mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Merge pull request #2220 from ilya-lavrenov:tapi_accumulate
This commit is contained in:
commit
77bbd65fa6
@ -22,6 +22,15 @@
|
||||
fflush(stdout); \
|
||||
} \
|
||||
}
|
||||
#elif defined CV_OPENCL_RUN_ASSERT
|
||||
#define CV_OCL_RUN_(condition, func, ...) \
|
||||
{ \
|
||||
if (cv::ocl::useOpenCL() && (condition)) \
|
||||
{ \
|
||||
CV_Assert(func); \
|
||||
return; \
|
||||
} \
|
||||
}
|
||||
#else
|
||||
#define CV_OCL_RUN_(condition, func, ...) \
|
||||
if (cv::ocl::useOpenCL() && (condition) && func) \
|
||||
|
140
modules/imgproc/perf/opencl/perf_accumulate.cpp
Normal file
140
modules/imgproc/perf/opencl/perf_accumulate.cpp
Normal file
@ -0,0 +1,140 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Nathan, liujun@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp"
|
||||
#include "opencv2/ts/ocl_perf.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
namespace cvtest {
|
||||
namespace ocl {
|
||||
|
||||
/////////////////////////////////// Accumulate ///////////////////////////////////
|
||||
|
||||
typedef Size_MatType AccumulateFixture;
|
||||
|
||||
OCL_PERF_TEST_P(AccumulateFixture, Accumulate,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES))
|
||||
{
|
||||
Size_MatType_t params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int srcType = get<1>(params), cn = CV_MAT_CN(srcType), dstType = CV_32FC(cn);
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, dstType);
|
||||
|
||||
UMat src(srcSize, srcType), dst(srcSize, dstType);
|
||||
declare.in(src, dst, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::accumulate(src, dst);
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
/////////////////////////////////// AccumulateSquare ///////////////////////////////////
|
||||
|
||||
typedef Size_MatType AccumulateSquareFixture;
|
||||
|
||||
OCL_PERF_TEST_P(AccumulateSquareFixture, AccumulateSquare,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES))
|
||||
{
|
||||
Size_MatType_t params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int srcType = get<1>(params), cn = CV_MAT_CN(srcType), dstType = CV_32FC(cn);
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, dstType);
|
||||
|
||||
UMat src(srcSize, srcType), dst(srcSize, dstType);
|
||||
declare.in(src, dst, WARMUP_RNG);
|
||||
|
||||
OCL_TEST_CYCLE() cv::accumulateSquare(src, dst);
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
/////////////////////////////////// AccumulateProduct ///////////////////////////////////
|
||||
|
||||
typedef Size_MatType AccumulateProductFixture;
|
||||
|
||||
OCL_PERF_TEST_P(AccumulateProductFixture, AccumulateProduct,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES))
|
||||
{
|
||||
Size_MatType_t params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int srcType = get<1>(params), cn = CV_MAT_CN(srcType), dstType = CV_32FC(cn);
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, dstType);
|
||||
|
||||
UMat src1(srcSize, srcType), src2(srcSize, srcType), dst(srcSize, dstType);
|
||||
declare.in(src1, src2, dst, WARMUP_RNG);
|
||||
|
||||
