mirror of
https://github.com/opencv/opencv.git
synced 2025-08-05 22:19:14 +08:00
Merge pull request #18419 from TolyaTalamanov:at/generic-inference
[G-API] Introduce generic version for cv::gapi::infer * Introduce generic infer * Move Generic to infer.hpp * Removew num_outs * Fix windows warnings * Fix comments to review * Fix doxygen * Add comment * Fix comments to review * standoalone ifdef in ginfer.cpp * Fix test
This commit is contained in:
parent
6a51e3b39a
commit
76be3529f4
@ -56,11 +56,16 @@ public:
|
||||
Priv& priv();
|
||||
const Priv& priv() const;
|
||||
|
||||
protected:
|
||||
std::shared_ptr<Priv> m_priv;
|
||||
// GKernel and params can be modified, it's needed for infer<Generic>,
|
||||
// because information about output shapes doesn't exist in compile time
|
||||
GKernel& kernel();
|
||||
cv::util::any& params();
|
||||
|
||||
void setArgs(std::vector<GArg> &&args);
|
||||
|
||||
protected:
|
||||
std::shared_ptr<Priv> m_priv;
|
||||
|
||||
// Public versions return a typed array or opaque, those are implementation details
|
||||
detail::GArrayU yieldArray(int output = 0);
|
||||
detail::GOpaqueU yieldOpaque(int output = 0);
|
||||
|
@ -121,6 +121,45 @@ struct GInferBase {
|
||||
}
|
||||
};
|
||||
|
||||
// Struct stores network input/output names.
|
||||
// Used by infer<Generic>
|
||||
struct InOutInfo
|
||||
{
|
||||
std::vector<std::string> in_names;
|
||||
std::vector<std::string> out_names;
|
||||
};
|
||||
|
||||
/**
|
||||
* @{
|
||||
* @brief G-API object used to collect network inputs
|
||||
*/
|
||||
class GAPI_EXPORTS GInferInputs
|
||||
{
|
||||
public:
|
||||
cv::GMat& operator[](const std::string& name);
|
||||
const std::unordered_map<std::string, cv::GMat>& getBlobs() const;
|
||||
|
||||
private:
|
||||
std::unordered_map<std::string, cv::GMat> in_blobs;
|
||||
};
|
||||
/** @} */
|
||||
|
||||
/**
|
||||
* @{
|
||||
* @brief G-API object used to collect network outputs
|
||||
*/
|
||||
struct GAPI_EXPORTS GInferOutputs
|
||||
{
|
||||
public:
|
||||
GInferOutputs(std::shared_ptr<cv::GCall> call);
|
||||
cv::GMat at(const std::string& name);
|
||||
|
||||
private:
|
||||
std::shared_ptr<cv::GCall> m_call;
|
||||
InOutInfo* m_info = nullptr;
|
||||
std::unordered_map<std::string, cv::GMat> out_blobs;
|
||||
};
|
||||
/** @} */
|
||||
|
||||
// Base "Infer list" kernel.
|
||||
// All notes from "Infer" kernel apply here as well.
