mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Merge pull request #23161 from dkurt:dnn_tflite
TFLite models importer * initial commit * Refactor TFLiteImporter * Better FlatBuffers detection * Add permute before 4D->3D reshape * Track layers layout * TFLite Convolution2DTransposeBias layer * Skip TFLite tests without FlatBuffers * Fix check of FlatBuffers in tests. Add readNetFromTFLite from buffer * TFLite Max Unpooling test * Add skip for TFLite unpooling test * Revert DW convolution workaround * Fix ObjC bindings * Better errors handling * Regenerate TFLite schema using flatc * dnn(tflite): more checks, better logging * Checks for unimplemented fusion. Fix tests
This commit is contained in:
parent
47293f28cf
commit
76350cd30f
@ -471,6 +471,9 @@ OCV_OPTION(WITH_OBSENSOR "Include obsensor support (Orbbec RGB-D modules: Astra+
|
||||
OCV_OPTION(WITH_CANN "Include CANN support" OFF
|
||||
VISIBLE_IF TRUE
|
||||
VERIFY HAVE_CANN)
|
||||
OCV_OPTION(WITH_FLATBUFFERS "Include FlatBuffers support" OFF
|
||||
VISIBLE_IF TRUE
|
||||
VERIFY HAVE_FLATBUFFERS)
|
||||
|
||||
# OpenCV build components
|
||||
# ===================================================
|
||||
@ -750,6 +753,7 @@ include(cmake/OpenCVFindLibsVideo.cmake)
|
||||
include(cmake/OpenCVFindLibsPerf.cmake)
|
||||
include(cmake/OpenCVFindLAPACK.cmake)
|
||||
include(cmake/OpenCVFindProtobuf.cmake)
|
||||
include(cmake/OpenCVFindFlatBuffers.cmake)
|
||||
if(WITH_TENGINE)
|
||||
include(cmake/OpenCVFindTengine.cmake)
|
||||
endif()
|
||||
|
15
cmake/OpenCVFindFlatBuffers.cmake
Normal file
15
cmake/OpenCVFindFlatBuffers.cmake
Normal file
@ -0,0 +1,15 @@
|
||||
set(HAVE_FLATBUFFERS FALSE)
|
||||
|
||||
if(NOT WITH_FLATBUFFERS)
|
||||
return()
|
||||
endif()
|
||||
|
||||
list(APPEND CUSTOM_STATUS flatbuffers)
|
||||
|
||||
find_package(flatbuffers QUIET)
|
||||
if(flatbuffers_FOUND)
|
||||
set(HAVE_FLATBUFFERS 1)
|
||||
list(APPEND CUSTOM_STATUS_flatbuffers " FlatBuffers:" "${flatbuffers_VERSION}")
|
||||
else()
|
||||
list(APPEND CUSTOM_STATUS_flatbuffers " FlatBuffers:" "NO")
|
||||
endif()
|
@ -133,6 +133,17 @@ if(NOT BUILD_PROTOBUF)
|
||||
list(APPEND include_dirs ${Protobuf_INCLUDE_DIRS})
|
||||
endif()
|
||||
|
||||
if(HAVE_FLATBUFFERS)
|
||||
list(APPEND libs flatbuffers::flatbuffers)
|
||||
list(APPEND fw_srcs "${CMAKE_CURRENT_BINARY_DIR}/schema_generated.h")
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/schema_generated.h"
|
||||
COMMAND flatbuffers::flatc --cpp -o "${CMAKE_CURRENT_BINARY_DIR}" "${CMAKE_CURRENT_LIST_DIR}/src/tflite/schema.fbs")
|
||||
|
||||
ocv_target_compile_definitions(${the_module} PRIVATE "HAVE_FLATBUFFERS=1")
|
||||
endif()
|
||||
|
||||
set(sources_options "")
|
||||
|
||||
list(APPEND libs ${LAPACK_LIBRARIES})
|
||||
@ -280,3 +291,9 @@ if(TARGET ocv.3rdparty.cann AND OPENCV_TEST_DNN_CANN)
|
||||
ocv_target_link_libraries(opencv_test_dnn ocv.3rdparty.cann)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if(HAVE_FLATBUFFERS)
|
||||
if(TARGET opencv_test_dnn)
|
||||
ocv_target_compile_definitions(opencv_test_dnn PRIVATE "HAVE_FLATBUFFERS=1")
|
||||
endif()
|
||||
endif()
|
||||
|
@ -953,6 +953,26 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
CV_EXPORTS Net readNetFromTensorflow(const char *bufferModel, size_t lenModel,
|
||||
const char *bufferConfig = NULL, size_t lenConfig = 0);
|
||||
|
||||
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/lite">TFLite</a> framework's format.
|
||||
* @param model path to the .tflite file with binary flatbuffers description of the network architecture
|
||||
* @returns Net object.
|
||||
*/
|
||||
CV_EXPORTS_W Net readNetFromTFLite(const String &model);
|
||||
|
||||
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/lite">TFLite</a> framework's format.
|
||||
* @param bufferModel buffer containing the content of the tflite file
|
||||
* @returns Net object.
|
||||
*/
|
||||
CV_EXPORTS_W Net readNetFromTFLite(const std::vector<uchar>& bufferModel);
|
||||
|
||||
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/lite">TFLite</a> framework's format.
|
||||
* @details This is an overloaded member function, provided for convenience.
|
||||
* It differs from the above function only in what argument(s) it accepts.
|
||||
* @param bufferModel buffer containing the content of the tflite file
|
||||
* @param lenModel length of bufferModel
|
||||
*/
|
||||
CV_EXPORTS Net readNetFromTFLite(const char *bufferModel, size_t lenModel);
|
||||
|
||||
/**
|
||||
* @brief Reads a network model stored in <a href="http://torch.ch">Torch7</a> framework's format.
|
||||
* @param model path to the file, dumped from Torch by using torch.save() function.
