Merge pull request #14301 from l-bat:conv3d

Support Convolution3D layer on IE backend (#14301)

* Add Convolution3D layer

* Disable CXX11

* Fixed tests

* Add Pooling3D layer

* Merge Conv2d with Conv3d and Pool2d with Pool3d layers

* Split pads

* Add Deconvolution layer

* Refactoring

* Deduplication

* Refactoring

* Add utils for Convolution and Pooling layers
This commit is contained in:
Lubov Batanina 2019-04-30 17:08:17 +03:00 committed by Alexander Alekhin
parent 3bcbd2a078
commit 77fa59c3da
10 changed files with 412 additions and 289 deletions

View File

@ -210,7 +210,10 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
class CV_EXPORTS BaseConvolutionLayer : public Layer
{
public:
Size kernel, stride, pad, dilation, adjustPad;
CV_DEPRECATED_EXTERNAL Size kernel, stride, pad, dilation, adjustPad;
std::vector<size_t> adjust_pads;
std::vector<size_t> kernel_size, strides, dilations;
std::vector<size_t> pads_begin, pads_end;
String padMode;
int numOutput;
};
@ -243,9 +246,10 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
{
public:
int type;
Size kernel, stride;
int pad_l, pad_t, pad_r, pad_b;
CV_DEPRECATED_EXTERNAL Size pad;
std::vector<size_t> kernel_size, strides;
std::vector<size_t> pads_begin, pads_end;
CV_DEPRECATED_EXTERNAL Size kernel, stride, pad;
CV_DEPRECATED_EXTERNAL int pad_l, pad_t, pad_r, pad_b;
bool globalPooling;
bool computeMaxIdx;
String padMode;

View File

@ -2263,6 +2263,7 @@ struct Net::Impl
if (isAsync)
CV_Error(Error::StsNotImplemented, "Default implementation fallbacks in asynchronous mode");
CV_Assert(layer->supportBackend(DNN_BACKEND_OPENCV));
if (preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget))
{
std::vector<UMat> umat_inputBlobs = OpenCLBackendWrapper::getUMatVector(ld.inputBlobsWrappers);

