||
|
||||
#define _L2_ERR
|
||||
|
||||
void show_points( const Mat& gray, const Mat& u, const vector<Point2f>& v, Size pattern_size, bool was_found )
|
||||
//#define DEBUG_CHESSBOARD
|
||||
|
||||
#ifdef DEBUG_CHESSBOARD
|
||||
#include "opencv2/highgui.hpp"
|
||||
void show_points( const Mat& gray, const Mat& expected, const vector<Point2f>& actual, bool was_found )
|
||||
{
|
||||
Mat rgb( gray.size(), CV_8U);
|
||||
merge(vector<Mat>(3, gray), rgb);
|
||||
|
||||
for(size_t i = 0; i < v.size(); i++ )
|
||||
circle( rgb, v[i], 3, Scalar(255, 0, 0), FILLED);
|
||||
for(size_t i = 0; i < actual.size(); i++ )
|
||||
circle( rgb, actual[i], 5, Scalar(0, 0, 200), 1, LINE_AA);
|
||||
|
||||
if( !u.empty() )
|
||||
if( !expected.empty() )
|
||||
{
|
||||
const Point2f* u_data = u.ptr<Point2f>();
|
||||
size_t count = u.cols * u.rows;
|
||||
const Point2f* u_data = expected.ptr<Point2f>();
|
||||
size_t count = expected.cols * expected.rows;
|
||||
for(size_t i = 0; i < count; i++ )
|
||||
circle( rgb, u_data[i], 3, Scalar(0, 255, 0), FILLED);
|
||||
circle(rgb, u_data[i], 4, Scalar(0, 240, 0), 1, LINE_AA);
|
||||
}
|
||||
if (!v.empty())
|
||||
{
|
||||
Mat corners((int)v.size(), 1, CV_32FC2, (void*)&v[0]);
|
||||
drawChessboardCorners( rgb, pattern_size, corners, was_found );
|
||||
}
|
||||
//namedWindow( "test", 0 ); imshow( "test", rgb ); waitKey(0);
|
||||
putText(rgb, was_found ? "FOUND !!!" : "NOT FOUND", Point(5, 20), FONT_HERSHEY_PLAIN, 1, Scalar(0, 240, 0));
|
||||
imshow( "test", rgb ); while ((uchar)waitKey(0) != 'q') {};
|
||||
}
|
||||
|
||||
#else
|
||||
#define show_points(...)
|
||||
#endif
|
||||
|
||||
enum Pattern { CHESSBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID };
|
||||
|
||||
@ -253,7 +255,6 @@ void CV_ChessboardDetectorTest::run_batch( const string& filename )
|
||||
result = findCirclesGrid(gray, pattern_size, v, CALIB_CB_ASYMMETRIC_GRID | algorithmFlags);
|
||||
break;
|
||||
}
|
||||
show_points( gray, Mat(), v, pattern_size, result );
|
||||
|
||||
if( result ^ doesContatinChessboard || v.size() != count_exp )
|
||||
{
|
||||
@ -280,7 +281,7 @@ void CV_ChessboardDetectorTest::run_batch( const string& filename )
|
||||
if( pattern == CHESSBOARD )
|
||||
cornerSubPix( gray, v, Size(5, 5), Size(-1,-1), TermCriteria(TermCriteria::EPS|TermCriteria::MAX_ITER, 30, 0.1));
|
||||
//find4QuadCornerSubpix(gray, v, Size(5, 5));
|
||||
show_points( gray, expected, v, pattern_size, result );
|
||||
show_points( gray, expected, v, result );
|
||||
#ifndef WRITE_POINTS
|
||||
// printf("called find4QuadCornerSubpix\n");
|
||||
err = calcError(v, expected);
|
||||
@ -298,6 +299,10 @@ void CV_ChessboardDetectorTest::run_batch( const string& filename )
|
||||
max_precise_error = MAX( max_precise_error, err );
|
||||
#endif
|
||||
}
|
||||
else
|
||||
{
|
||||
show_points( gray, Mat(), v, result );
|
||||
}
|
||||
|
||||
#ifdef WRITE_POINTS
|
||||
Mat mat_v(pattern_size, CV_32FC2, (void*)&v[0]);
|
||||
|
@ -57,7 +57,7 @@ class calibration_test(NewOpenCVTests):
|
||||
|
||||
eps = 0.01
|
||||
normCamEps = 10.0
|
||||
normDistEps = 0.001
|
||||
normDistEps = 0.05
|
||||
|
||||
cameraMatrixTest = [[ 532.80992189, 0., 342.4952186 ],
|
||||
[ 0., 532.93346422, 233.8879292 ],
|
||||
@ -68,4 +68,4 @@ class calibration_test(NewOpenCVTests):
|
||||
|
||||
self.assertLess(abs(rms - 0.196334638034), eps)
|
||||
self.assertLess(cv2.norm(camera_matrix - cameraMatrixTest, cv2.NORM_L1), normCamEps)
|
||||
self.assertLess(cv2.norm(dist_coefs - distCoeffsTest, cv2.NORM_L1), normDistEps)
|
||||
self.assertLess(cv2.norm(dist_coefs - distCoeffsTest, cv2.NORM_L1), normDistEps)
|
||||
|
Loading…
Reference in New Issue
Block a user