|
||||
|
@ -8,7 +8,9 @@
|
||||
"(Net*)readNetFromONNX:(NSString*)onnxFile" : { "readNetFromONNX" : {"name" : "readNetFromONNXFile"} },
|
||||
"(Net*)readNetFromONNX:(ByteVector*)buffer" : { "readNetFromONNX" : {"name" : "readNetFromONNXBuffer"} },
|
||||
"(Net*)readNetFromTensorflow:(NSString*)model config:(NSString*)config" : { "readNetFromTensorflow" : {"name" : "readNetFromTensorflowFile"} },
|
||||
"(Net*)readNetFromTensorflow:(ByteVector*)bufferModel bufferConfig:(ByteVector*)bufferConfig" : { "readNetFromTensorflow" : {"name" : "readNetFromTensorflowBuffer"} }
|
||||
"(Net*)readNetFromTensorflow:(ByteVector*)bufferModel bufferConfig:(ByteVector*)bufferConfig" : { "readNetFromTensorflow" : {"name" : "readNetFromTensorflowBuffer"} },
|
||||
"(Net*)readNetFromTFLite:(NSString*)model" : { "readNetFromTFLite" : {"name" : "readNetFromTFLiteFile"} },
|
||||
"(Net*)readNetFromTFLite:(ByteVector*)buffer" : { "readNetFromTFLite" : {"name" : "readNetFromTFLiteBuffer"} }
|
||||
},
|
||||
"Net": {
|
||||
"(void)forward:(NSMutableArray<Mat*>*)outputBlobs outputName:(NSString*)outputName" : { "forward" : {"name" : "forwardOutputBlobs"} },
|
||||
|
@ -29,6 +29,10 @@ Net readNet(const String& _model, const String& _config, const String& _framewor
|
||||
std::swap(model, config);
|
||||
return readNetFromTensorflow(model, config);
|
||||
}
|
||||
if (framework == "tflite" || modelExt == "tflite")
|
||||
{
|
||||
return readNetFromTFLite(model);
|
||||
}
|
||||
if (framework == "torch" || modelExt == "t7" || modelExt == "net" || configExt == "t7" || configExt == "net")
|
||||
{
|
||||
return readNetFromTorch(model.empty() ? config : model);
|
||||
@ -66,6 +70,8 @@ Net readNet(const String& _framework, const std::vector<uchar>& bufferModel,
|
||||
CV_Error(Error::StsNotImplemented, "Reading Torch models from buffers");
|
||||
else if (framework == "dldt")
|
||||
return readNetFromModelOptimizer(bufferConfig, bufferModel);
|
||||
else if (framework == "tflite")
|
||||
return readNetFromTFLite(bufferModel);
|
||||
CV_Error(Error::StsError, "Cannot determine an origin framework with a name " + framework);
|
||||
}
|
||||
|
||||
|
41
modules/dnn/src/tflite/builtin_op_data.h
Normal file
41
modules/dnn/src/tflite/builtin_op_data.h
Normal file
@ -0,0 +1,41 @@
|
||||
// source: https://github.com/tensorflow/tensorflow/blob/b2f5959ff823a8ed5bf4883e785f8f96d4253a8b/tensorflow/lite/core/c/builtin_op_data.h
|
||||
typedef enum {
|
||||
kTfLitePaddingUnknown = 0,
|
||||
kTfLitePaddingSame,
|
||||
kTfLitePaddingValid,
|
||||
} TfLitePadding;
|
||||
|
||||
typedef enum {
|
||||
kTfLiteActNone = 0,
|
||||
kTfLiteActRelu,
|
||||
kTfLiteActReluN1To1, // min(max(-1, x), 1)
|
||||
kTfLiteActRelu6, // min(max(0, x), 6)
|
||||
kTfLiteActTanh,
|
||||
kTfLiteActSignBit,
|
||||
kTfLiteActSigmoid,
|
||||
} TfLiteFusedActivation;
|
||||
|
||||
typedef struct {
|
||||
int width;
|
||||
int height;
|
||||
int width_offset;
|
||||
int height_offset;
|
||||
} TfLitePaddingValues;
|
||||
|
||||
typedef struct {
|
||||
TfLitePadding padding;
|
||||
int stride_width;
|
||||
int stride_height;
|
||||
int filter_width;
|
||||
int filter_height;
|
||||
TfLiteFusedActivation activation;
|
||||
struct {
|
||||
TfLitePaddingValues padding;
|
||||
} computed;
|
||||
} TfLitePoolParams;
|
||||
|
||||
typedef struct {
|
||||
TfLitePadding padding;
|
||||
int stride_width;
|
||||
int stride_height;
|
||||
} TfLiteTransposeConvParams;
|
1341
modules/dnn/src/tflite/schema.fbs
Normal file
1341
modules/dnn/src/tflite/schema.fbs
Normal file
File diff suppressed because it is too large
Load Diff
644
modules/dnn/src/tflite/tflite_importer.cpp
Normal file
644
modules/dnn/src/tflite/tflite_importer.cpp
Normal file
@ -0,0 +1,644 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "../precomp.hpp"
|
||||
|
||||
#ifdef HAVE_FLATBUFFERS
|
||||
#include "schema_generated.h"
|
||||
#include "builtin_op_data.h"
|
||||
#endif
|
||||
|
||||
#include <opencv2/core/utils/logger.defines.hpp>
|
||||
#undef CV_LOG_STRIP_LEVEL
|
||||
#define CV_LOG_STRIP_LEVEL CV_LOG_LEVEL_VERBOSE + 1
|
||||
#include <opencv2/core/utils/logger.hpp>
|
||||
|
||||
namespace cv {
|
||||
namespace dnn {
|
||||
CV__DNN_INLINE_NS_BEGIN
|
||||
|
||||
#ifdef HAVE_FLATBUFFERS
|
||||
|
||||
using namespace opencv_tflite;
|
||||
|
||||
// This values are used to indicate layer output's data layout where it's possible.
|
||||
// Approach is similar to TensorFlow importer but TFLite models do not have explicit
|
||||
// layout field "data_format". So we consider that all 4D inputs are in NHWC data layout.
|
||||
enum DataLayout
|
||||
{
|
||||
DATA_LAYOUT_NHWC,
|
||||
DATA_LAYOUT_NCHW,
|
||||
DATA_LAYOUT_NDHWC,
|
||||
DATA_LAYOUT_UNKNOWN,
|
||||
DATA_LAYOUT_PLANAR // 2-dimensional outputs (matmul, flatten, reshape to 2d)
|
||||
};
|
||||
|
||||
class TFLiteImporter {
|
||||
public:
|
||||
TFLiteImporter(Net& net, const char* modelBuffer, size_t bufSize);
|
||||
|
||||
private:
|
||||
const opencv_tflite::Model* model;
|
||||
const flatbuffers::Vector<flatbuffers::Offset<opencv_tflite::Tensor> >* modelTensors;
|
||||
std::map<int, Mat> allTensors;
|
||||
Net& dstNet;
|
||||
|
||||
// This is a vector of pairs (layerId, outputId) where we iterate over
|
||||
// indices from TFLite notation and get created OpenCV layers.
|
||||
std::map<int, std::pair<int, int> > layerIds;
|
||||
|
||||
// Tracking of layouts for layers outputs.