|
||||
@ -254,6 +293,45 @@ typename Net::Result infer(Args&&... args) {
|
||||
return GInfer<Net>::on(std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Special network type
|
||||
*/
|
||||
struct Generic { };
|
||||
|
||||
/**
|
||||
* @brief Calculates response for generic network
|
||||
*
|
||||
* @param tag a network tag
|
||||
* @param inputs networks's inputs
|
||||
* @return a GInferOutputs
|
||||
*/
|
||||
template<typename T = Generic> GInferOutputs
|
||||
infer(const std::string& tag, const GInferInputs& inputs)
|
||||
{
|
||||
std::vector<GArg> input_args;
|
||||
std::vector<std::string> input_names;
|
||||
|
||||
const auto& blobs = inputs.getBlobs();
|
||||
for (auto&& p : blobs)
|
||||
{
|
||||
input_names.push_back(p.first);
|
||||
input_args.emplace_back(p.second);
|
||||
}
|
||||
|
||||
GKinds kinds(blobs.size(), cv::detail::OpaqueKind::CV_MAT);
|
||||
auto call = std::make_shared<cv::GCall>(GKernel{
|
||||
GInferBase::id(),
|
||||
tag,
|
||||
GInferBase::getOutMeta,
|
||||
{}, // outShape will be filled later
|
||||
std::move(kinds)
|
||||
});
|
||||
|
||||
call->setArgs(std::move(input_args));
|
||||
call->params() = InOutInfo{input_names, {}};
|
||||
|
||||
return GInferOutputs{std::move(call)};
|
||||
}
|
||||
|
||||
} // namespace gapi
|
||||
} // namespace cv
|
||||
|
@ -17,6 +17,7 @@
|
||||
|
||||
#include <opencv2/core/cvdef.h> // GAPI_EXPORTS
|
||||
#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
|
||||
#include <opencv2/gapi/infer.hpp> // Generic
|
||||
|
||||
namespace cv {
|
||||
namespace gapi {
|
||||
@ -58,6 +59,8 @@ namespace detail {
|
||||
// (e.g. topology's partial execution)
|
||||
std::size_t num_in; // How many inputs are defined in the operation
|
||||
std::size_t num_out; // How many outputs are defined in the operation
|
||||
|
||||
bool is_generic;
|
||||
};
|
||||
} // namespace detail
|
||||
|
||||
@ -80,7 +83,7 @@ public:
|
||||
: desc{ model, weights, device, {}, {}, {}
|
||||
, std::tuple_size<typename Net::InArgs>::value // num_in
|
||||
, std::tuple_size<typename Net::OutArgs>::value // num_out
|
||||
} {
|
||||
, false} {
|
||||
};
|
||||
|
||||
Params<Net>& cfgInputLayers(const typename PortCfg<Net>::In &ll) {
|
||||
@ -107,15 +110,36 @@ public:
|
||||
}
|
||||
|
||||
// BEGIN(G-API's network parametrization API)
|
||||
GBackend backend() const { return cv::gapi::ie::backend(); }
|
||||
std::string tag() const { return Net::tag(); }
|
||||
cv::util::any params() const { return { desc }; }
|
||||
GBackend backend() const { return cv::gapi::ie::backend(); }
|
||||
std::string tag() const { return Net::tag(); }
|
||||
cv::util::any params() const { return { desc }; }
|
||||
// END(G-API's network parametrization API)
|
||||
|
||||
protected:
|
||||
detail::ParamDesc desc;
|
||||
};
|
||||
|
||||
template<>
|
||||
class Params<cv::gapi::Generic> {
|
||||
public:
|
||||
Params(const std::string& tag,
|
||||
const std::string &model,
|
||||
const std::string &weights,
|
||||
const std::string &device)
|
||||
: desc{ model, weights, device, {}, {}, {}, 0u, 0u, true}, m_tag(tag) {
|
||||
};
|
||||
|
||||
// BEGIN(G-API's network parametrization API)
|
||||
GBackend backend() const { return cv::gapi::ie::backend(); }
|
||||
std::string tag() const { return m_tag; }
|
||||
cv::util::any params() const { return { desc }; }
|
||||
// END(G-API's network parametrization API)
|
||||
|
||||
protected:
|
||||
detail::ParamDesc desc;
|
||||
std::string m_tag;
|
||||
};
|
||||
|
||||
} // namespace ie
|
||||
} // namespace gapi
|
||||
} // namespace cv
|
||||
|
@ -78,3 +78,13 @@ const cv::GCall::Priv& cv::GCall::priv() const
|
||||
{
|
||||
