mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
dnn(test): use Backend/Target enums
instead of 'int'
This commit is contained in:
parent
5336b9ad19
commit
74cf48b5d7
@ -16,7 +16,7 @@ using namespace cv;
|
||||
using namespace cv::dnn;
|
||||
using namespace testing;
|
||||
|
||||
static void test(Mat& input, Net& net, int backendId, int targetId)
|
||||
static void test(Mat& input, Net& net, Backend backendId, Target targetId)
|
||||
{
|
||||
DNNTestLayer::checkBackend(backendId, targetId);
|
||||
randu(input, -1.0f, 1.0f);
|
||||
@ -34,7 +34,7 @@ static void test(Mat& input, Net& net, int backendId, int targetId)
|
||||
normAssert(outputDefault, outputHalide, "", l1, lInf);
|
||||
}
|
||||
|
||||
static void test(LayerParams& params, Mat& input, int backendId, int targetId)
|
||||
static void test(LayerParams& params, Mat& input, Backend backendId, Target targetId)
|
||||
{
|
||||
Net net;
|
||||
net.addLayerToPrev(params.name, params.type, params);
|
||||
@ -101,8 +101,8 @@ TEST_P(Convolution, Accuracy)
|
||||
Size pad = get<4>(GetParam());
|
||||
Size dilation = get<5>(GetParam());
|
||||
bool hasBias = get<6>(GetParam());
|
||||
int backendId = get<0>(get<7>(GetParam()));
|
||||
int targetId = get<1>(get<7>(GetParam()));
|
||||
Backend backendId = get<0>(get<7>(GetParam()));
|
||||
Target targetId = get<1>(get<7>(GetParam()));
|
||||
|
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_MYRIAD)
|
||||
throw SkipTestException("");
|
||||
@ -171,8 +171,8 @@ TEST_P(Deconvolution, Accuracy)
|
||||
Size stride = Size(get<5>(GetParam())[0], get<5>(GetParam())[1]);
|
||||
Size adjPad = Size(get<5>(GetParam())[2], get<5>(GetParam())[3]);
|
||||
bool hasBias = get<6>(GetParam());
|
||||
int backendId = get<0>(get<7>(GetParam()));
|
||||
int targetId = get<1>(get<7>(GetParam()));
|
||||
Backend backendId = get<0>(get<7>(GetParam()));
|
||||
Target targetId = get<1>(get<7>(GetParam()));
|
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_CPU &&
|
||||
dilation.width == 2 && dilation.height == 2)
|
||||
throw SkipTestException("");
|
||||
@ -235,8 +235,8 @@ TEST_P(LRN, Accuracy)
|
||||
float bias = get<2>(GetParam())[2];
|
||||
bool normBySize = get<3>(GetParam());
|
||||
std::string nrmType = get<4>(GetParam());
|
||||
int backendId = get<0>(get<5>(GetParam()));
|
||||
int targetId = get<1>(get<5>(GetParam()));
|
||||
Backend backendId = get<0>(get<5>(GetParam()));
|
||||
Target targetId = get<1>(get<5>(GetParam()));
|
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE)
|
||||
throw SkipTestException("");
|
||||
|
||||
@ -276,8 +276,8 @@ TEST_P(AvePooling, Accuracy)
|
||||
Size outSize = get<1>(GetParam());; // Input size will be computed from parameters.
|
||||
Size kernel = get<2>(GetParam());
|
||||
Size stride = get<3>(GetParam());
|
||||
int backendId = get<0>(get<4>(GetParam()));
|
||||
int targetId = get<1>(get<4>(GetParam()));
|
||||
Backend backendId = get<0>(get<4>(GetParam()));
|
||||
Target targetId = get<1>(get<4>(GetParam()));
|
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_MYRIAD)
|
||||
throw SkipTestException("");
|
||||
|
||||
@ -317,8 +317,8 @@ TEST_P(MaxPooling, Accuracy)
|
||||
Size kernel = get<2>(GetParam());
|
||||
Size stride = get<3>(GetParam());
|
||||
Size pad = get<4>(GetParam());
|
||||
int backendId = get<0>(get<5>(GetParam()));
|
||||
int targetId = get<1>(get<5>(GetParam()));
|
||||
Backend backendId = get<0>(get<5>(GetParam()));
|
||||
Target targetId = get<1>(get<5>(GetParam()));
|
||||
|
||||
LayerParams lp;
|
||||
lp.set("pool", "max");
|
||||
@ -355,8 +355,8 @@ TEST_P(FullyConnected, Accuracy)
|
||||
Size inSize = get<1>(GetParam());
|
||||
int outChannels = get<2>(GetParam());
|
||||
bool hasBias = get<3>(GetParam());
|
||||
int backendId = get<0>(get<4>(GetParam()));
|
||||
int targetId = get<1>(get<4>(GetParam()));
|
||||
Backend backendId = get<0>(get<4>(GetParam()));
|
||||
Target targetId = get<1>(get<4>(GetParam()));
|
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE)
|
||||
throw SkipTestException("");
|
||||
|
||||