|
||||
std::vector<DataLayout> layouts;
|
||||
|
||||
void populateNet();
|
||||
|
||||
// Wrap TFLite Tensor to OpenCV Mat without data copying
|
||||
Mat parseTensor(const Tensor& tensor);
|
||||
|
||||
typedef void (TFLiteImporter::*TFLiteImporterNodeParser)(const Operator&, const std::string&, LayerParams&);
|
||||
typedef std::map<std::string, TFLiteImporterNodeParser> DispatchMap;
|
||||
|
||||
const DispatchMap dispatch;
|
||||
static DispatchMap buildDispatchMap();
|
||||
|
||||
void parseConvolution(const Operator& op, const std::string& opcode, LayerParams& layerParams);
|
||||
void parseDWConvolution(const Operator& op, const std::string& opcode, LayerParams& layerParams);
|
||||
void parsePadding(const Operator& op, const std::string& opcode, LayerParams& layerParams);
|
||||
void parseEltwise(const Operator& op, const std::string& opcode, LayerParams& layerParams);
|
||||
void parsePooling(const Operator& op, const std::string& opcode, LayerParams& layerParams);
|
||||
void parsePoolingWithArgmax(const Operator& op, const std::string& opcode, LayerParams& layerParams);
|
||||
void parseUnpooling(const Operator& op, const std::string& opcode, LayerParams& layerParams);
|
||||
void parseReshape(const Operator& op, const std::string& opcode, LayerParams& layerParams);
|
||||
void parseConcat(const Operator& op, const std::string& opcode, LayerParams& layerParams);
|
||||
void parseResize(const Operator& op, const std::string& opcode, LayerParams& layerParams);
|
||||
void parseDeconvolution(const Operator& op, const std::string& opcode, LayerParams& layerParams);
|
||||
|
||||
int addPermuteLayer(const std::vector<int>& order, const std::string& permName, const std::pair<int, int>& inpId);
|
||||
};
|
||||
|
||||
Mat TFLiteImporter::parseTensor(const Tensor& tensor)
|
||||
{
|
||||
const auto tensor_shape = tensor.shape();
|
||||
CV_Assert(tensor_shape);
|
||||
std::vector<int> shape(tensor_shape->begin(), tensor_shape->end());
|
||||
int bufferIdx = tensor.buffer();
|
||||
CV_Assert(bufferIdx != 0); // 0th buffer is a no-data buffer
|
||||
const Buffer* buffer = model->buffers()->Get(bufferIdx);
|
||||
CV_Assert(buffer);
|
||||
const auto buffer_data = buffer->data();
|
||||
CV_Assert(buffer_data);
|
||||
const void* data = buffer_data->data();
|
||||
|
||||
int dtype = -1;
|
||||
switch (tensor.type()) {
|
||||
case TensorType_FLOAT32:
|
||||
dtype = CV_32F;
|
||||
break;
|
||||
case TensorType_INT32:
|
||||
dtype = CV_32S;
|
||||
break;
|
||||
case TensorType_FLOAT16:
|
||||
dtype = CV_16S;
|
||||
break;
|
||||
default:
|
||||
CV_Error(Error::StsNotImplemented, format("Parse tensor with type %s", EnumNameTensorType(tensor.type())));
|
||||
}
|
||||
return Mat(shape, dtype, const_cast<void*>(data));
|
||||
}
|
||||
|
||||
TFLiteImporter::TFLiteImporter(Net& dstNet, const char* modelBuffer, size_t bufSize)
|
||||
: dstNet(dstNet), dispatch(buildDispatchMap())
|
||||
{
|
||||
flatbuffers::Verifier verifier((const uint8_t*)modelBuffer, bufSize);
|
||||
if (!VerifyModelBuffer(verifier)) {
|
||||
CV_Error(Error::StsError, "DNN/TFLite: model is incorrect");
|
||||
}
|
||||
|
||||
model = GetModel(modelBuffer);
|
||||
CV_Assert(model);
|
||||
CV_Assert(model->subgraphs());
|
||||
CV_Assert(model->buffers());
|
||||
CV_CheckEQ(model->subgraphs()->size(), 1, "");
|
||||
|
||||
modelTensors = model->subgraphs()->Get(0)->tensors();
|
||||
CV_Assert(modelTensors);
|
||||
for (int i = 0; i < modelTensors->size(); ++i) {
|
||||
const Tensor* tensor = modelTensors->Get(i);
|
||||
CV_Assert(tensor);
|
||||
if (tensor->buffer() != 0) {
|
||||
allTensors[i] = parseTensor(*tensor);
|
||||
}
|
||||
}
|
||||
|
||||
populateNet();
|
||||
}
|
||||
|
||||
DataLayout estimateLayout(const Tensor& t)
|
||||
{
|
||||
const auto t_shape = t.shape();
|
||||
CV_Assert(t_shape);
|
||||
switch (t_shape->size()) {
|
||||
case 5: return DATA_LAYOUT_NDHWC;
|
||||
case 4: return DATA_LAYOUT_NHWC;
|
||||
case 2: return DATA_LAYOUT_PLANAR;
|
||||
default: return DATA_LAYOUT_UNKNOWN;
|
||||
}
|
||||
}
|
||||
|
||||
void TFLiteImporter::populateNet()
|
||||
{
|
||||
CV_Assert(model);
|
||||
const auto model_subgraphs = model->subgraphs();
|
||||
CV_Assert(model_subgraphs);
|
||||
const SubGraph* subgraph = model_subgraphs->Get(0);
|
||||
CV_Assert(subgraph);
|
||||
const auto subgraph_inputs = subgraph->inputs();
|
||||
CV_Assert(subgraph_inputs);
|
||||
const auto subgraph_operators = subgraph->operators();
|
||||
CV_Assert(subgraph_operators);
|
||||
const auto opCodes = model->operator_codes();
|
||||
CV_Assert(opCodes);
|
||||
|
||||
CV_Assert(modelTensors);
|
||||
layouts.resize(modelTensors->size(), DATA_LAYOUT_UNKNOWN);
|
||||
size_t subgraph_inputs_size = subgraph_inputs->size();
|
||||
for (size_t i = 0; i < subgraph_inputs_size; ++i)
|
||||
{
|
||||
int idx = subgraph_inputs->Get(i);
|
||||
layerIds[idx] = std::make_pair(0, i);
|
||||
const auto tensor = modelTensors->Get(idx);
|
||||
if (!tensor)
|
||||
CV_Error(Error::StsError, cv::format("DNN/TFLite: subgraph input %d (%d) is NULL", (int)i, idx));
|
||||
layouts[idx] = estimateLayout(*tensor);
|
||||
}
|
||||
const auto& all_operators = *subgraph_operators;
|
||||
const size_t all_operators_size = all_operators.size();
|
||||
for (size_t op_idx = 0; op_idx < all_operators_size; ++op_idx)
|
||||
{
|
||||
const auto op = all_operators[op_idx];
|
||||
CV_Assert(op);
|
||||
const auto op_inputs = op->inputs();
|
||||
CV_Assert(op_inputs);
|
||||
const auto op_outputs = op->outputs();
|
