mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Added optimization fuse
This commit is contained in:
parent
3132c8ee08
commit
74574dfae4
@ -61,6 +61,8 @@ namespace dnn
|
||||
class BaseConvolutionLayerImpl : public ConvolutionLayer
|
||||
{
|
||||
public:
|
||||
bool newWeightAndBias;
|
||||
std::vector<double> weightsMultipliers;
|
||||
BaseConvolutionLayerImpl(const LayerParams ¶ms)
|
||||
{
|
||||
setParamsFrom(params);
|
||||
@ -84,6 +86,8 @@ public:
|
||||
CV_Assert(numOutput % ngroups == 0);
|
||||
CV_Assert(adjustPad.width < stride.width &&
|
||||
adjustPad.height < stride.height);
|
||||
|
||||
newWeightAndBias = false;
|
||||
}
|
||||
|
||||
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
|
||||
@ -134,6 +138,20 @@ public:
|
||||
(dilation.height == 1 && dilation.width == 1);
|
||||
}
|
||||
|
||||
virtual bool tryFuse(Ptr<Layer>& top) CV_OVERRIDE
|
||||
{
|
||||
Mat w, b;
|
||||
top->getScaleShift(w, b);
|
||||
if (!w.empty() || !b.empty())
|
||||
{
|
||||
fuseWeights(w, b);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
virtual void fuseWeights(const Mat& w_, const Mat& b_) = 0;
|
||||
|
||||
virtual void applyHalideScheduler(Ptr<BackendNode>& node,
|
||||
const std::vector<Mat*> &inputs,
|
||||
const std::vector<Mat> &outputs,
|
||||
@ -184,11 +202,9 @@ class ConvolutionLayerImpl CV_FINAL : public BaseConvolutionLayerImpl
|
||||
public:
|
||||
enum { VEC_ALIGN = 8, DFT_TYPE = CV_32F };
|
||||
Mat weightsMat;
|
||||
std::vector<double> weightsMultipliers;
|
||||
std::vector<float> biasvec;
|
||||
std::vector<float> reluslope;
|
||||
Ptr<ActivationLayer> activ;
|
||||
bool newWeightAndBias;
|
||||
bool fusedBias;
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
@ -200,7 +216,6 @@ public:
|
||||
#endif
|
||||
ConvolutionLayerImpl(const LayerParams ¶ms) : BaseConvolutionLayerImpl(params)
|
||||
{
|
||||
newWeightAndBias = false;
|
||||
fusedBias = false;
|
||||
#ifdef HAVE_OPENCL
|
||||
newActiv = false;
|
||||
@ -346,19 +361,7 @@ public:
|
||||
return !activ.empty();
|
||||
}
|
||||
|
||||
virtual bool tryFuse(Ptr<Layer>& top) CV_OVERRIDE
|
||||
{
|
||||
Mat w, b;
|
||||
top->getScaleShift(w, b);
|
||||
if (!w.empty() || !b.empty())
|
||||
{
|
||||
fuseWeights(w, b);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void fuseWeights(const Mat& w_, const Mat& b_)
|
||||
void fuseWeights(const Mat& w_, const Mat& b_) CV_OVERRIDE
|
||||
{
|
||||
// Convolution weights have OIHW data layout. Parameters fusion in case of
|
||||
// (conv(I) + b1 ) * w + b2
|
||||
@ -1238,6 +1241,45 @@ public:
|
||||
|
||||
pad.width = pad_l;
|
||||
pad.height = pad_t;
|
||||
|
||||
weightsMultipliers.assign(numOutput, 1.0);
|
||||
if (weightsMat.empty())
|
||||
{
|
||||
transpose(blobs[0].reshape(1, blobs[0].size[0]), weightsMat);
|
||||
biasesMat = hasBias() ? blobs[1].reshape(1, numOutput)
|
||||
: Mat::zeros(numOutput, 1, CV_32F);
|
||||
}
|
||||
}
|
||||
|
||||
void fuseWeights(const Mat& w_, const Mat& b_) CV_OVERRIDE
|
||||
{
|
||||
Mat w = w_.total() == 1 ? Mat(1, numOutput, CV_32F, Scalar(w_.at<float>(0))) : w_;
|
||||