OCL_TEST_CYCLE() cv::accumulateProduct(src1, src2, dst);
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
/////////////////////////////////// AccumulateWeighted ///////////////////////////////////
|
||||
|
||||
typedef Size_MatType AccumulateWeightedFixture;
|
||||
|
||||
OCL_PERF_TEST_P(AccumulateWeightedFixture, AccumulateWeighted,
|
||||
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES))
|
||||
{
|
||||
Size_MatType_t params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int srcType = get<1>(params), cn = CV_MAT_CN(srcType), dstType = CV_32FC(cn);
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, dstType);
|
||||
|
||||
UMat src(srcSize, srcType), dst(srcSize, dstType);
|
||||
declare.in(src, dst, WARMUP_RNG);
|
||||
|
||||
OCL_TEST_CYCLE() cv::accumulateWeighted(src, dst, 2.0);
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
} } // namespace cvtest::ocl
|
||||
|
||||
#endif
|
@ -41,6 +41,7 @@
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencl_kernels.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
@ -352,15 +353,83 @@ inline int getAccTabIdx(int sdepth, int ddepth)
|
||||
sdepth == CV_64F && ddepth == CV_64F ? 6 : -1;
|
||||
}
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
enum
|
||||
{
|
||||
ACCUMULATE = 0,
|
||||
ACCUMULATE_SQUARE = 1,
|
||||
ACCUMULATE_PRODUCT = 2,
|
||||
ACCUMULATE_WEIGHTED = 3
|
||||
};
|
||||
|
||||
static bool ocl_accumulate( InputArray _src, InputArray _src2, InputOutputArray _dst, double alpha,
|
||||
InputArray _mask, int op_type )
|
||||
{
|
||||
CV_Assert(op_type == ACCUMULATE || op_type == ACCUMULATE_SQUARE ||
|
||||
op_type == ACCUMULATE_PRODUCT || op_type == ACCUMULATE_WEIGHTED);
|
||||
|
||||
int stype = _src.type(), cn = CV_MAT_CN(stype);
|
||||
int sdepth = CV_MAT_DEPTH(stype), ddepth = _dst.depth();
|
||||
|
||||
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0,
|
||||
haveMask = !_mask.empty();
|
||||
|
||||
if (!doubleSupport && (sdepth == CV_64F || ddepth == CV_64F))
|
||||
return false;
|
||||
|
||||
const char * const opMap[4] = { "ACCUMULATE", "ACCUMULATE_SQUARE", "ACCUMULATE_PRODUCT",
|
||||
"ACCUMULATE_WEIGHTED" };
|
||||
|
||||
ocl::Kernel k("accumulate", ocl::imgproc::accumulate_oclsrc,
|
||||
format("-D %s%s -D srcT=%s -D cn=%d -D dstT=%s%s",
|
||||
opMap[op_type], haveMask ? " -D HAVE_MASK" : "",
|
||||
ocl::typeToStr(sdepth), cn, ocl::typeToStr(ddepth),
|
||||
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
|
||||
if (k.empty())
|
||||
return false;
|
||||
|
||||
UMat src = _src.getUMat(), src2 = _src2.getUMat(), dst = _dst.getUMat(), mask = _mask.getUMat();
|
||||
|
||||
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
|
||||
src2arg = ocl::KernelArg::ReadOnlyNoSize(src2),
|
||||
dstarg = ocl::KernelArg::ReadWrite(dst),
|
||||
maskarg = ocl::KernelArg::ReadOnlyNoSize(mask);
|
||||
|
||||
int argidx = k.set(0, srcarg);
|
||||
if (op_type == ACCUMULATE_PRODUCT)
|
||||
argidx = k.set(argidx, src2arg);
|
||||
argidx = k.set(argidx, dstarg);
|
||||
if (op_type == ACCUMULATE_WEIGHTED)
|
||||
{
|
||||
if (ddepth == CV_32F)
|
||||
argidx = k.set(argidx, (float)alpha);