||||
CV_Assert(op_outputs);
|
||||
int idx = op->opcode_index();
|
||||
|
||||
LayerParams layerParams;
|
||||
layerParams.name = modelTensors->Get(op_outputs->Get(0))->name()->str();
|
||||
|
||||
std::string type = EnumNameBuiltinOperator(BuiltinOperator(opCodes->Get(idx)->deprecated_builtin_code()));
|
||||
if (type == "CUSTOM") {
|
||||
type = opCodes->Get(idx)->custom_code()->str();
|
||||
}
|
||||
|
||||
CV_LOG_DEBUG(NULL, "DNN/TFLite: processing operator (" << op_idx << "/" << all_operators_size << ") with " << op_inputs->size() << " inputs: "
|
||||
<< cv::format("[%s]:(%s)", type.c_str(), layerParams.name.c_str()));
|
||||
|
||||
try
|
||||
{
|
||||
if (type == "DEQUANTIZE") {
|
||||
// Convert from FP16 to FP32
|
||||
Mat data = allTensors[op_inputs->Get(0)];
|
||||
Mat dataFP32;
|
||||
convertFp16(data, dataFP32);
|
||||
allTensors[op_outputs->Get(0)] = dataFP32;
|
||||
continue;
|
||||
}
|
||||
|
||||
DispatchMap::const_iterator iter = dispatch.find(type);
|
||||
if (iter == dispatch.end())
|
||||
CV_Error(Error::StsNotImplemented, "Unsupported operator type " + type);
|
||||
|
||||
CALL_MEMBER_FN(*this, iter->second)(*op, type, layerParams);
|
||||
|
||||
// Collect input blobs
|
||||
std::vector<int> layerInputs;
|
||||
std::vector<DataLayout> inpLayouts;
|
||||
for (int idx : *op_inputs) {
|
||||
if (layerIds.find(idx) != layerIds.end()) {
|
||||
layerInputs.push_back(idx);
|
||||
inpLayouts.push_back(layouts[idx]);
|
||||
continue; // Output from a different layer
|
||||
}
|
||||
|
||||
Mat blob = allTensors[idx];
|
||||
layerParams.blobs.push_back(blob.u ? blob : blob.clone()); // some tensors are owned by OpenCV
|
||||
}
|
||||
|
||||
int layerId = dstNet.addLayer(layerParams.name, layerParams.type, layerParams);
|
||||
|
||||
// Connect layer to inputs
|
||||
int i = 0;
|
||||
for (int idx : layerInputs) {
|
||||
auto it = layerIds.find(idx);
|
||||
CV_Assert(it != layerIds.end());
|
||||
dstNet.connect(it->second.first, it->second.second, layerId, i++);
|
||||
}
|
||||
|
||||
// Predict output layout. Some layer-specific parsers may set them explicitly.
|
||||
// Otherwise, propagate input layout.
|
||||
if (layouts[op_outputs->Get(0)] == DATA_LAYOUT_UNKNOWN) {
|
||||
DataLayout predictedLayout = DATA_LAYOUT_UNKNOWN;
|
||||
for (auto layout : inpLayouts) {
|
||||
if (layout != DATA_LAYOUT_UNKNOWN) {
|
||||
if (predictedLayout == DATA_LAYOUT_UNKNOWN)
|
||||
predictedLayout = layout;
|
||||
else if (predictedLayout != layout) {
|
||||
predictedLayout = DATA_LAYOUT_UNKNOWN;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
layouts[op_outputs->Get(0)] = predictedLayout;
|
||||
}
|
||||
|
||||
// Register outputs
|
||||
i = 0;
|
||||
for (int idx : *op_outputs) {
|
||||
layerIds[idx] = std::make_pair(layerId, i++);
|
||||
}
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
CV_LOG_ERROR(NULL, "DNN/TFLite: Problem during import of operator "
|
||||
<< cv::format("[%s]:(%s)", type.c_str(), layerParams.name.c_str())
|
||||
<< " (" << op_idx << "/" << all_operators_size << "). Exception: " << e.what());
|
||||
if (DNN_DIAGNOSTICS_RUN)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
throw;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TFLiteImporter::DispatchMap TFLiteImporter::buildDispatchMap()
|
||||
{
|
||||
static DispatchMap dispatch;
|
||||
if (!dispatch.empty())
|
||||
return dispatch;
|
||||
|
||||
dispatch["CONV_2D"] = &TFLiteImporter::parseConvolution;
|
||||
dispatch["DEPTHWISE_CONV_2D"] = &TFLiteImporter::parseDWConvolution;
|
||||
dispatch["RELU"] = dispatch["ADD"] = dispatch["MUL"] = dispatch["PRELU"] =
|
||||
dispatch["HARD_SWISH"] = dispatch["LOGISTIC"] = &TFLiteImporter::parseEltwise;
|
||||
dispatch["MAX_POOL_2D"] = dispatch["AVERAGE_POOL_2D"] = &TFLiteImporter::parsePooling;
|
||||
dispatch["MaxPoolingWithArgmax2D"] = &TFLiteImporter::parsePoolingWithArgmax;
|
||||
dispatch["MaxUnpooling2D"] = &TFLiteImporter::parseUnpooling;
|
||||
dispatch["PAD"] = &TFLiteImporter::parsePadding;
|
||||
dispatch["RESHAPE"] = &TFLiteImporter::parseReshape;
|
||||
dispatch["CONCATENATION"] = &TFLiteImporter::parseConcat;
|
||||
dispatch["RESIZE_BILINEAR"] = &TFLiteImporter::parseResize;
|
||||
dispatch["Convolution2DTransposeBias"] = &TFLiteImporter::parseDeconvolution;
|
||||
return dispatch;
|
||||
}
|
||||
|
||||
void TFLiteImporter::parseConvolution(const Operator& op, const std::string& opcode, LayerParams& layerParams) {
|
||||
layerParams.type = "Convolution";
|
||||
|
||||
auto options = reinterpret_cast<const Conv2DOptions*>(op.builtin_options());
|
||||
if (options->fused_activation_function() != ActivationFunctionType_NONE) {
|
||||
CV_Error(Error::StsNotImplemented, "Convolution with fused activation");
|
||||
}
|
||||
layerParams.set("pad_mode", EnumNamePadding(options->padding()));
|
||||
layerParams.set("stride_w", options->stride_w());
|
||||
layerParams.set("stride_h", options->stride_h());
|
||||
layerParams.set("dilation_w", options->dilation_w_factor());
|
||||
layerParams.set("dilation_h", options->dilation_h_factor());
|
||||
|
||||
// Get filter size
|
||||
int filterIdx = op.inputs()->Get(1);
|
||||
Mat filter = allTensors[filterIdx];
|
||||
int oc = filter.size[0];
|
||||
int kh = filter.size[1];
|
||||
int kw = filter.size[2];
|
||||
int ic = filter.size[3];
|
||||
layerParams.set("kernel_w", kw);
|
||||
layerParams.set("kernel_h", kh);
|
||||
layerParams.set("num_output", oc);
|
||||
|
||||
// Reorder filter data from OHWI to OIHW and change shape correspondingly.