View File

@ -66,31 +66,34 @@ public:
BaseConvolutionLayerImpl(const LayerParams &params)
{
setParamsFrom(params);
int pad_t = 0, pad_l = 0, pad_r = 0, pad_b = 0;
getConvolutionKernelParams(params, kernel.height, kernel.width, pad_t,
pad_l, pad_b, pad_r, stride.height, stride.width, dilation.height,
dilation.width, padMode);
if (pad_t != pad_b || pad_l != pad_r)
CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in convolution layer");
pad.width = pad_l;
pad.height = pad_t;
getConvolutionKernelParams(params, kernel_size, pads_begin, pads_end, strides, dilations, padMode);
numOutput = params.get<int>("num_output");
int ngroups = params.get<int>("group", 1);
adjustPad.height = params.get<int>("adj_h", 0);
adjustPad.width = params.get<int>("adj_w", 0);
CV_Assert(numOutput % ngroups == 0);
CV_Assert(adjustPad.width < stride.width &&
adjustPad.height < stride.height);
if (kernel_size.size() == 2) {
kernel = Size(kernel_size[1], kernel_size[0]);
stride = Size(strides[1], strides[0]);
for (int i = 0; i < pads_begin.size(); i++) {
if (pads_begin[i] != pads_end[i])
CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in convolution layer");
}
pad = Size(pads_begin[1], pads_begin[0]);
dilation = Size(dilations[1], dilations[0]);
adjust_pads.push_back(params.get<int>("adj_h", 0));
adjust_pads.push_back(params.get<int>("adj_w", 0));
adjustPad.height = adjust_pads[0];
adjustPad.width = adjust_pads[1];
CV_Assert(adjustPad.width < stride.width &&
adjustPad.height < stride.height);
}
newWeightAndBias = false;
}
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
{
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
@ -98,31 +101,38 @@ public:
CV_Assert(inputs.size() > 0);
CV_Assert(blobs.size() >= 1 && blobs.size() <= 2);
CV_Assert(blobs[0].dims == 4 && blobs[0].size[3] == kernel.width && blobs[0].size[2] == kernel.height);
CV_Assert(blobs.size() == 1 || blobs.size() == 2);
CV_Assert(inputs[0].dims == outputs[0].dims);
CV_Assert(blobs[0].dims == kernel_size.size() + 2);
for (int i = 0; i < kernel_size.size(); i++) {
CV_Assert(blobs[0].size[i + 2] == kernel_size[i]);
}
const Mat &input = inputs[0];
CV_Assert(input.dims == 4 && (input.type() == CV_32F || input.type() == CV_64F || input.type() == CV_16S));
CV_Assert((input.dims == 4 || input.dims == 5) && (input.type() == CV_32F || input.type() == CV_16S));
for (size_t i = 0; i < inputs.size(); i++)
{
CV_Assert(inputs[i].type() == input.type());
CV_Assert(inputs[i].dims == 4 && inputs[i].size[1] == input.size[1]);
CV_Assert(inputs[i].size[2] == input.size[2] && inputs[i].size[3] == input.size[3]);
CV_Assert((inputs[i].dims == 4 || inputs[i].dims == 5) && inputs[i].size[1] == input.size[1]);
for (int j = 0; j < inputs[i].dims; j++) {
CV_Assert(inputs[i].size[j] == input.size[j]);
}
}
Size outSize = Size(outputs[0].size[3], outputs[0].size[2]);
int pad_t = pad.height, pad_l = pad.width, pad_b = pad.height, pad_r = pad.width;
getConvPoolPaddings(Size(input.size[3], input.size[2]), outSize,
kernel, stride, padMode, dilation, pad_t, pad_l, pad_b, pad_r);
if (pad_t != pad_b || pad_l != pad_r)
CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in convolution layer");
pad.width = pad_l;
pad.height = pad_t;
std::vector<int> inpShape;
std::vector<int> outShape;
for (int i = 2; i < inputs[0].dims; i++) {
inpShape.push_back(inputs[0].size[i]);
outShape.push_back(outputs[0].size[i]);
}
getConvPoolPaddings(inpShape, outShape, kernel_size, strides, padMode, dilations, pads_begin, pads_end);
if (pads_begin.size() == 2) {
for (int i = 0; i < pads_begin.size(); i++) {
if (pads_begin[i] != pads_end[i])
CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in convolution layer");
}
pad = Size(pads_begin[1], pads_begin[0]);
}
}
bool hasBias() const
@ -134,8 +144,8 @@ public:
bool is1x1() const
{
return (kernel.height == 1 && kernel.width == 1) &&
(stride.height == 1 && stride.width == 1) &&
(dilation.height == 1 && dilation.width == 1);
(stride.height == 1 && stride.width == 1) &&
(dilation.height == 1 && dilation.width == 1);
}
virtual bool tryFuse(Ptr<Layer>& top) CV_OVERRIDE
@ -237,12 +247,14 @@ public:
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE)
{
if (kernel_size.size() == 3)
return preferableTarget == DNN_TARGET_CPU;
return INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R4) ||
(preferableTarget != DNN_TARGET_MYRIAD || dilation.width == dilation.height);
}
else
#endif
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_HALIDE;
return (kernel_size.size() == 2) && (backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_HALIDE);
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
@ -256,21 +268,23 @@ public:
internals.clear();
int inpCn = inputs[0][1];
int inpH = inputs[0][2];
int inpW = inputs[0][3];
CV_Assert(inputs.size() != 0);
std::vector<int> inpShape(inputs[0].begin() + 2, inputs[0].end());
int outCn = blobs[0].size[0];
Size out;
std::vector<int> outShape;
outShape.push_back(inputs[0][0]);
outShape.push_back(outCn);
int inpCn = inputs[0][1];
if (padMode.empty())
{
out.height = (inpH + 2 * pad.height - (dilation.height * (kernel.height - 1) + 1)) / stride.height + 1;
out.width = (inpW + 2 * pad.width - (dilation.width * (kernel.width - 1) + 1)) / stride.width + 1;
for (int i = 0; i < inpShape.size(); i++)
outShape.push_back((inpShape[i] + pads_begin[i] + pads_end[i] - dilations[i] * (kernel_size[i] - 1) - 1) / strides[i] + 1);
}
else
{
getConvPoolOutParams(Size(inpW, inpH), kernel, stride, padMode, dilation, out);
getConvPoolOutParams(inpShape, kernel_size, strides, padMode, dilations, outShape);
}
int ngroups = inpCn / blobs[0].size[1];
@ -279,8 +293,7 @@ public:
"be multiple of %d but got %d", blobs[0].size[1], inpCn));
CV_Assert(ngroups > 0 && inpCn % ngroups == 0 && outCn % ngroups == 0);
int dims[] = {inputs[0][0], outCn, out.height, out.width};
outputs.resize(inputs.size(), shape(dims, 4));
outputs.resize(1, outShape);
return false;
}
@ -451,25 +464,28 @@ public:
{
#ifdef HAVE_INF_ENGINE
InferenceEngine::DataPtr input = infEngineDataNode(inputs[0]);
CV_Assert(input->dims.size() == 4);
CV_Assert(input->dims.size() == 4 || input->dims.size() == 5);
const int inpCn = input->dims[2]; // NOTE: input->dims are reversed (whcn)