return *m_priv;
|
||||
}
|
||||
|
||||
cv::GKernel& cv::GCall::kernel()
|
||||
{
|
||||
return m_priv->m_k;
|
||||
}
|
||||
|
||||
cv::util::any& cv::GCall::params()
|
||||
{
|
||||
return m_priv->m_params;
|
||||
}
|
||||
|
@ -42,10 +42,11 @@ class GCall::Priv
|
||||
{
|
||||
public:
|
||||
std::vector<GArg> m_args;
|
||||
const GKernel m_k;
|
||||
GKernel m_k;
|
||||
|
||||
// TODO: Rename to "constructionNode" or smt to reflect its lifetime
|
||||
GNode m_node;
|
||||
cv::util::any m_params;
|
||||
|
||||
explicit Priv(const GKernel &k);
|
||||
};
|
||||
|
@ -25,3 +25,33 @@ std::vector<cv::gapi::GBackend> cv::gapi::GNetPackage::backends() const {
|
||||
for (const auto &nn : networks) unique_set.insert(nn.backend);
|
||||
return std::vector<cv::gapi::GBackend>(unique_set.begin(), unique_set.end());
|
||||
}
|
||||
|
||||
// FIXME: Inference API is currently only available in full mode
|
||||
#if !defined(GAPI_STANDALONE)
|
||||
|
||||
cv::GMat& cv::GInferInputs::operator[](const std::string& name) {
|
||||
return in_blobs[name];
|
||||
}
|
||||
|
||||
const std::unordered_map<std::string, cv::GMat>& cv::GInferInputs::getBlobs() const {
|
||||
return in_blobs;
|
||||
}
|
||||
|
||||
cv::GInferOutputs::GInferOutputs(std::shared_ptr<cv::GCall> call)
|
||||
: m_call(std::move(call)), m_info(cv::util::any_cast<InOutInfo>(&m_call->params()))
|
||||
{
|
||||
};
|
||||
|
||||
cv::GMat cv::GInferOutputs::at(const std::string& name)
|
||||
{
|
||||
auto it = out_blobs.find(name);
|
||||
if (it == out_blobs.end()) {
|
||||
// FIXME: Avoid modifying GKernel
|
||||
m_call->kernel().outShapes.push_back(cv::GShape::GMAT);
|
||||
int out_idx = static_cast<int>(out_blobs.size());
|
||||
it = out_blobs.emplace(name, m_call->yield(out_idx)).first;
|
||||
m_info->out_names.push_back(name);
|
||||
}
|
||||
return it->second;
|
||||
};
|
||||
#endif // GAPI_STANDALONE
|
||||
|
@ -721,9 +721,23 @@ namespace {
|
||||
// FIXME: Introduce a DNNBackend interface which'd specify
|
||||
// the framework for this???
|
||||
GIEModel gm(gr);
|
||||
const auto &np = gm.metadata(nh).get<NetworkParams>();
|
||||
const auto &pp = cv::util::any_cast<cv::gapi::ie::detail::ParamDesc>(np.opaque);
|
||||
auto &np = gm.metadata(nh).get<NetworkParams>();
|
||||
auto &pp = cv::util::any_cast<cv::gapi::ie::detail::ParamDesc>(np.opaque);
|
||||
const auto &ki = cv::util::any_cast<KImpl>(ii.opaque);
|
||||
|
||||
GModel::Graph model(gr);
|
||||
auto& op = model.metadata(nh).get<Op>();
|
||||
|
||||
// NB: In case generic infer, info about in/out names is stored in operation (op.params)
|
||||
if (pp.is_generic)
|
||||
{
|
||||
auto& info = cv::util::any_cast<cv::InOutInfo>(op.params);
|
||||
pp.input_names = info.in_names;
|
||||
pp.output_names = info.out_names;
|
||||
pp.num_in = info.in_names.size();
|
||||
pp.num_out = info.out_names.size();
|
||||
}
|
||||
|
||||
gm.metadata(nh).set(IEUnit{pp});
|
||||
gm.metadata(nh).set(IECallable{ki.run});
|
||||
gm.metadata(nh).set(CustomMetaFunction{ki.customMetaFunc});
|
||||
|
@ -23,12 +23,16 @@
|
||||
|
||||
namespace cv { namespace gimpl {
|
||||
|
||||
ade::NodeHandle GModel::mkOpNode(GModel::Graph &g, const GKernel &k, const std::vector<GArg> &args, const std::string &island)
|
||||
ade::NodeHandle GModel::mkOpNode(GModel::Graph &g,
|
||||
const GKernel &k,
|
||||
const std::vector<GArg> &args,
|
||||
const cv::util::any ¶ms,
|
||||
const std::string &island)
|
||||
{
|
||||
ade::NodeHandle op_h = g.createNode();
|
||||
g.metadata(op_h).set(NodeType{NodeType::OP});
|
||||
//These extra empty {} are to please GCC (-Wmissing-field-initializers)
|
||||
g.metadata(op_h).set(Op{k, args, {}, {}});