Mat b = b_.total() == 1 ? Mat(1, numOutput, CV_32F, Scalar(b_.at<float>(0))) : b_;
|
||||
|
||||
CV_Assert_N(!weightsMat.empty(),
|
||||
w.empty() || numOutput == w.total(),
|
||||
b.empty() || numOutput == b.total());
|
||||
|
||||
if (!w.empty())
|
||||
{
|
||||
transpose(blobs[0].reshape(1, blobs[0].size[0]), weightsMat);
|
||||
weightsMat = weightsMat.reshape(1, numOutput);
|
||||
for (int i = 0; i < numOutput; ++i)
|
||||
{
|
||||
double wi = w.at<float>(i);
|
||||
weightsMultipliers[i] *= wi;
|
||||
cv::multiply(weightsMat.row(i), weightsMultipliers[i], weightsMat.row(i));
|
||||
biasesMat.at<float>(i) *= wi;
|
||||
}
|
||||
weightsMat = weightsMat.reshape(1, weightsMat.total() / blobs[0].size[0]);
|
||||
}
|
||||
|
||||
if (!b.empty())
|
||||
{
|
||||
cv::add(biasesMat, b.reshape(1, numOutput), biasesMat);
|
||||
}
|
||||
|
||||
newWeightAndBias = !w.empty() || !b.empty();
|
||||
}
|
||||
|
||||
class MatMulInvoker : public ParallelLoopBody
|
||||
@ -1505,11 +1547,19 @@ public:
|
||||
|
||||
if (umat_weights.empty())
|
||||
{
|
||||
transpose(blobs[0].reshape(1, inpCn), umat_weights);
|
||||
if (hasBias())
|
||||
blobs[1].reshape(1, outCn).copyTo(umat_biases);
|
||||
if (newWeightAndBias)
|
||||
{
|
||||
weightsMat.copyTo(umat_weights);
|
||||
biasesMat.copyTo(umat_biases);
|
||||
}
|
||||
else
|
||||
umat_biases = UMat::zeros(outCn, 1, CV_32F);
|
||||
{
|
||||
transpose(blobs[0].reshape(1, inpCn), umat_weights);
|
||||
if (hasBias())
|
||||
blobs[1].reshape(1, outCn).copyTo(umat_biases);
|
||||
else
|
||||
umat_biases = UMat::zeros(outCn, 1, CV_32F);
|
||||
}
|
||||
}
|
||||
|
||||
String buildopt = format("-DT=%s ", ocl::typeToStr(inputs[0].type()));
|
||||
|
@ -305,9 +305,16 @@ TEST_P(DNNTestNetwork, DenseNet_121)
|
||||
TEST_P(DNNTestNetwork, FastNeuralStyle_eccv16)
|
||||
{
|
||||
if (backend == DNN_BACKEND_HALIDE ||
|
||||
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) ||
|
||||
(backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD))
|
||||
throw SkipTestException("");
|
||||
|
||||
#if defined(INF_ENGINE_RELEASE)
|
||||
#if INF_ENGINE_RELEASE <= 2018050000
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL)
|
||||
throw SkipTestException("");
|
||||
#endif
|
||||
#endif
|
||||
|
||||
Mat img = imread(findDataFile("dnn/googlenet_1.png", false));
|
||||
Mat inp = blobFromImage(img, 1.0, Size(320, 240), Scalar(103.939, 116.779, 123.68), false, false);
|
||||
// Output image has values in range [-143.526, 148.539].
|
||||
|
@ -394,6 +394,14 @@ TEST_P(Test_Torch_nets, ENet_accuracy)
|
||||
TEST_P(Test_Torch_nets, FastNeuralStyle_accuracy)
|
||||
{
|
||||
checkBackend();
|
||||
|
||||
#if defined(INF_ENGINE_RELEASE)
|
||||
#if INF_ENGINE_RELEASE <= 2018050000
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL)
|
||||
throw SkipTestException("");
|
||||
#endif
|
||||
#endif
|
||||
|
||||
std::string models[] = {"dnn/fast_neural_style_eccv16_starry_night.t7",
|
||||
"dnn/fast_neural_style_instance_norm_feathers.t7"};
|
||||
std::string targets[] = {"dnn/lena_starry_night.png", "dnn/lena_feathers.png"};
|
||||
|
Loading…
Reference in New Issue
Block a user