|
||||
else
|
||||
argidx = k.set(argidx, alpha);
|
||||
}
|
||||
if (haveMask)
|
||||
argidx = k.set(argidx, maskarg);
|
||||
|
||||
size_t globalsize[2] = { src.cols, src.rows };
|
||||
return k.run(2, globalsize, NULL, false);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void cv::accumulate( InputArray _src, InputOutputArray _dst, InputArray _mask )
|
||||
{
|
||||
Mat src = _src.getMat(), dst = _dst.getMat(), mask = _mask.getMat();
|
||||
int sdepth = src.depth(), ddepth = dst.depth(), cn = src.channels();
|
||||
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), scn = CV_MAT_CN(stype);
|
||||
int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype), dcn = CV_MAT_CN(dtype);
|
||||
|
||||
CV_Assert( dst.size == src.size && dst.channels() == cn );
|
||||
CV_Assert( mask.empty() || (mask.size == src.size && mask.type() == CV_8U) );
|
||||
CV_Assert( _src.sameSize(_dst) && dcn == scn );
|
||||
CV_Assert( _mask.empty() || (_src.sameSize(_mask) && _mask.type() == CV_8U) );
|
||||
|
||||
CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(),
|
||||
ocl_accumulate(_src, noArray(), _dst, 0.0, _mask, ACCUMULATE))
|
||||
|
||||
Mat src = _src.getMat(), dst = _dst.getMat(), mask = _mask.getMat();
|
||||
|
||||
int fidx = getAccTabIdx(sdepth, ddepth);
|
||||
AccFunc func = fidx >= 0 ? accTab[fidx] : 0;
|
||||
@ -372,17 +441,21 @@ void cv::accumulate( InputArray _src, InputOutputArray _dst, InputArray _mask )
|
||||
int len = (int)it.size;
|
||||
|
||||
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
||||
func(ptrs[0], ptrs[1], ptrs[2], len, cn);
|
||||
func(ptrs[0], ptrs[1], ptrs[2], len, scn);
|
||||
}
|
||||
|
||||
|
||||
void cv::accumulateSquare( InputArray _src, InputOutputArray _dst, InputArray _mask )
|
||||
{
|
||||
Mat src = _src.getMat(), dst = _dst.getMat(), mask = _mask.getMat();
|
||||
int sdepth = src.depth(), ddepth = dst.depth(), cn = src.channels();
|
||||
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), scn = CV_MAT_CN(stype);
|
||||
int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype), dcn = CV_MAT_CN(dtype);
|
||||
|
||||
CV_Assert( dst.size == src.size && dst.channels() == cn );
|
||||
CV_Assert( mask.empty() || (mask.size == src.size && mask.type() == CV_8U) );
|
||||
CV_Assert( _src.sameSize(_dst) && dcn == scn );
|
||||
CV_Assert( _mask.empty() || (_src.sameSize(_mask) && _mask.type() == CV_8U) );
|
||||
|
||||
CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(),
|
||||
ocl_accumulate(_src, noArray(), _dst, 0.0, _mask, ACCUMULATE_SQUARE))
|
||||
|
||||
Mat src = _src.getMat(), dst = _dst.getMat(), mask = _mask.getMat();
|
||||
|
||||
int fidx = getAccTabIdx(sdepth, ddepth);
|
||||
AccFunc func = fidx >= 0 ? accSqrTab[fidx] : 0;
|
||||
@ -394,18 +467,23 @@ void cv::accumulateSquare( InputArray _src, InputOutputArray _dst, InputArray _m
|
||||
int len = (int)it.size;
|
||||
|
||||
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
||||
func(ptrs[0], ptrs[1], ptrs[2], len, cn);
|
||||
func(ptrs[0], ptrs[1], ptrs[2], len, scn);
|
||||
}
|
||||
|
||||
void cv::accumulateProduct( InputArray _src1, InputArray _src2,