const int inpCn = input->dims[input->dims.size() - 2]; // NOTE: input->dims are reversed (WHIO or WHDIO)
const int outCn = blobs[0].size[0];
const int inpGroupCn = blobs[0].size[1];
const int group = inpCn / inpGroupCn;
auto ieWeights = wrapToInfEngineBlob(blobs[0], InferenceEngine::Layout::OIHW);
InferenceEngine::Layout layout = (input->dims.size() == 4) ? InferenceEngine::Layout::OIHW :
InferenceEngine::Layout::NCDHW;
auto ieWeights = wrapToInfEngineBlob(blobs[0], layout);
if (newWeightAndBias)
{
if (weightsMat.isContinuous())
{
Mat fusedWeights = weightsMat.reshape(1, blobs[0].dims, blobs[0].size);
ieWeights = wrapToInfEngineBlob(fusedWeights, InferenceEngine::Layout::OIHW);
ieWeights = wrapToInfEngineBlob(fusedWeights, layout);
}
else
{
ieWeights = InferenceEngine::make_shared_blob<float>(
InferenceEngine::Precision::FP32, InferenceEngine::Layout::OIHW,
InferenceEngine::Precision::FP32, layout,
ieWeights->dims());
ieWeights->allocate();
@ -488,11 +504,11 @@ public:
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5)
InferenceEngine::Builder::ConvolutionLayer ieLayer(name);
ieLayer.setKernel({(size_t)kernel.height, (size_t)kernel.width});
ieLayer.setStrides({(size_t)stride.height, (size_t)stride.width});
ieLayer.setDilation({(size_t)dilation.height, (size_t)dilation.width});
ieLayer.setPaddingsBegin({(size_t)pad.height, (size_t)pad.width});
ieLayer.setPaddingsEnd({(size_t)pad.height, (size_t)pad.width});
ieLayer.setKernel(kernel_size);
ieLayer.setStrides(strides);
ieLayer.setDilation(dilations);
ieLayer.setPaddingsBegin(pads_begin);
ieLayer.setPaddingsEnd(pads_end);
ieLayer.setGroup((size_t)group);
ieLayer.setOutDepth((size_t)outCn);
@ -1085,6 +1101,10 @@ public:
CV_Assert_N(inputs.size() == (size_t)1, inputs[0].size[1] % blobs[0].size[1] == 0,
outputs.size() == 1, inputs[0].data != outputs[0].data);
if (inputs[0].dims == 5) {
CV_Error(Error::StsNotImplemented, "Convolution3D layer is not supported on OCV backend");
}
int ngroups = inputs[0].size[1]/blobs[0].size[1];
CV_Assert(outputs[0].size[1] % ngroups == 0);
int outCn = blobs[0].size[0];
@ -1157,6 +1177,9 @@ public:
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE)
{
if (kernel_size.size() == 3)
CV_Error(Error::StsNotImplemented, "Unsupported deconvolution3D layer");
if (INF_ENGINE_RELEASE >= 2018050000 && (adjustPad.height || adjustPad.width))
return false;
@ -1172,7 +1195,7 @@ public:
}
else
#endif // HAVE_INF_ENGINE
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_HALIDE;
return kernel_size.size() == 2 && (backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_HALIDE);
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
@ -1183,39 +1206,36 @@ public:
CV_Assert(!hasBias() || blobs[1].total() == (size_t)numOutput);
CV_Assert(inputs.size() != 0);
int inpCn = inputs[0][1];
int inpH = inputs[0][2];
int inpW = inputs[0][3];
int outH = -1, outW = -1;
int outCn = numOutput;
std::vector<int> outShape;
outShape.push_back(inputs[0][0]); // batch
outShape.push_back(outCn);
if (padMode.empty())
{
outH = stride.height * (inpH - 1) + kernel.height - 2 * pad.height + adjustPad.height;
outW = stride.width * (inpW - 1) + kernel.width - 2 * pad.width + adjustPad.width;
for (int i = 0; i < kernel_size.size(); i++)
outShape.push_back(strides[i] * (inputs[0][2 + i] - 1) + kernel_size[i] - pads_begin[i] - pads_end[i] + adjust_pads[i]);
}
else if (padMode == "VALID")
{
outH = stride.height * (inpH - 1) + kernel.height + adjustPad.height;
outW = stride.width * (inpW - 1) + kernel.width + adjustPad.width;
for (int i = 0; i < kernel_size.size(); i++)
outShape.push_back(strides[i] * (inputs[0][2 + i] - 1) + kernel_size[i] + adjust_pads[i]);
}
else if (padMode == "SAME")
{
outH = stride.height * (inpH - 1) + 1 + adjustPad.height;
outW = stride.width * (inpW - 1) + 1 + adjustPad.width;
for (int i = 0; i < kernel_size.size(); i++)
outShape.push_back(strides[i] * (inputs[0][2 + i] - 1) + 1 + adjust_pads[i]);
}
else
CV_Error(Error::StsError, "Unsupported padding mode " + padMode);
int outCn = numOutput;
CV_Assert(outCn % blobs[0].size[1] == 0);
int ngroups = outCn / blobs[0].size[1];
int inpCn = inputs[0][1];
CV_Assert(inpCn % ngroups == 0 && outCn % ngroups == 0);
CV_Assert(blobs[0].size[0] == inpCn);
int dims[] = {inputs[0][0], outCn, outH, outW};
outputs.resize(inputs.size(), shape(dims, 4));
outputs.resize(1, outShape);
if (!is1x1())
internals.push_back(computeColRowShape(inputs[0], outputs[0]));
@ -1231,16 +1251,20 @@ public:
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
int pad_t = pad.height, pad_l = pad.width, pad_b = pad.height, pad_r = pad.width;
getConvPoolPaddings(Size(outputs[0].size[3], outputs[0].size[2]),
Size(inputs[0].size[3], inputs[0].size[2]),
kernel, stride, padMode, dilation, pad_t, pad_l, pad_b, pad_r);
if (pad_t != pad_b || pad_l != pad_r)
CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in convolution layer");
pad.width = pad_l;
pad.height = pad_t;
std::vector<int> inpShape;
std::vector<int> outShape;
for (int i = 2; i < inputs[0].dims; i++) {
inpShape.push_back(inputs[0].size[i]);
outShape.push_back(outputs[0].size[i]);
}
getConvPoolPaddings(outShape, inpShape, kernel_size, strides, padMode, dilations, pads_begin, pads_end);
if (pads_begin.size() == 2) {
for (int i = 0; i < pads_begin.size(); i++) {
if (pads_begin[i] != pads_end[i])
CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in deconvolution layer");
}
pad = Size(pads_begin[1], pads_begin[0]);
}
weightsMultipliers.assign(numOutput, 1.0);
if (weightsMat.empty())
@ -1760,11 +1784,11 @@ public:
InferenceEngine::Builder::DeconvolutionLayer ieLayer(name);
ieLayer.setKernel({(size_t)kernel.height, (size_t)kernel.width});
ieLayer.setStrides({(size_t)stride.height, (size_t)stride.width});
ieLayer.setDilation({(size_t)dilation.height, (size_t)dilation.width});
ieLayer.setPaddingsBegin({(size_t)pad.height, (size_t)pad.width});
ieLayer.setPaddingsEnd({(size_t)pad.height, (size_t)pad.width});
ieLayer.setKernel(kernel_size);
ieLayer.setStrides(strides);
ieLayer.setDilation(dilations);
ieLayer.setPaddingsBegin(pads_begin);
ieLayer.setPaddingsEnd(pads_end);
ieLayer.setGroup((size_t)group);
ieLayer.setOutDepth((size_t)numOutput);