|
||||
filter = allTensors[filterIdx] = filter.reshape(1, {oc, ic, kh, kw});
|
||||
|
||||
CV_CheckTypeEQ(filter.type(), CV_32F, "");
|
||||
Mat filterCopy = filter.clone();
|
||||
float* data = filterCopy.ptr<float>();
|
||||
float* dstData = filter.ptr<float>();
|
||||
|
||||
int total = oc * ic * kh * kw;
|
||||
for (int i_oc = 0; i_oc < oc; i_oc++) {
|
||||
for (int i_ic = 0; i_ic < ic; i_ic++) {
|
||||
for (int i_h = 0; i_h < kh; i_h++) {
|
||||
for (int i_w = 0; i_w < kw; i_w++) {
|
||||
int dst_i = kw * (kh * (ic * i_oc + i_ic) + i_h) + i_w;
|
||||
int src_i = ic * (kw * (kh * i_oc + i_h) + i_w) + i_ic;
|
||||
CV_CheckLT(dst_i, total, "");
|
||||
CV_CheckLT(src_i, total, "");
|
||||
dstData[dst_i] = data[src_i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void TFLiteImporter::parseDWConvolution(const Operator& op, const std::string& opcode, LayerParams& layerParams) {
|
||||
layerParams.type = "Convolution";
|
||||
|
||||
auto options = reinterpret_cast<const DepthwiseConv2DOptions*>(op.builtin_options());
|
||||
if (options->fused_activation_function() != ActivationFunctionType_NONE) {
|
||||
CV_Error(Error::StsNotImplemented, "Depthwise convolution with fused activation");
|
||||
}
|
||||
layerParams.set("pad_mode", EnumNamePadding(options->padding()));
|
||||
layerParams.set("stride_w", options->stride_w());
|
||||
layerParams.set("stride_h", options->stride_h());
|
||||
layerParams.set("dilation_w", options->dilation_w_factor());
|
||||
layerParams.set("dilation_h", options->dilation_h_factor());
|
||||
|
||||
int filterIdx = op.inputs()->Get(1);
|
||||
Mat filter = allTensors[filterIdx];
|
||||
int kh = filter.size[1];
|
||||
int kw = filter.size[2];
|
||||
int oc = filter.size[3];
|
||||
layerParams.set("kernel_w", kw);
|
||||
layerParams.set("kernel_h", kh);
|
||||
layerParams.set("num_output", oc);
|
||||
layerParams.set("group", oc);
|
||||
|
||||
filter = allTensors[filterIdx] = filter.reshape(1, {oc, 1, kh, kw});
|
||||
cv::transpose(filter.reshape(1, kh * kw).clone(), filter.reshape(1, oc));
|
||||
}
|
||||
|
||||
void TFLiteImporter::parsePadding(const Operator& op, const std::string& opcode, LayerParams& layerParams) {
|
||||
layerParams.type = "Padding";
|
||||
Mat paddings = allTensors[op.inputs()->Get(1)];
|
||||
|
||||
CV_CheckTypeEQ(paddings.type(), CV_32S, "");
|
||||
// N H W C
|
||||
// 0 1 2 3 4 5 6 7
|
||||
std::swap(paddings.at<int32_t>(2), paddings.at<int32_t>(6));
|
||||
std::swap(paddings.at<int32_t>(3), paddings.at<int32_t>(7));
|
||||
// N C W H
|
||||
// 0 1 2 3 4 5 6 7
|
||||
std::swap(paddings.at<int32_t>(4), paddings.at<int32_t>(6));
|
||||
std::swap(paddings.at<int32_t>(5), paddings.at<int32_t>(7));
|
||||
// N C H W
|
||||
// 0 1 2 3 4 5 6 7
|
||||
|
||||
layerParams.set("paddings", DictValue::arrayInt<int32_t*>((int32_t*)paddings.data, paddings.total()));
|
||||
}
|
||||
|
||||
void TFLiteImporter::parseEltwise(const Operator& op, const std::string& opcode, LayerParams& layerParams) {
|
||||
if (opcode == "PRELU") {
|
||||
layerParams.type = "PReLU";
|
||||
} else if (opcode == "RELU") {
|
||||
layerParams.type = "ReLU";
|
||||
} else if (opcode == "ADD") {
|
||||
auto options = reinterpret_cast<const AddOptions*>(op.builtin_options());
|
||||
if (options->fused_activation_function() != ActivationFunctionType_NONE) {
|
||||
CV_Error(Error::StsNotImplemented, "Add with fused activation");
|
||||
}
|
||||
layerParams.type = "Eltwise";
|
||||
layerParams.set("operation", "sum");
|
||||
} else if (opcode == "MUL") {
|
||||
auto options = reinterpret_cast<const MulOptions*>(op.builtin_options());
|
||||
if (options->fused_activation_function() != ActivationFunctionType_NONE) {
|
||||
CV_Error(Error::StsNotImplemented, "Mul with fused activation");
|
||||
}
|
||||
layerParams.type = "Eltwise";
|
||||
layerParams.set("operation", "prod");
|
||||
} else if (opcode == "HARD_SWISH") {
|
||||
layerParams.type = "HardSwish";
|
||||
} else if (opcode == "LOGISTIC") {
|
||||
layerParams.type = "Sigmoid";
|
||||
} else {
|
||||
CV_Error(Error::StsNotImplemented, "Unknown eltwise operator opcode: " + opcode);
|
||||
}
|
||||
}
|
||||
|
||||