|
||||
InputOutputArray _dst, InputArray _mask )
|
||||
{
|
||||
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), dst = _dst.getMat(), mask = _mask.getMat();
|
||||
int sdepth = src1.depth(), ddepth = dst.depth(), cn = src1.channels();
|
||||
int stype = _src1.type(), sdepth = CV_MAT_DEPTH(stype), scn = CV_MAT_CN(stype);
|
||||
int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype), dcn = CV_MAT_CN(dtype);
|
||||
|
||||
CV_Assert( src2.size && src1.size && src2.type() == src1.type() );
|
||||
CV_Assert( dst.size == src1.size && dst.channels() == cn );
|
||||
CV_Assert( mask.empty() || (mask.size == src1.size && mask.type() == CV_8U) );
|
||||
CV_Assert( _src1.sameSize(_src2) && stype == _src2.type() );
|
||||
CV_Assert( _src1.sameSize(_dst) && dcn == scn );
|
||||
CV_Assert( _mask.empty() || (_src1.sameSize(_mask) && _mask.type() == CV_8U) );
|
||||
|
||||
CV_OCL_RUN(_src1.dims() <= 2 && _dst.isUMat(),
|
||||
ocl_accumulate(_src1, _src2, _dst, 0.0, _mask, ACCUMULATE_PRODUCT))
|
||||
|
||||
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), dst = _dst.getMat(), mask = _mask.getMat();
|
||||
|
||||
int fidx = getAccTabIdx(sdepth, ddepth);
|
||||
AccProdFunc func = fidx >= 0 ? accProdTab[fidx] : 0;
|
||||
@ -417,18 +495,22 @@ void cv::accumulateProduct( InputArray _src1, InputArray _src2,
|
||||
int len = (int)it.size;
|
||||
|
||||
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
||||
func(ptrs[0], ptrs[1], ptrs[2], ptrs[3], len, cn);
|
||||
func(ptrs[0], ptrs[1], ptrs[2], ptrs[3], len, scn);
|
||||
}
|
||||
|
||||
|
||||
void cv::accumulateWeighted( InputArray _src, InputOutputArray _dst,
|
||||
double alpha, InputArray _mask )
|
||||
{
|
||||
Mat src = _src.getMat(), dst = _dst.getMat(), mask = _mask.getMat();
|
||||
int sdepth = src.depth(), ddepth = dst.depth(), cn = src.channels();
|
||||
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), scn = CV_MAT_CN(stype);
|
||||
int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype), dcn = CV_MAT_CN(dtype);
|
||||
|
||||
CV_Assert( dst.size == src.size && dst.channels() == cn );
|
||||
CV_Assert( mask.empty() || (mask.size == src.size && mask.type() == CV_8U) );
|
||||
CV_Assert( _src.sameSize(_dst) && dcn == scn );
|
||||
CV_Assert( _mask.empty() || (_src.sameSize(_mask) && _mask.type() == CV_8U) );
|
||||
|
||||
CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(),
|
||||
ocl_accumulate(_src, noArray(), _dst, alpha, _mask, ACCUMULATE_WEIGHTED))
|
||||
|
||||
Mat src = _src.getMat(), dst = _dst.getMat(), mask = _mask.getMat();
|
||||
|
||||
int fidx = getAccTabIdx(sdepth, ddepth);
|
||||
AccWFunc func = fidx >= 0 ? accWTab[fidx] : 0;
|
||||
@ -440,7 +522,7 @@ void cv::accumulateWeighted( InputArray _src, InputOutputArray _dst,
|
||||
int len = (int)it.size;
|
||||
|
||||
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
||||
func(ptrs[0], ptrs[1], ptrs[2], len, cn, alpha);
|
||||
func(ptrs[0], ptrs[1], ptrs[2], len, scn, alpha);
|
||||
}
|
||||
|
||||
|
||||
|
65
modules/imgproc/src/opencl/accumulate.cl
Normal file
65
modules/imgproc/src/opencl/accumulate.cl