View File

@ -57,20 +57,19 @@ std::string makeName(const std::string& str1, const std::string& str2)
}
bool getParameter(const LayerParams &params, const std::string& nameBase, const std::string& nameAll,
int &parameterH, int &parameterW, bool hasDefault = false, const int& defaultValue = 0)
std::vector<size_t>& parameter, bool hasDefault = false, const std::vector<size_t>& defaultValue = std::vector<size_t>(2, 0))
{
std::string nameH = makeName(nameBase, std::string("_h"));
std::string nameW = makeName(nameBase, std::string("_w"));
std::string nameAll_ = nameAll;
if(nameAll_ == "")
{
if (nameAll_ == "")
nameAll_ = nameBase;
}
if (params.has(nameH) && params.has(nameW))
{
parameterH = params.get<int>(nameH);
parameterW = params.get<int>(nameW);
CV_Assert(params.get<int>(nameH) >= 0 && params.get<int>(nameW) >= 0);
parameter.push_back(params.get<int>(nameH));
parameter.push_back(params.get<int>(nameW));
return true;
}
else
@ -78,26 +77,19 @@ bool getParameter(const LayerParams &params, const std::string& nameBase, const
if (params.has(nameAll_))
{
DictValue param = params.get(nameAll_);
parameterH = param.get<int>(0);
if (param.size() == 1)
{
parameterW = parameterH;
}
else if (param.size() == 2)
{
parameterW = param.get<int>(1);
}
else
{
return false;
for (int i = 0; i < param.size(); i++) {
CV_Assert(param.get<int>(i) >= 0);
parameter.push_back(param.get<int>(i));
}
if (parameter.size() == 1)
parameter.resize(2, parameter[0]);
return true;
}
else
{
if(hasDefault)
if (hasDefault)
{
parameterH = parameterW = defaultValue;
parameter = defaultValue;
return true;
}
else
@ -108,30 +100,38 @@ bool getParameter(const LayerParams &params, const std::string& nameBase, const
}
}
void getKernelSize(const LayerParams &params, int &kernelH, int &kernelW)
void getKernelSize(const LayerParams &params, std::vector<size_t>& kernel)
{
if(!util::getParameter(params, "kernel", "kernel_size", kernelH, kernelW))
{
if (!util::getParameter(params, "kernel", "kernel_size", kernel))
CV_Error(cv::Error::StsBadArg, "kernel_size (or kernel_h and kernel_w) not specified");
}
CV_Assert(kernelH > 0 && kernelW > 0);
for (int i = 0; i < kernel.size(); i++)
CV_Assert(kernel[i] > 0);
}
void getStrideAndPadding(const LayerParams &params, int &padT, int &padL, int &padB, int &padR, int &strideH, int &strideW, cv::String& padMode)
void getStrideAndPadding(const LayerParams &params, std::vector<size_t>& pads_begin, std::vector<size_t>& pads_end,
std::vector<size_t>& strides, cv::String& padMode, size_t kernel_size = 2)
{
if (params.has("pad_l") && params.has("pad_t") && params.has("pad_r") && params.has("pad_b")) {
padT = params.get<int>("pad_t");
padL = params.get<int>("pad_l");
padB = params.get<int>("pad_b");
padR = params.get<int>("pad_r");
CV_Assert(params.get<int>("pad_t") >= 0 && params.get<int>("pad_l") >= 0 &&
params.get<int>("pad_b") >= 0 && params.get<int>("pad_r") >= 0);
pads_begin.push_back(params.get<int>("pad_t"));
pads_begin.push_back(params.get<int>("pad_l"));
pads_end.push_back(params.get<int>("pad_b"));
pads_end.push_back(params.get<int>("pad_r"));
}
else {
util::getParameter(params, "pad", "pad", padT, padL, true, 0);
padB = padT;
padR = padL;
util::getParameter(params, "pad", "pad", pads_begin, true, std::vector<size_t>(kernel_size, 0));
if (pads_begin.size() < 4)
pads_end = pads_begin;
else
{
pads_end = std::vector<size_t>(pads_begin.begin() + pads_begin.size() / 2, pads_begin.end());
pads_begin.resize(pads_begin.size() / 2);
}
CV_Assert(pads_begin.size() == pads_end.size());
}
util::getParameter(params, "stride", "stride", strideH, strideW, true, 1);
util::getParameter(params, "stride", "stride", strides, true, std::vector<size_t>(kernel_size, 1));
padMode = "";
if (params.has("pad_mode"))
@ -139,15 +139,16 @@ void getStrideAndPadding(const LayerParams &params, int &padT, int &padL, int &p
padMode = params.get<String>("pad_mode");
}
CV_Assert(padT >= 0 && padL >= 0 && padB >= 0 && padR >= 0 && strideH > 0 && strideW > 0);
for (int i = 0; i < strides.size(); i++)
CV_Assert(strides[i] > 0);
}
}
void getPoolingKernelParams(const LayerParams &params, int &kernelH, int &kernelW, bool &globalPooling,
int &padT, int &padL, int &padB, int &padR, int &strideH, int &strideW, cv::String &padMode)
void getPoolingKernelParams(const LayerParams &params, std::vector<size_t>& kernel, bool &globalPooling,
std::vector<size_t>& pads_begin, std::vector<size_t>& pads_end,
std::vector<size_t>& strides, cv::String &padMode)
{
util::getStrideAndPadding(params, padT, padL, padB, padR, strideH, strideW, padMode);
util::getStrideAndPadding(params, pads_begin, pads_end, strides, padMode);
globalPooling = params.has("global_pooling") &&
params.get<bool>("global_pooling");
@ -158,25 +159,30 @@ void getPoolingKernelParams(const LayerParams &params, int &kernelH, int &kernel
{
CV_Error(cv::Error::StsBadArg, "In global_pooling mode, kernel_size (or kernel_h and kernel_w) cannot be specified");
}
if(padT != 0 || padL != 0 || padB != 0 || padR != 0 || strideH != 1 || strideW != 1)
{
CV_Error(cv::Error::StsBadArg, "In global_pooling mode, pads must be = 0, and stride_h and stride_w must be = 1");
for (int i = 0; i < pads_begin.size(); i++) {
if (pads_begin[i] != 0 || pads_end[i] != 0)
CV_Error(cv::Error::StsBadArg, "In global_pooling mode, pads must be = 0");
}
for (int i = 0; i < strides.size(); i++) {
if (strides[i] != 1)
CV_Error(cv::Error::StsBadArg, "In global_pooling mode, strides must be = 1");
}
}
else
{
util::getKernelSize(params, kernelH, kernelW);
util::getKernelSize(params, kernel);
}
}
void getConvolutionKernelParams(const LayerParams &params, int &kernelH, int &kernelW, int &padT, int &padL, int &padB, int &padR,
int &strideH, int &strideW, int &dilationH, int &dilationW, cv::String &padMode)
void getConvolutionKernelParams(const LayerParams &params, std::vector<size_t>& kernel, std::vector<size_t>& pads_begin,
std::vector<size_t>& pads_end, std::vector<size_t>& strides, std::vector<size_t>& dilations, cv::String &padMode)
{
util::getKernelSize(params, kernelH, kernelW);
util::getStrideAndPadding(params, padT, padL, padB, padR, strideH, strideW, padMode);
util::getParameter(params, "dilation", "dilation", dilationH, dilationW, true, 1);
util::getKernelSize(params, kernel);
util::getStrideAndPadding(params, pads_begin, pads_end, strides, padMode, kernel.size());
util::getParameter(params, "dilation", "dilation", dilations, true, std::vector<size_t>(kernel.size(), 1));
CV_Assert(dilationH > 0 && dilationW > 0);
for (int i = 0; i < dilations.size(); i++)
CV_Assert(dilations[i] > 0);
}
// From TensorFlow code:
@ -188,19 +194,19 @@ void getConvolutionKernelParams(const LayerParams &params, int &kernelH, int &ke
// We pad Pr/2 on the left and Pr - Pr/2 on the right, Pc/2 on the top
// and Pc - Pc/2 on the bottom. When Pr or Pc is odd, this means
// we pad more on the right and bottom than on the top and left.
void getConvPoolOutParams(const Size& inp, const Size &kernel,
const Size &stride, const String &padMode,
const Size &dilation, Size& out)
void getConvPoolOutParams(const std::vector<int>& inp, const std::vector<size_t>& kernel,
const std::vector<size_t>& stride, const String &padMode,
const std::vector<size_t>& dilation, std::vector<int>& out)
{
if (padMode == "VALID")
{
out.height = (inp.height - (dilation.height * (kernel.height - 1) + 1) + stride.height) / stride.height;
out.width = (inp.width - (dilation.width * (kernel.width - 1) + 1) + stride.width) / stride.width;
for (int i = 0; i < inp.size(); i++)
out.push_back((inp[i] - dilation[i] * (kernel[i] - 1) - 1 + stride[i]) / stride[i]);
}
else if (padMode == "SAME")
{
out.height = (inp.height - 1 + stride.height) / stride.height;
out.width = (inp.width - 1 + stride.width) / stride.width;
for (int i = 0; i < inp.size(); i++)
out.push_back((inp[i] - 1 + stride[i]) / stride[i]);
}
else
{
@ -208,22 +214,26 @@ void getConvPoolOutParams(const Size& inp, const Size &kernel,
}
}
void getConvPoolPaddings(const Size& inp, const Size& out,
const Size &kernel, const Size &stride,
const String &padMode, const Size &dilation, int &padT, int &padL, int &padB, int &padR)
void getConvPoolPaddings(const std::vector<int>& inp, const std::vector<int>& out,
const std::vector<size_t>& kernel, const std::vector<size_t>& strides,
const String &padMode, const std::vector<size_t>& dilation,
std::vector<size_t>& pads_begin, std::vector<size_t>& pads_end)
{
if (padMode == "VALID")
{
padT = padL = padB = padR = 0;
pads_begin.assign(kernel.size(), 0);
pads_end.assign(kernel.size(), 0);
}
else if (padMode == "SAME")
{
int Ph = std::max(0, (out.height - 1) * stride.height + (dilation.height * (kernel.height - 1) + 1) - inp.height);
int Pw = std::max(0, (out.width - 1) * stride.width + (dilation.width * (kernel.width - 1) + 1) - inp.width);
// For odd values of total padding, add more padding at the 'right'
// side of the given dimension.
padT= padB = Ph / 2;
padL = padR = Pw / 2;
CV_Assert_N(kernel.size() == dilation.size(), kernel.size() == strides.size(),
kernel.size() == inp.size(), kernel.size() == out.size());
pads_begin.resize(kernel.size());
pads_end.resize(kernel.size());
for (int i = 0; i < pads_begin.size(); i++) {
int pad = ((out[i] - 1) * strides[i] + dilation[i] * (kernel[i] - 1) + 1 - inp[i]) / 2;
pads_begin[i] = pads_end[i] = std::max(0, pad);
}
}
}