void TFLiteImporter::parsePooling(const Operator& op, const std::string& opcode, LayerParams& layerParams) {
|
||||
layerParams.type = "Pooling";
|
||||
|
||||
auto options = reinterpret_cast<const Pool2DOptions*>(op.builtin_options());
|
||||
if (options->fused_activation_function() != ActivationFunctionType_NONE) {
|
||||
CV_Error(Error::StsNotImplemented, "Pooling with fused activation");
|
||||
}
|
||||
layerParams.set("pad_mode", EnumNamePadding(options->padding()));
|
||||
layerParams.set("stride_w", options->stride_w());
|
||||
layerParams.set("stride_h", options->stride_h());
|
||||
layerParams.set("kernel_w", options->filter_width());
|
||||
layerParams.set("kernel_h", options->filter_height());
|
||||
if (opcode == "MAX_POOL_2D")
|
||||
layerParams.set("pool", "max");
|
||||
else if (opcode == "AVERAGE_POOL_2D")
|
||||
layerParams.set("pool", "ave");
|
||||
else
|
||||
CV_Error(Error::StsNotImplemented, "Pool type selection for " + opcode);
|
||||
}
|
||||
|
||||
void TFLiteImporter::parsePoolingWithArgmax(const Operator& op, const std::string& opcode, LayerParams& layerParams) {
|
||||
layerParams.type = "Pooling";
|
||||
|
||||
CV_CheckLE(op.custom_options()->size(), sizeof(TfLitePoolParams), "");
|
||||
const auto* params = reinterpret_cast<const TfLitePoolParams*>(op.custom_options()->Data());
|
||||
if (params->activation != kTfLiteActNone) {
|
||||
CV_Error(Error::StsNotImplemented, "Argmax pooling with fused activation");
|
||||
}
|
||||
if (params->padding != kTfLitePaddingUnknown)
|
||||
layerParams.set("pad_mode", params->padding == kTfLitePaddingSame ? "SAME" : "VALID");
|
||||
layerParams.set("stride_w", params->stride_width);
|
||||
layerParams.set("stride_h", params->stride_height);
|
||||
layerParams.set("kernel_w", params->filter_width);
|
||||
layerParams.set("kernel_h", params->filter_height);
|
||||
layerParams.set("pool", "max");
|
||||
}
|
||||
|
||||
void TFLiteImporter::parseUnpooling(const Operator& op, const std::string& opcode, LayerParams& layerParams) {
|
||||
layerParams.type = "MaxUnpool";
|
||||
|
||||
CV_CheckLE(op.custom_options()->size(), sizeof(TfLitePoolParams), "");
|
||||
const auto* params = reinterpret_cast<const TfLitePoolParams*>(op.custom_options()->Data());
|
||||
if (params->activation != kTfLiteActNone) {
|
||||
CV_Error(Error::StsNotImplemented, "Unpooling with fused activation");
|
||||
}
|
||||
layerParams.set("pool_stride_w", params->stride_width);
|
||||
layerParams.set("pool_stride_h", params->stride_height);
|
||||
layerParams.set("pool_k_w", params->filter_width);
|
||||
layerParams.set("pool_k_h", params->filter_height);
|
||||
layerParams.set("pool_pad_w", 0);
|
||||
layerParams.set("pool_pad_h", 0);
|
||||
}
|
||||
|
||||
void TFLiteImporter::parseReshape(const Operator& op, const std::string& opcode, LayerParams& layerParams) {
|
||||
DataLayout inpLayout = layouts[op.inputs()->Get(0)];
|
||||
|
||||
if (inpLayout == DATA_LAYOUT_NHWC) {
|
||||
// Permute to NCHW
|
||||
int permId = addPermuteLayer({0, 2, 3, 1}, layerParams.name + "/permute", layerIds[op.inputs()->Get(0)]); // NCHW -> NHWC
|
||||
layerIds[op.inputs()->Get(0)] = std::make_pair(permId, 0);
|
||||
layouts[op.outputs()->Get(0)] = DATA_LAYOUT_NCHW;
|
||||
}
|
||||
|
||||
layerParams.type = "Reshape";
|
||||
auto options = reinterpret_cast<const ReshapeOptions*>(op.builtin_options());
|
||||
std::vector<int> shape(options->new_shape()->begin(), options->new_shape()->end());
|
||||
// std::swap(shape[1], shape[2]);
|
||||
layerParams.set("dim", DictValue::arrayInt<int*>(shape.data(), shape.size()));
|
||||
}
|
||||
|
||||
void TFLiteImporter::parseConcat(const Operator& op, const std::string& opcode, LayerParams& layerParams) {
|
||||
layerParams.type = "Concat";
|
||||
auto options = reinterpret_cast<const ConcatenationOptions*>(op.builtin_options());
|
||||
if (options->fused_activation_function() != ActivationFunctionType_NONE) {
|
||||
CV_Error(Error::StsNotImplemented, "Concat with fused activation");
|
||||
}
|
||||
int axis = options->axis();
|
||||
|
||||
DataLayout inpLayout = layouts[op.inputs()->Get(0)];
|
||||
if (inpLayout == DATA_LAYOUT_NHWC) {
|
||||
// OpenCV works in NCHW data layout. So change the axis correspondingly.