Normal file
@ -0,0 +1,65 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2014, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#ifdef DOUBLE_SUPPORT
|
||||
#ifdef cl_amd_fp64
|
||||
#pragma OPENCL EXTENSION cl_amd_fp64:enable
|
||||
#elif defined (cl_khr_fp64)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp64:enable
|
||||
#endif
|
||||
#endif
|
||||
|
||||
__kernel void accumulate(__global const uchar * srcptr, int src_step, int src_offset,
|
||||
#ifdef ACCUMULATE_PRODUCT
|
||||
__global const uchar * src2ptr, int src2_step, int src2_offset,
|
||||
#endif
|
||||
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols
|
||||
#ifdef ACCUMULATE_WEIGHTED
|
||||
, dstT alpha
|
||||
#endif
|
||||
#ifdef HAVE_MASK
|
||||
, __global const uchar * mask, int mask_step, int mask_offset
|
||||
#endif
|
||||
)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
int src_index = mad24(y, src_step, src_offset + x * cn * (int)sizeof(srcT));
|
||||
#ifdef HAVE_MASK
|
||||
int mask_index = mad24(y, mask_step, mask_offset + x);
|
||||
mask += mask_index;
|
||||
#endif
|
||||
int dst_index = mad24(y, dst_step, dst_offset + x * cn * (int)sizeof(dstT));
|
||||
|
||||
__global const srcT * src = (__global const srcT *)(srcptr + src_index);
|
||||
#ifdef ACCUMULATE_PRODUCT
|
||||
int src2_index = mad24(y, src2_step, src2_offset + x * cn * (int)sizeof(srcT));
|
||||
__global const srcT * src2 = (__global const srcT *)(src2ptr + src2_index);
|
||||
#endif
|
||||
__global dstT * dst = (__global dstT *)(dstptr + dst_index);
|
||||
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
#ifdef HAVE_MASK
|
||||
if (mask[0])
|
||||
#endif
|
||||
#ifdef ACCUMULATE
|
||||
dst[c] += src[c];
|
||||
#elif defined ACCUMULATE_SQUARE
|
||||
dst[c] += src[c] * src[c];
|
||||
#elif defined ACCUMULATE_PRODUCT
|
||||
dst[c] += src[c] * src2[c];
|
||||
#elif defined ACCUMULATE_WEIGHTED
|
||||
dst[c] = (1 - alpha) * dst[c] + src[c] * alpha;
|
||||
#else
|
||||
#error "Unknown accumulation type"
|
||||
#endif
|
||||
}
|
||||
}
|
240
modules/imgproc/test/ocl/test_accumulate.cpp
Normal file
240
modules/imgproc/test/ocl/test_accumulate.cpp
Normal file
@ -0,0 +1,240 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Nathan, liujun@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include "cvconfig.h"
|
||||
#include "opencv2/ts/ocl_test.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
namespace cvtest {
|
||||
namespace ocl {
|
||||
|
||||
PARAM_TEST_CASE(AccumulateBase, std::pair<MatDepth, MatDepth>, Channels, bool)
|
||||
{
|
||||
int sdepth, ddepth, channels;
|
||||
bool useRoi;
|
||||
double alpha;
|
||||
|
||||
TEST_DECLARE_INPUT_PARAMETER(src)
|
||||
TEST_DECLARE_INPUT_PARAMETER(mask)
|
||||
TEST_DECLARE_INPUT_PARAMETER(src2)
|
||||
TEST_DECLARE_OUTPUT_PARAMETER(dst)
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
const std::pair<MatDepth, MatDepth> depths = GET_PARAM(0);
|
||||
sdepth = depths.first, ddepth = depths.second;
|
||||
channels = GET_PARAM(1);
|
||||
useRoi = GET_PARAM(2);
|
||||
}
|
||||
|
||||
void random_roi()
|
||||
{
|
||||