View File

@ -59,22 +59,20 @@ namespace cv
{
namespace dnn
{
void getConvolutionKernelParams(const LayerParams &params, std::vector<size_t>& kernel, std::vector<size_t>& pads_begin,
std::vector<size_t>& pads_end, std::vector<size_t>& strides, std::vector<size_t>& dilations, cv::String &padMode);
void getConvolutionKernelParams(const LayerParams &params, int &kernelH, int &kernelW, int &padT, int &padL, int &padB, int &padR,
int &strideH, int &strideW, int &dilationH, int &dilationW, cv::String& padMode);
void getPoolingKernelParams(const LayerParams &params, std::vector<size_t>& kernel, bool &globalPooling,
std::vector<size_t>& pads_begin, std::vector<size_t>& pads_end, std::vector<size_t>& strides, cv::String &padMode);
void getPoolingKernelParams(const LayerParams &params, int &kernelH, int &kernelW, bool &globalPooling,
int &padT, int &padL, int &padB, int &padR, int &strideH, int &strideW, cv::String& padMode);
void getConvPoolOutParams(const Size& inp, const Size &kernel,
const Size &stride, const String &padMode,
const Size &dilation, Size& out);
void getConvPoolPaddings(const Size& inp, const Size& out,
const Size &kernel, const Size &stride,
const String &padMode, const Size &dilation, int &padT, int &padL, int &padB, int &padR);
void getConvPoolOutParams(const std::vector<int>& inp, const std::vector<size_t>& kernel,
const std::vector<size_t>& stride, const String &padMode,
const std::vector<size_t>& dilation, std::vector<int>& out);
void getConvPoolPaddings(const std::vector<int>& inp, const std::vector<int>& out,
const std::vector<size_t>& kernel, const std::vector<size_t>& strides,
const String &padMode, const std::vector<size_t>& dilation,
std::vector<size_t>& pads_begin, std::vector<size_t>& pads_end);
}
}