|
||||
CV_Check(axis, -4 < axis && axis < 4, "");
|
||||
int remap[] = {0, 2, 3, 1};
|
||||
axis = axis > 0 ? axis : 4 + axis;
|
||||
axis = remap[axis];
|
||||
}
|
||||
layerParams.set("axis", axis);
|
||||
}
|
||||
|
||||
void TFLiteImporter::parseResize(const Operator& op, const std::string& opcode, LayerParams& layerParams) {
|
||||
layerParams.type = "Resize";
|
||||
|
||||
auto options = reinterpret_cast<const ResizeBilinearOptions*>(op.builtin_options());
|
||||
|
||||
layerParams.set("interpolation", "bilinear");
|
||||
layerParams.set("align_corners", options->align_corners());
|
||||
layerParams.set("half_pixel_centers", options->half_pixel_centers());
|
||||
|
||||
Mat shape = allTensors[op.inputs()->Get(1)].reshape(1, 1);
|
||||
layerParams.set("height", shape.at<int>(0, 0));
|
||||
layerParams.set("width", shape.at<int>(0, 1));
|
||||
}
|
||||
|
||||
int TFLiteImporter::addPermuteLayer(const std::vector<int>& order, const std::string& permName,
|
||||
const std::pair<int, int>& inpId)
|
||||
{
|
||||
LayerParams permLP;
|
||||
permLP.set("order", DictValue::arrayInt<const int*>(order.data(), order.size()));
|
||||
int permId = dstNet.addLayer(permName, "Permute", permLP);
|
||||
dstNet.connect(inpId.first, inpId.second, permId, 0);
|
||||
return permId;
|
||||
}
|
||||
|
||||
void TFLiteImporter::parseDeconvolution(const Operator& op, const std::string& opcode, LayerParams& layerParams) {
|
||||
layerParams.type = "Deconvolution";
|
||||
|
||||
CV_CheckLE(op.custom_options()->size(), sizeof(TfLiteTransposeConvParams), "");
|
||||
const auto* params = reinterpret_cast<const TfLiteTransposeConvParams*>(op.custom_options()->Data());
|
||||
if (params->padding != kTfLitePaddingUnknown)
|
||||
layerParams.set("pad_mode", params->padding == kTfLitePaddingSame ? "SAME" : "VALID");
|
||||
layerParams.set("stride_w", params->stride_width);
|
||||
layerParams.set("stride_h", params->stride_height);
|
||||
|
||||
// Get filter size
|
||||
int filterIdx = op.inputs()->Get(1);
|
||||
Mat filter = allTensors[filterIdx];
|
||||
int oc = filter.size[0];
|
||||
int kh = filter.size[1];
|
||||
int kw = filter.size[2];
|
||||
int ic = filter.size[3];
|
||||
layerParams.set("kernel_w", kw);
|
||||
layerParams.set("kernel_h", kh);
|
||||
layerParams.set("num_output", oc);
|
||||
|
||||
// Add adjust padding similar to TensorFlow (see tf_importer)
|
||||
const auto* outShape = modelTensors->Get(op.outputs()->Get(0))->shape();
|
||||
const int outH = outShape->Get(1);
|
||||
const int outW = outShape->Get(2);
|
||||
if (params->padding == kTfLitePaddingSame)
|
||||
{
|
||||
layerParams.set("adj_w", (outW - 1) % params->stride_width);
|
||||
layerParams.set("adj_h", (outH - 1) % params->stride_height);
|
||||
}
|
||||
else if (params->padding == kTfLitePaddingValid)
|
||||
{
|
||||
layerParams.set("adj_w", (outW - kw) % params->stride_width);
|
||||
layerParams.set("adj_h", (outH - kh) % params->stride_height);
|
||||
}
|
||||
|
||||
// Reorder filter data from OHWI to IOHW and change shape correspondingly.
|
||||
filter = allTensors[filterIdx] = filter.reshape(1, {ic, oc, kh, kw});
|
||||
|
||||
CV_CheckTypeEQ(filter.type(), CV_32F, "");
|
||||
Mat filterCopy = filter.clone();
|
||||
float* data = filterCopy.ptr<float>();
|
||||
float* dstData = filter.ptr<float>();
|
||||
|
||||
int total = oc * ic * kh * kw;
|
||||
for (int i_oc = 0; i_oc < oc; i_oc++) {
|
||||
for (int i_ic = 0; i_ic < ic; i_ic++) {
|
||||
for (int i_h = 0; i_h < kh; i_h++) {
|
||||
for (int i_w = 0; i_w < kw; i_w++) {
|
||||
int dst_i = kw * (kh * (oc * i_ic + i_oc) + i_h) + i_w;
|
||||
int src_i = ic * (kw * (kh * i_oc + i_h) + i_w) + i_ic;
|
||||
CV_CheckLT(dst_i, total, "");
|
||||
CV_CheckLT(src_i, total, "");
|
||||
dstData[dst_i] = data[src_i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Net readNetFromTFLite(const String &modelPath) {
|
||||
Net net;
|
||||
|
||||
std::vector<char> content;
|
||||
|
||||
const std::ios::openmode mode = std::ios::in | std::ios::binary;
|
||||
std::ifstream ifs(modelPath, mode);
|
||||
if (!ifs.is_open())
|
||||
CV_Error(Error::StsError, cv::format("DNN/TFLite: can't open model file '%s'", modelPath.c_str()));
|
||||
|
||||
ifs.seekg(0, std::ios::end);
|
||||
const size_t sz = ifs.tellg();
|
||||
CV_Assert(sz > 0);
|
||||
content.resize(sz);
|
||||
ifs.seekg(0, std::ios::beg);
|
||||
|
||||
ifs.read(content.data(), sz);
|
||||
CV_Assert(!ifs.bad());
|
||||
|
||||
TFLiteImporter(net, content.data(), content.size());
|
||||
return net;
|
||||
}
|
||||
|
||||
Net readNetFromTFLite(const std::vector<uchar>& bufferModel) {
|
||||
return readNetFromTFLite((const char*)bufferModel.data(), bufferModel.size());
|
||||
}
|
||||
|
||||
Net readNetFromTFLite(const char *bufferModel, size_t bufSize) {
|
||||
Net net;
|
||||
TFLiteImporter(net, bufferModel, bufSize);
|
||||
return net;
|
||||
}
|
||||
|
||||
#else // HAVE_FLATBUFFERS
|
||||
|
||||
#define DNN_TFLITE_UNSUPPORTED() CV_Error(Error::StsError, "DNN/TFLite: Build OpenCV with FlatBuffers to import TFLite models: https://github.com/opencv/opencv/pull/23161")
|
||||
|
||||
Net readNetFromTFLite(const String &) {
|
||||
DNN_TFLITE_UNSUPPORTED();
|
||||
}
|
||||
|
||||
Net readNetFromTFLite(const std::vector<uchar>&) {
|
||||
DNN_TFLITE_UNSUPPORTED();
|
||||
}
|
||||
|
||||
Net readNetFromTFLite(const char *, size_t) {
|
||||
DNN_TFLITE_UNSUPPORTED();
|
||||
}
|