const int stype = CV_MAKE_TYPE(sdepth, channels),
|
||||
dtype = CV_MAKE_TYPE(ddepth, channels);
|
||||
|
||||
Size roiSize = randomSize(1, 10);
|
||||
Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
randomSubMat(src, src_roi, roiSize, srcBorder, stype, -MAX_VALUE, MAX_VALUE);
|
||||
|
||||
Border maskBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
randomSubMat(mask, mask_roi, roiSize, maskBorder, CV_8UC1, -MAX_VALUE, MAX_VALUE);
|
||||
threshold(mask, mask, 80, 255, THRESH_BINARY);
|
||||
|
||||
Border src2Border = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
randomSubMat(src2, src2_roi, roiSize, src2Border, stype, -MAX_VALUE, MAX_VALUE);
|
||||
|
||||
Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
randomSubMat(dst, dst_roi, roiSize, dstBorder, dtype, -MAX_VALUE, MAX_VALUE);
|
||||
|
||||
UMAT_UPLOAD_INPUT_PARAMETER(src)
|
||||
UMAT_UPLOAD_INPUT_PARAMETER(mask)
|
||||
UMAT_UPLOAD_INPUT_PARAMETER(src2)
|
||||
UMAT_UPLOAD_OUTPUT_PARAMETER(dst)
|
||||
|
||||
alpha = randomDouble(-5, 5);
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////// Accumulate ///////////////////////////////////
|
||||
|
||||
typedef AccumulateBase Accumulate;
|
||||
|
||||
OCL_TEST_P(Accumulate, Mat)
|
||||
{
|
||||
for (int i = 0; i < test_loop_times; ++i)
|
||||
{
|
||||
random_roi();
|
||||
|
||||
OCL_OFF(cv::accumulate(src_roi, dst_roi));
|
||||
OCL_ON(cv::accumulate(usrc_roi, udst_roi));
|
||||
|
||||
OCL_EXPECT_MATS_NEAR(dst, 1e-6);
|
||||
}
|
||||
}
|
||||
|
||||
OCL_TEST_P(Accumulate, Mask)
|
||||
{
|
||||
for (int i = 0; i < test_loop_times; ++i)
|
||||
{
|
||||
random_roi();
|
||||
|
||||
OCL_OFF(cv::accumulate(src_roi, dst_roi, mask_roi));
|
||||
OCL_ON(cv::accumulate(usrc_roi, udst_roi, umask_roi));
|
||||
|
||||
OCL_EXPECT_MATS_NEAR(dst, 1e-6);
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////// AccumulateSquare ///////////////////////////////////
|
||||
|
||||
typedef AccumulateBase AccumulateSquare;
|
||||
|
||||
OCL_TEST_P(AccumulateSquare, Mat)
|
||||
{
|
||||
for (int i = 0; i < test_loop_times; ++i)
|
||||
{
|
||||
random_roi();
|
||||
|
||||
OCL_OFF(cv::accumulateSquare(src_roi, dst_roi));
|
||||
OCL_ON(cv::accumulateSquare(usrc_roi, udst_roi));
|
||||
|
||||
OCL_EXPECT_MATS_NEAR(dst, 1e-2);
|
||||
}
|
||||
}
|
||||
|
||||
OCL_TEST_P(AccumulateSquare, Mask)
|
||||
{
|
||||
for (int i = 0; i < test_loop_times; ++i)
|
||||
{
|
||||
random_roi();
|
||||
|
||||
OCL_OFF(cv::accumulateSquare(src_roi, dst_roi, mask_roi));
|
||||
OCL_ON(cv::accumulateSquare(usrc_roi, udst_roi, umask_roi));
|
||||
|
||||
OCL_EXPECT_MATS_NEAR(dst, 1e-2);
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////// AccumulateProduct ///////////////////////////////////
|
||||
|
||||
typedef AccumulateBase AccumulateProduct;
|
||||
|
||||
OCL_TEST_P(AccumulateProduct, Mat)
|
||||
{
|
||||
for (int i = 0; i < test_loop_times; ++i)
|
||||
{
|
||||
random_roi();
|
||||
|
||||
OCL_OFF(cv::accumulateProduct(src_roi, src2_roi, dst_roi));
|
||||
OCL_ON(cv::accumulateProduct(usrc_roi, usrc2_roi, udst_roi));
|
||||
|
||||
OCL_EXPECT_MATS_NEAR(dst, 1e-2);
|
||||
}
|
||||
}
|