View File

@ -72,6 +72,7 @@ public:
computeMaxIdx = true;
globalPooling = false;
stride = Size(1, 1);
pad_t = pad_l = pad_b = pad_r = 0;
if (params.has("pool") || params.has("kernel_size") ||
params.has("kernel_w") || params.has("kernel_h"))
@ -86,11 +87,17 @@ public:
else
CV_Error(Error::StsBadArg, "Unknown pooling type \"" + pool + "\"");
getPoolingKernelParams(params, kernel.height, kernel.width, globalPooling,
pad_t, pad_l, pad_b, pad_r, stride.height, stride.width, padMode);
getPoolingKernelParams(params, kernel_size, globalPooling, pads_begin, pads_end, strides, padMode);
if (kernel_size.size() == 2) {
kernel = Size(kernel_size[1], kernel_size[0]);
stride = Size(strides[1], strides[0]);
pad = Size(pads_begin[1], pads_begin[0]);
pad.width = pad_l;
pad.height = pad_t;
pad_t = pads_begin[0];
pad_l = pads_begin[1];
pad_b = pads_end[0];
pad_r = pads_end[1];
}
}
else if (params.has("pooled_w") || params.has("pooled_h"))
{
@ -125,17 +132,24 @@ public:
CV_Assert(!inputs.empty());
cv::Size inp(inputs[0].size[3], inputs[0].size[2]),
out(outputs[0].size[3], outputs[0].size[2]);
if(globalPooling)
{
kernel = inp;
std::vector<int> inp;
std::vector<int> out;
for (int i = 2; i < inputs[0].dims; i++) {
inp.push_back(inputs[0].size[i]);
out.push_back(outputs[0].size[i]);
}
if (globalPooling) {
kernel = Size(inp[1], inp[0]);
kernel_size = std::vector<size_t>(inp.begin(), inp.end());
}
getConvPoolPaddings(inp, out, kernel, stride, padMode, Size(1, 1), pad_t, pad_l, pad_b, pad_r);
pad.width = pad_l;
pad.height = pad_t;
getConvPoolPaddings(inp, out, kernel_size, strides, padMode, std::vector<size_t>(kernel_size.size(), 1), pads_begin, pads_end);
if (pads_begin.size() == 2) {
pad_t = pads_begin[0];
pad_l = pads_begin[1];
pad_b = pads_end[0];
pad_r = pads_end[1];
}
#ifdef HAVE_OPENCL
poolOp.release();
@ -148,6 +162,8 @@ public:
if (backendId == DNN_BACKEND_INFERENCE_ENGINE)
{
#ifdef HAVE_INF_ENGINE
if (kernel_size.size() == 3)
return preferableTarget == DNN_TARGET_CPU;
if (preferableTarget == DNN_TARGET_MYRIAD) {
if (type == MAX && (pad_l == 1 && pad_t == 1) && stride == Size(2, 2) ) {
return !isMyriadX();
@ -161,9 +177,9 @@ public:
#endif
}
else
return backendId == DNN_BACKEND_OPENCV ||
return (kernel_size.empty() || kernel_size.size() == 2) && (backendId == DNN_BACKEND_OPENCV ||
(backendId == DNN_BACKEND_HALIDE && haveHalide() &&
(type == MAX || (type == AVE && !pad_t && !pad_l && !pad_b && !pad_r)));
(type == MAX || (type == AVE && !pad_t && !pad_l && !pad_b && !pad_r))));
}
#ifdef HAVE_OPENCL
@ -269,10 +285,12 @@ public:
if (type == MAX || type == AVE)
{
InferenceEngine::Builder::PoolingLayer ieLayer(name);
ieLayer.setKernel({(size_t)kernel.height, (size_t)kernel.width});
ieLayer.setStrides({(size_t)stride.height, (size_t)stride.width});
ieLayer.setPaddingsBegin({(size_t)pad_t, (size_t)pad_l});
ieLayer.setPaddingsEnd({(size_t)pad_b, (size_t)pad_r});
ieLayer.setKernel(kernel_size);
ieLayer.setStrides(strides);
ieLayer.setPaddingsBegin(pads_begin);
ieLayer.setPaddingsEnd(pads_end);
ieLayer.setPoolingType(type == MAX ?
InferenceEngine::Builder::PoolingLayer::PoolingType::MAX :
InferenceEngine::Builder::PoolingLayer::PoolingType::AVG);
@ -916,59 +934,56 @@ public:
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() != 0);
Size in(inputs[0][3], inputs[0][2]), out;
std::vector<int> inpShape(inputs[0].begin() + 2, inputs[0].end());
std::vector<int> outShape(inputs[0].begin(), inputs[0].begin() + 2);
if (globalPooling)
{
out.height = 1;
out.width = 1;
outShape.push_back(1);
outShape.push_back(1);
}
else if (type == ROI || type == PSROI)
{
out.height = pooledSize.height;
out.width = pooledSize.width;
outShape.push_back(pooledSize.height);
outShape.push_back(pooledSize.width);
}
else if (padMode.empty())
{
float height = (float)(in.height + pad_t + pad_b - kernel.height) / stride.height;
float width = (float)(in.width + pad_l + pad_r - kernel.width) / stride.width;
out.height = 1 + (ceilMode ? ceil(height) : floor(height));
out.width = 1 + (ceilMode ? ceil(width) : floor(width));
for (int i = 0; i < kernel_size.size(); i++) {
float dst = (float)(inpShape[i] + pads_begin[i] + pads_end[i] - kernel_size[i]) / strides[i];
outShape.push_back(1 + (ceilMode ? ceil(dst) : floor(dst)));
}
if (pad_r || pad_b)
{
// If we have padding, ensure that the last pooling starts strictly
// inside the image (instead of at the padding); otherwise clip the last.
if ((out.height - 1) * stride.height >= in.height + pad_b)
--out.height;
if ((out.width - 1) * stride.width >= in.width + pad_r)
--out.width;
CV_Assert((out.height - 1) * stride.height < in.height + pad_b);
CV_Assert((out.width - 1) * stride.width < in.width + pad_r);
// If we have padding, ensure that the last pooling starts strictly
// inside the image (instead of at the padding); otherwise clip the last.
for (int i = 0; i < pads_end.size(); i++) {
if (pads_end[i] && (outShape[2 + i] - 1) * strides[i] >= inpShape[i] + pads_end[i]) {
--outShape[2 + i];
CV_Assert((outShape[2 + i] - 1) * strides[i] < inpShape[i] + pads_end[i]);
}
}
}
else
{
getConvPoolOutParams(in, kernel, stride, padMode, Size(1, 1), out);
getConvPoolOutParams(inpShape, kernel_size, strides, padMode, std::vector<size_t>(kernel_size.size(), 1), outShape);
}
int dims[] = {inputs[0][0], inputs[0][1], out.height, out.width};
if (type == ROI)
{
CV_Assert(inputs.size() == 2);
dims[0] = inputs[1][0]; // Number of proposals;
outShape[0] = inputs[1][0]; // Number of proposals;
}
else if (type == PSROI)
{
CV_Assert(inputs.size() == 2);
CV_Assert(psRoiOutChannels * pooledSize.width * pooledSize.height == inputs[0][1]);
dims[0] = inputs[1][0]; // Number of proposals;
dims[1] = psRoiOutChannels;
outShape[0] = inputs[1][0]; // Number of proposals;
outShape[1] = psRoiOutChannels;
}
int numOutputs = requiredOutputs ? requiredOutputs : (type == MAX ? 2 : 1);
CV_Assert(numOutputs == 1 || (numOutputs == 2 && type == MAX));
outputs.assign(numOutputs, shape(dims, 4));
outputs.assign(numOutputs, outShape);
return false;
}