@ -394,8 +394,8 @@ typedef TestWithParam<tuple<int, tuple<Backend, Target> > > SoftMax;
|
||||
TEST_P(SoftMax, Accuracy)
|
||||
{
|
||||
int inChannels = get<0>(GetParam());
|
||||
int backendId = get<0>(get<1>(GetParam()));
|
||||
int targetId = get<1>(get<1>(GetParam()));
|
||||
Backend backendId = get<0>(get<1>(GetParam()));
|
||||
Target targetId = get<1>(get<1>(GetParam()));
|
||||
LayerParams lp;
|
||||
lp.type = "SoftMax";
|
||||
lp.name = "testLayer";
|
||||
@ -457,7 +457,7 @@ TEST_P(Test_Halide_layers, MaxPoolUnpool)
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
static const int kNumChannels = 3;
|
||||
|
||||
void testInPlaceActivation(LayerParams& lp, int backendId, int targetId)
|
||||
void testInPlaceActivation(LayerParams& lp, Backend backendId, Target targetId)
|
||||
{
|
||||
EXPECT_FALSE(lp.name.empty());
|
||||
|
||||
@ -485,8 +485,8 @@ TEST_P(BatchNorm, Accuracy)
|
||||
bool hasWeights = get<0>(GetParam());
|
||||
bool hasBias = get<1>(GetParam());
|
||||
float epsilon = get<2>(GetParam());
|
||||
int backendId = get<0>(get<3>(GetParam()));
|
||||
int targetId = get<1>(get<3>(GetParam()));
|
||||
Backend backendId = get<0>(get<3>(GetParam()));
|
||||
Target targetId = get<1>(get<3>(GetParam()));
|
||||
|
||||
LayerParams lp;
|
||||
lp.set("has_weight", hasWeights);
|
||||
@ -518,8 +518,8 @@ typedef TestWithParam<tuple<float, tuple<Backend, Target> > > ReLU;
|
||||
TEST_P(ReLU, Accuracy)
|
||||
{
|
||||
float negativeSlope = get<0>(GetParam());
|
||||
int backendId = get<0>(get<1>(GetParam()));
|
||||
int targetId = get<1>(get<1>(GetParam()));
|
||||
Backend backendId = get<0>(get<1>(GetParam()));
|
||||
Target targetId = get<1>(get<1>(GetParam()));
|
||||
|
||||
LayerParams lp;
|
||||
lp.set("negative_slope", negativeSlope);
|
||||
@ -536,8 +536,8 @@ INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, ReLU, Combine(
|
||||
typedef TestWithParam<tuple<std::string, tuple<Backend, Target> > > NoParamActivation;
|
||||
TEST_P(NoParamActivation, Accuracy)
|
||||
{
|
||||
int backendId = get<0>(get<1>(GetParam()));
|
||||
int targetId = get<1>(get<1>(GetParam()));
|
||||
Backend backendId = get<0>(get<1>(GetParam()));
|
||||
Target targetId = get<1>(get<1>(GetParam()));
|
||||
|
||||
LayerParams lp;
|
||||
lp.type = get<0>(GetParam());
|
||||
@ -555,8 +555,8 @@ TEST_P(Power, Accuracy)
|
||||
float power = get<0>(GetParam())[0];
|
||||
float scale = get<0>(GetParam())[1];
|
||||
float shift = get<0>(GetParam())[2];
|
||||
int backendId = get<0>(get<1>(GetParam()));
|
||||
int targetId = get<1>(get<1>(GetParam()));
|
||||
Backend backendId = get<0>(get<1>(GetParam()));
|
||||
Target targetId = get<1>(get<1>(GetParam()));
|
||||
|
||||
LayerParams lp;
|
||||
lp.set("power", power);
|
||||
@ -589,8 +589,8 @@ typedef TestWithParam<tuple<bool, tuple<Backend, Target> > > Scale;
|
||||
TEST_P(Scale, Accuracy)
|
||||
{
|
||||
bool hasBias = get<0>(GetParam());
|
||||
int backendId = get<0>(get<1>(GetParam()));
|
||||
int targetId = get<1>(get<1>(GetParam()));
|
||||
Backend backendId = get<0>(get<1>(GetParam()));
|
||||
Target targetId = get<1>(get<1>(GetParam()));
|
||||
|
||||
LayerParams lp;
|
||||
lp.set("bias_term", hasBias);
|
||||
@ -624,8 +624,8 @@ TEST_P(Concat, Accuracy)
|
||||
{
|
||||
Vec3i inSize = get<0>(GetParam());
|
||||
Vec3i numChannels = get<1>(GetParam());
|
||||
int backendId = get<0>(get<2>(GetParam()));
|
||||
int targetId = get<1>(get<2>(GetParam()));
|
||||
Backend backendId = get<0>(get<2>(GetParam()));
|
||||
Target targetId = get<1>(get<2>(GetParam()));
|
||||
|
||||
Net net;
|
||||
|
||||
@ -692,8 +692,8 @@ TEST_P(Eltwise, Accuracy)
|
||||
std::string op = get<1>(GetParam());
|
||||
int numConv = get<2>(GetParam());
|
||||
bool weighted = get<3>(GetParam());
|
||||
int backendId = get<0>(get<4>(GetParam()));
|
||||
int targetId = get<1>(get<4>(GetParam()));
|
||||
Backend backendId = get<0>(get<4>(GetParam()));
|
||||
Target targetId = get<1>(get<4>(GetParam()));
|
||||
|
||||
Net net;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user