||||
|
||||
OCL_TEST_P(AccumulateProduct, Mask)
|
||||
{
|
||||
for (int i = 0; i < test_loop_times; ++i)
|
||||
{
|
||||
random_roi();
|
||||
|
||||
OCL_OFF(cv::accumulateProduct(src_roi, src2_roi, dst_roi, mask_roi));
|
||||
OCL_ON(cv::accumulateProduct(usrc_roi, usrc2_roi, udst_roi, umask_roi));
|
||||
|
||||
OCL_EXPECT_MATS_NEAR(dst, 1e-2);
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////// AccumulateWeighted ///////////////////////////////////
|
||||
|
||||
typedef AccumulateBase AccumulateWeighted;
|
||||
|
||||
OCL_TEST_P(AccumulateWeighted, Mat)
|
||||
{
|
||||
for (int i = 0; i < test_loop_times; ++i)
|
||||
{
|
||||
random_roi();
|
||||
|
||||
OCL_OFF(cv::accumulateWeighted(src_roi, dst_roi, alpha));
|
||||
OCL_ON(cv::accumulateWeighted(usrc_roi, udst_roi, alpha));
|
||||
|
||||
OCL_EXPECT_MATS_NEAR(dst, 1e-2);
|
||||
}
|
||||
}
|
||||
|
||||
OCL_TEST_P(AccumulateWeighted, Mask)
|
||||
{
|
||||
for (int i = 0; i < test_loop_times; ++i)
|
||||
{
|
||||
random_roi();
|
||||
|
||||
OCL_OFF(cv::accumulateWeighted(src_roi, dst_roi, alpha));
|
||||
OCL_ON(cv::accumulateWeighted(usrc_roi, udst_roi, alpha));
|
||||
|
||||
OCL_EXPECT_MATS_NEAR(dst, 1e-2);
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////// Instantiation ///////////////////////////////////
|
||||
|
||||
#define OCL_DEPTH_ALL_COMBINATIONS \
|
||||
testing::Values(std::make_pair<MatDepth, MatDepth>(CV_8U, CV_32F), \
|
||||
std::make_pair<MatDepth, MatDepth>(CV_16U, CV_32F), \
|
||||
std::make_pair<MatDepth, MatDepth>(CV_32F, CV_32F), \
|
||||
std::make_pair<MatDepth, MatDepth>(CV_8U, CV_64F), \
|
||||
std::make_pair<MatDepth, MatDepth>(CV_16U, CV_64F), \
|
||||
std::make_pair<MatDepth, MatDepth>(CV_32F, CV_64F), \
|
||||
std::make_pair<MatDepth, MatDepth>(CV_64F, CV_64F))
|
||||
|
||||
OCL_INSTANTIATE_TEST_CASE_P(ImgProc, Accumulate, Combine(OCL_DEPTH_ALL_COMBINATIONS, OCL_ALL_CHANNELS, Bool()));
|
||||
OCL_INSTANTIATE_TEST_CASE_P(ImgProc, AccumulateSquare, Combine(OCL_DEPTH_ALL_COMBINATIONS, OCL_ALL_CHANNELS, Bool()));
|
||||
OCL_INSTANTIATE_TEST_CASE_P(ImgProc, AccumulateProduct, Combine(OCL_DEPTH_ALL_COMBINATIONS, OCL_ALL_CHANNELS, Bool()));
|
||||
OCL_INSTANTIATE_TEST_CASE_P(ImgProc, AccumulateWeighted, Combine(OCL_DEPTH_ALL_COMBINATIONS, OCL_ALL_CHANNELS, Bool()));
|
||||
|
||||
} } // namespace cvtest::ocl
|
||||
|
||||
#endif
|
@ -75,7 +75,7 @@ PARAM_TEST_CASE(BlendLinear, MatDepth, Channels, bool)
|
||||
const int type = CV_MAKE_TYPE(depth, channels);
|
||||
const double upValue = 256;
|
||||
|
||||
Size roiSize = randomSize(1, 20);
|
||||
Size roiSize = randomSize(1, MAX_VALUE);
|
||||
Border src1Border = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
randomSubMat(src1, src1_roi, roiSize, src1Border, type, -upValue, upValue);
|
||||
|
||||
@ -104,8 +104,7 @@ PARAM_TEST_CASE(BlendLinear, MatDepth, Channels, bool)
|
||||
|
||||
void Near(double eps = 0.0)
|
||||
{
|
||||
EXPECT_MAT_NEAR(dst, udst, eps);
|
||||
EXPECT_MAT_NEAR(dst_roi, udst_roi, eps);
|
||||
OCL_EXPECT_MATS_NEAR(dst, eps)
|
||||
}
|
||||
};
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user