View File

@ -184,6 +184,12 @@ std::map<std::string, Mat> ONNXImporter::getGraphTensors(
return layers_weights;
}
static DictValue parse(const ::google::protobuf::RepeatedField< ::google::protobuf::int64>& src) {
std::vector<int32_t> dst(src.size());
convertInt64ToInt32(src, dst, src.size());
return DictValue::arrayInt(&dst[0], src.size());
}
LayerParams ONNXImporter::getLayerParams(const opencv_onnx::NodeProto& node_proto)
{
LayerParams lp;
@ -194,15 +200,13 @@ LayerParams ONNXImporter::getLayerParams(const opencv_onnx::NodeProto& node_prot
if(attribute_name == "kernel_shape")
{
CV_Assert(attribute_proto.ints_size() == 2);
lp.set("kernel_h", saturate_cast<int32_t>(attribute_proto.ints(0)));
lp.set("kernel_w", saturate_cast<int32_t>(attribute_proto.ints(1)));
CV_Assert(attribute_proto.ints_size() == 2 || attribute_proto.ints_size() == 3);
lp.set("kernel_size", parse(attribute_proto.ints()));
}
else if(attribute_name == "strides")
{
CV_Assert(attribute_proto.ints_size() == 2);
lp.set("stride_h", saturate_cast<int32_t>(attribute_proto.ints(0)));
lp.set("stride_w", saturate_cast<int32_t>(attribute_proto.ints(1)));
CV_Assert(attribute_proto.ints_size() == 2 || attribute_proto.ints_size() == 3);
lp.set("stride", parse(attribute_proto.ints()));
}
else if(attribute_name == "pads")
{
@ -225,11 +229,8 @@ LayerParams ONNXImporter::getLayerParams(const opencv_onnx::NodeProto& node_prot
else
{
// Convolution or pooling.
CV_Assert(attribute_proto.ints_size() == 4);
lp.set("pad_t", saturate_cast<int32_t>(attribute_proto.ints(0)));
lp.set("pad_l", saturate_cast<int32_t>(attribute_proto.ints(1)));
lp.set("pad_b", saturate_cast<int32_t>(attribute_proto.ints(2)));
lp.set("pad_r", saturate_cast<int32_t>(attribute_proto.ints(3)));
CV_Assert(attribute_proto.ints_size() == 4 || attribute_proto.ints_size() == 6);
lp.set("pad", parse(attribute_proto.ints()));
}
}
else if(attribute_name == "auto_pad")
@ -243,9 +244,8 @@ LayerParams ONNXImporter::getLayerParams(const opencv_onnx::NodeProto& node_prot
}
else if(attribute_name == "dilations")
{
CV_Assert(attribute_proto.ints_size() == 2);
lp.set("dilation_h", saturate_cast<int32_t>(attribute_proto.ints(0)));
lp.set("dilation_w", saturate_cast<int32_t>(attribute_proto.ints(1)));
CV_Assert(attribute_proto.ints_size() == 2 || attribute_proto.ints_size() == 3);
lp.set("dilation", parse(attribute_proto.ints()));
}
else if (attribute_proto.has_i())
{
@ -270,10 +270,7 @@ LayerParams ONNXImporter::getLayerParams(const opencv_onnx::NodeProto& node_prot
}
else if (attribute_proto.ints_size() > 0)
{
const ::google::protobuf::RepeatedField< ::google::protobuf::int64> src = attribute_proto.ints();
std::vector<int32_t> dst(attribute_proto.ints_size());
convertInt64ToInt32(src, dst, attribute_proto.ints_size());
lp.set(attribute_proto.name(), DictValue::arrayInt(&dst[0], attribute_proto.ints_size()));
lp.set(attribute_proto.name(), parse(attribute_proto.ints()));
}
else if (attribute_proto.has_t())
{
@ -305,19 +302,6 @@ Mat ONNXImporter::getBlob(const opencv_onnx::NodeProto& node_proto,
return constBlob->second;
}
bool ONNXImporter::isCeilMode(const LayerParams& layerParams) {
if (!layerParams.has("pad_mode")) {
if (layerParams.has("pad_h")) {
return layerParams.get<int>("pad_h") != layerParams.get<int>("pad_b") ||
layerParams.get<int>("pad_w") != layerParams.get<int>("pad_r");
}
else
return false; // all pads == 0
}
return true;
}
void ONNXImporter::populateNet(Net dstNet)
{
CV_Assert(model_proto.has_graph());
@ -384,13 +368,13 @@ void ONNXImporter::populateNet(Net dstNet)
{
layerParams.type = "Pooling";
layerParams.set("pool", "MAX");
layerParams.set("ceil_mode", isCeilMode(layerParams));
layerParams.set("ceil_mode", layerParams.has("pad_mode"));
}
else if (layer_type == "AveragePool")
{
layerParams.type = "Pooling";
layerParams.set("pool", "AVE");
layerParams.set("ceil_mode", isCeilMode(layerParams));
layerParams.set("ceil_mode", layerParams.has("pad_mode"));
layerParams.set("ave_pool_padded_area", framework_name == "pytorch");
}
else if (layer_type == "GlobalAveragePool" || layer_type == "GlobalMaxPool")
@ -600,8 +584,9 @@ void ONNXImporter::populateNet(Net dstNet)
if (outShape.size() != 4)
CV_Error(Error::StsNotImplemented, "Output shape must have 4 elements.");
const int strideY = layerParams.get<int>("stride_h", 1);
const int strideX = layerParams.get<int>("stride_w", 1);
DictValue stride = layerParams.get("stride");
const int strideY = stride.getIntValue(0);
const int strideX = stride.getIntValue(1);
const int outH = outShape.getIntValue(2);
const int outW = outShape.getIntValue(3);
@ -612,15 +597,13 @@ void ONNXImporter::populateNet(Net dstNet)
}
else if (layerParams.get<String>("pad_mode") == "VALID")
{
if (!layerParams.has("kernel_h") || !layerParams.has("kernel_w"))
if (!layerParams.has("kernel_size"))
CV_Error(Error::StsNotImplemented,
"Required attributes 'kernel_h' and 'kernel_w' are not present.");
"Required attribute 'kernel_size' is not present.");
int kernelH = layerParams.get<int>("kernel_h");
int kernelW = layerParams.get<int>("kernel_w");
layerParams.set("adj_w", (outW - kernelW) % strideX);
layerParams.set("adj_h", (outH - kernelH) % strideY);
DictValue kernel = layerParams.get("kernel_size");
layerParams.set("adj_h", (outH - kernel.getIntValue(0)) % strideY);
layerParams.set("adj_w", (outW - kernel.getIntValue(1)) % strideX);
}
}
else if (layerParams.has("output_padding"))