|
||||
g.metadata(op_h).set(Op{k, args, {}, {}, params});
|
||||
if (!island.empty())
|
||||
g.metadata(op_h).set(Island{island});
|
||||
return op_h;
|
||||
|
@ -61,6 +61,7 @@ struct Op
|
||||
std::vector<RcDesc> outs; // TODO: Introduce a new type for resource references
|
||||
|
||||
cv::gapi::GBackend backend;
|
||||
cv::util::any params; // Operation specific information
|
||||
};
|
||||
|
||||
struct Data
|
||||
@ -262,7 +263,11 @@ namespace GModel
|
||||
// GAPI_EXPORTS for tests
|
||||
GAPI_EXPORTS void init (Graph& g);
|
||||
|
||||
GAPI_EXPORTS ade::NodeHandle mkOpNode(Graph &g, const GKernel &k, const std::vector<GArg>& args, const std::string &island);
|
||||
GAPI_EXPORTS ade::NodeHandle mkOpNode(Graph &g,
|
||||
const GKernel &k,
|
||||
const std::vector<GArg>& args,
|
||||
const cv::util::any& params,
|
||||
const std::string &island);
|
||||
// Isn't used by the framework or default backends, required for external backend development
|
||||
GAPI_EXPORTS ade::NodeHandle mkDataNode(Graph &g, const GShape shape);
|
||||
|
||||
|
@ -286,7 +286,7 @@ ade::NodeHandle cv::gimpl::GModelBuilder::put_OpNode(const cv::GNode &node)
|
||||
{
|
||||
GAPI_Assert(node.shape() == GNode::NodeShape::CALL);
|
||||
const auto &call_p = node.call().priv();
|
||||
auto nh = cv::gimpl::GModel::mkOpNode(m_gm, call_p.m_k, call_p.m_args, node_p.m_island);
|
||||
auto nh = cv::gimpl::GModel::mkOpNode(m_gm, call_p.m_k, call_p.m_args, call_p.m_params, node_p.m_island);
|
||||
m_graph_ops[&node_p] = nh;
|
||||
return nh;
|
||||
}
|
||||
|
@ -350,6 +350,59 @@ TEST(DISABLED_TestTwoIENNPipeline, InferBasicImage)
|
||||
normAssert(cv::gapi::ie::util::to_ocv(ie_gender2), gapi_gender2, "Test gender output 2");
|
||||
}
|
||||
|
||||
TEST(TestAgeGenderIE, GenericInfer)
|
||||
{
|
||||
initDLDTDataPath();
|
||||
|
||||
cv::gapi::ie::detail::ParamDesc params;
|
||||
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
params.device_id = "CPU";
|
||||
|
||||
cv::Mat in_mat(cv::Size(320, 240), CV_8UC3);
|
||||
cv::randu(in_mat, 0, 255);
|
||||
|
||||
cv::Mat gapi_age, gapi_gender;
|
||||
|
||||
// Load & run IE network
|
||||
IE::Blob::Ptr ie_age, ie_gender;
|
||||
{
|
||||
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
|
||||
auto net = cv::gimpl::ie::wrap::readNetwork(params);
|
||||
setNetParameters(net);
|
||||
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
|
||||
auto infer_request = this_network.CreateInferRequest();
|
||||
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat));
|
||||
infer_request.Infer();
|
||||
ie_age = infer_request.GetBlob("age_conv3");
|
||||
ie_gender = infer_request.GetBlob("prob");
|
||||
}
|
||||
|
||||
// Configure & run G-API
|
||||
cv::GMat in;
|
||||
GInferInputs inputs;
|
||||
inputs["data"] = in;
|
||||
|
||||
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", inputs);
|
||||
|
||||
auto age = outputs.at("age_conv3");
|
||||
auto gender = outputs.at("prob");
|
||||
|
||||
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
|
||||
|
||||
cv::gapi::ie::Params<cv::gapi::Generic> pp{"age-gender-generic",
|
||||
params.model_path,
|
||||
params.weights_path,
|
||||
params.device_id};
|
||||
|
||||
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
|
||||
cv::compile_args(cv::gapi::networks(pp)));
|
||||
|
||||
// Validate with IE itself (avoid DNN module dependency here)
|
||||
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" );
|
||||
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output");
|
||||
}
|
||||
|
||||
} // namespace opencv_test
|
||||
|
||||
#endif // HAVE_INF_ENGINE
|
||||
|
Loading…
Reference in New Issue
Block a user