||||
|
||||
#endif // HAVE_FLATBUFFERS
|
||||
|
||||
CV__DNN_INLINE_NS_END
|
||||
}} // namespace cv::dnn
|
123
modules/dnn/test/test_tflite_importer.cpp
Normal file
123
modules/dnn/test/test_tflite_importer.cpp
Normal file
@ -0,0 +1,123 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
/*
|
||||
Test for TFLite models loading
|
||||
*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include "npy_blob.hpp"
|
||||
|
||||
#include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS
|
||||
#include <opencv2/dnn/utils/debug_utils.hpp>
|
||||
|
||||
namespace opencv_test
|
||||
{
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::dnn;
|
||||
|
||||
void testModel(const std::string& modelName, const Mat& input, double norm = 1e-5) {
|
||||
#ifndef HAVE_FLATBUFFERS
|
||||
throw SkipTestException("FlatBuffers required for TFLite importer");
|
||||
#endif
|
||||
|
||||
Net net = readNet(findDataFile("dnn/tflite/" + modelName + ".tflite", false));
|
||||
net.setInput(input);
|
||||
|
||||
std::vector<String> outNames = net.getUnconnectedOutLayersNames();
|
||||
|
||||
std::vector<Mat> outs;
|
||||
net.forward(outs, outNames);
|
||||
|
||||
ASSERT_EQ(outs.size(), outNames.size());
|
||||
for (int i = 0; i < outNames.size(); ++i) {
|
||||
Mat ref = blobFromNPY(findDataFile(format("dnn/tflite/%s_out_%s.npy", modelName.c_str(), outNames[i].c_str())));
|
||||
normAssert(ref.reshape(1, 1), outs[i].reshape(1, 1), outNames[i].c_str(), norm);
|
||||
}
|
||||
}
|
||||
|
||||
void testModel(const std::string& modelName, const Size& inpSize, double norm = 1e-5) {
|
||||
Mat input = imread(findDataFile("cv/shared/lena.png"));
|
||||
input = blobFromImage(input, 1.0 / 255, inpSize, 0, true);
|
||||
testModel(modelName, input, norm);
|
||||
}
|
||||
|
||||
// https://google.github.io/mediapipe/solutions/face_mesh
|
||||
TEST(Test_TFLite, face_landmark)
|
||||
{
|
||||
testModel("face_landmark", Size(192, 192), 2e-5);
|
||||
}
|
||||
|
||||
// https://google.github.io/mediapipe/solutions/face_detection
|
||||
TEST(Test_TFLite, face_detection_short_range)
|
||||
{
|
||||
testModel("face_detection_short_range", Size(128, 128));
|
||||
}
|
||||
|
||||
// https://google.github.io/mediapipe/solutions/selfie_segmentation
|
||||
TEST(Test_TFLite, selfie_segmentation)
|
||||
{
|
||||
testModel("selfie_segmentation", Size(256, 256));
|
||||
}
|
||||
|
||||
TEST(Test_TFLite, max_unpooling)
|
||||
{
|
||||
#ifndef HAVE_FLATBUFFERS
|
||||
throw SkipTestException("FlatBuffers required for TFLite importer");
|
||||
#endif
|
||||
// Due Max Unpoling is a numerically unstable operation and small difference between frameworks
|
||||
// might lead to positional difference of maximal elements in the tensor, this test checks
|
||||
// behavior of Max Unpooling layer only.
|
||||
Net net = readNet(findDataFile("dnn/tflite/hair_segmentation.tflite", false));
|
||||
|
||||
Mat input = imread(findDataFile("cv/shared/lena.png"));
|
||||
cvtColor(input, input, COLOR_BGR2RGBA);
|
||||
input = input.mul(Scalar(1, 1, 1, 0));
|
||||
input = blobFromImage(input, 1.0 / 255);
|
||||
net.setInput(input);
|
||||
|
||||
std::vector<std::vector<Mat> > outs;
|
||||
net.forward(outs, {"p_re_lu_1", "max_pooling_with_argmax2d", "conv2d_86", "max_unpooling2d_2"});
|
||||
ASSERT_EQ(outs.size(), 4);
|
||||
ASSERT_EQ(outs[0].size(), 1);
|
||||
ASSERT_EQ(outs[1].size(), 2);
|
||||
ASSERT_EQ(outs[2].size(), 1);
|
||||
ASSERT_EQ(outs[3].size(), 1);
|
||||
Mat poolInp = outs[0][0];
|
||||
Mat poolOut = outs[1][0];
|
||||
Mat poolIds = outs[1][1];
|
||||
Mat unpoolInp = outs[2][0];
|
||||
Mat unpoolOut = outs[3][0];
|
||||
|
||||
ASSERT_EQ(poolInp.size, unpoolOut.size);
|
||||
ASSERT_EQ(poolOut.size, poolIds.size);
|
||||
ASSERT_EQ(poolOut.size, unpoolInp.size);
|
||||
|
||||
for (int c = 0; c < 32; ++c) {
|
||||
float *poolInpData = poolInp.ptr<float>(0, c);
|
||||
float *poolOutData = poolOut.ptr<float>(0, c);
|
||||
float *poolIdsData = poolIds.ptr<float>(0, c);
|
||||
float *unpoolInpData = unpoolInp.ptr<float>(0, c);
|
||||
float *unpoolOutData = unpoolOut.ptr<float>(0, c);
|
||||
for (int y = 0; y < 64; ++y) {
|
||||
for (int x = 0; x < 64; ++x) {
|
||||
int maxIdx = (y * 128 + x) * 2;
|
||||
std::vector<int> indices{maxIdx + 1, maxIdx + 128, maxIdx + 129};
|
||||
std::string errMsg = format("Channel %d, y: %d, x: %d", c, y, x);
|
||||
for (int idx : indices) {
|
||||
if (poolInpData[idx] > poolInpData[maxIdx]) {
|
||||
EXPECT_EQ(unpoolOutData[maxIdx], 0.0f) << errMsg;
|
||||
maxIdx = idx;
|
||||
}
|
||||
}
|
||||
EXPECT_EQ(poolInpData[maxIdx], poolOutData[y * 64 + x]) << errMsg;
|
||||
EXPECT_EQ(poolIdsData[y * 64 + x], (float)maxIdx) << errMsg;
|
||||
EXPECT_EQ(unpoolOutData[maxIdx], unpoolInpData[y * 64 + x]) << errMsg;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
@ -135,7 +135,7 @@ video = {
|
||||
|
||||
dnn = {'dnn_Net': ['setInput', 'forward', 'setPreferableBackend'],
|
||||
'': ['readNetFromCaffe', 'readNetFromTensorflow', 'readNetFromTorch', 'readNetFromDarknet',
|
||||
'readNetFromONNX', 'readNet', 'blobFromImage']}
|
||||
'readNetFromONNX', 'readNetFromTFLite', 'readNet', 'blobFromImage']}
|
||||
|
||||
features2d = {'Feature2D': ['detect', 'compute', 'detectAndCompute', 'descriptorSize', 'descriptorType', 'defaultNorm', 'empty', 'getDefaultName'],
|
||||
'BRISK': ['create', 'getDefaultName'],
|
||||
|
Loading…
Reference in New Issue
Block a user