View File

@ -51,6 +51,7 @@ enum DataLayout
{
DATA_LAYOUT_NHWC,
DATA_LAYOUT_NCHW,
DATA_LAYOUT_NDHWC,
DATA_LAYOUT_UNKNOWN,
DATA_LAYOUT_PLANAR // 2-dimensional outputs (matmul, flatten, reshape to 2d)
};
@ -258,6 +259,8 @@ static int getDataLayout(const tensorflow::NodeDef& layer)
return DATA_LAYOUT_NHWC;
else if (format == "NCHW" || format == "channels_first")
return DATA_LAYOUT_NCHW;
else if (format == "NDHWC")
return DATA_LAYOUT_NDHWC;
else
CV_Error(Error::StsParseError, "Unknown data_format value: " + format);
}
@ -281,21 +284,34 @@ void setStrides(LayerParams &layerParams, const tensorflow::NodeDef &layer)
if (hasLayerAttr(layer, "strides"))
{
const tensorflow::AttrValue& val = getLayerAttr(layer, "strides");
int dimX, dimY, dimC;
int dimX, dimY, dimC, dimD;
int layout = getDataLayout(layer);
if (layout == DATA_LAYOUT_NCHW)
{
dimC = 1; dimY = 2; dimX = 3;
}
else if (layout == DATA_LAYOUT_NDHWC)
{
dimD = 1; dimY = 2; dimX = 3; dimC = 4;
}
else
{
dimY = 1; dimX = 2; dimC = 3;
}
if (val.list().i_size() != 4 ||
if (!(val.list().i_size() == 4 || val.list().i_size() == 5) ||
val.list().i(0) != 1 || val.list().i(dimC) != 1)
CV_Error(Error::StsError, "Unsupported strides");
layerParams.set("stride_h", static_cast<int>(val.list().i(dimY)));
layerParams.set("stride_w", static_cast<int>(val.list().i(dimX)));
if (layout == DATA_LAYOUT_NDHWC) {
int strides[] = {static_cast<int>(val.list().i(dimD)),
static_cast<int>(val.list().i(dimY)),
static_cast<int>(val.list().i(dimX))};
layerParams.set("stride", DictValue::arrayInt(strides, 3));
}
else
{
layerParams.set("stride_h", static_cast<int>(val.list().i(dimY)));
layerParams.set("stride_w", static_cast<int>(val.list().i(dimX)));
}
}
}
@ -318,21 +334,35 @@ void setKSize(LayerParams &layerParams, const tensorflow::NodeDef &layer)
if (hasLayerAttr(layer, "ksize"))
{
const tensorflow::AttrValue& val = getLayerAttr(layer, "ksize");
int dimX, dimY, dimC;
int dimX, dimY, dimC, dimD;
int layout = getDataLayout(layer);
if (layout == DATA_LAYOUT_NCHW)
{
dimC = 1; dimY = 2; dimX = 3;
}
else if (layout == DATA_LAYOUT_NDHWC)
{
dimD = 1; dimY = 2; dimX = 3; dimC = 4;
}
else
{
dimY = 1; dimX = 2; dimC = 3;
}
if (val.list().i_size() != 4 ||
if (!(val.list().i_size() == 4 || val.list().i_size() == 5) ||
val.list().i(0) != 1 || val.list().i(dimC) != 1)
CV_Error(Error::StsError, "Unsupported ksize");
layerParams.set("kernel_h", static_cast<int>(val.list().i(dimY)));
layerParams.set("kernel_w", static_cast<int>(val.list().i(dimX)));
if (layout == DATA_LAYOUT_NDHWC) {
int kernel[] = {static_cast<int>(val.list().i(dimD)),
static_cast<int>(val.list().i(dimY)),
static_cast<int>(val.list().i(dimX))};
layerParams.set("kernel_size", DictValue::arrayInt(kernel, 3));
}
else
{
layerParams.set("kernel_h", static_cast<int>(val.list().i(dimY)));
layerParams.set("kernel_w", static_cast<int>(val.list().i(dimX)));
}
}
else
{
@ -456,12 +486,26 @@ void TFImporter::kernelFromTensor(const tensorflow::TensorProto &tensor, Mat &ds
// TODO: other blob types
CV_Assert(tensor.dtype() == tensorflow::DT_FLOAT ||
tensor.dtype() == tensorflow::DT_HALF);
CV_Assert(dims == 4);
CV_Assert(dims == 4 || dims == 5);
// REORDER kernel HWIO to OIHW
swap(shape[0], shape[2]); // IWHO
swap(shape[1], shape[3]); // IOHW
swap(shape[0], shape[1]); // OIHW
int out_c, input_c, depth, height, width;
if (dims == 4)
{
// REORDER kernel HWIO to OIHW
swap(shape[0], shape[2]); // IWHO
swap(shape[1], shape[3]); // IOHW
swap(shape[0], shape[1]); // OIHW
depth = 1; height = shape[2]; width = shape[3];
}
else
{
// REORDER kernel DHWIO to OIDHW
swap(shape[0], shape[4]); // OHWID
swap(shape[1], shape[3]); // OIWHD
swap(shape[2], shape[4]); // OIDHW
depth = shape[2]; height = shape[3]; width = shape[4];
}
out_c = shape[0]; input_c = shape[1];
dstBlob.create(shape, CV_32F);
@ -472,17 +516,20 @@ void TFImporter::kernelFromTensor(const tensorflow::TensorProto &tensor, Mat &ds
float *dstData = dstBlob.ptr<float>();
const float *data = reinterpret_cast<const float*>(tensorContent.data);
int out_c = shape[0], input_c = shape[1], height = shape[2], width = shape[3];
int total = out_c*input_c*height*width;
for(int i_oc = 0; i_oc < out_c; i_oc++) {
for(int i_ic = 0; i_ic < input_c; i_ic++) {
for(int i_h = 0; i_h < height; i_h++) {
for(int i_w = 0; i_w < width; i_w++) {
int dst_i = input_c*height*width*i_oc + height*width*i_ic + width*i_h + i_w;
int src_i = out_c*input_c*width*i_h + out_c*input_c*i_w + out_c*i_ic + i_oc;
CV_Assert(dst_i < total);
CV_Assert(src_i < total);
dstData[dst_i] = data[src_i];
int total = out_c * input_c * depth * height * width;
for (int i_oc = 0; i_oc < out_c; i_oc++) {
for (int i_ic = 0; i_ic < input_c; i_ic++) {
for (int i_d = 0; i_d < depth; i_d++) {
for (int i_h = 0; i_h < height; i_h++) {
for (int i_w = 0; i_w < width; i_w++) {
int dst_i = input_c * depth * height * width * i_oc +
depth * height * width * i_ic + height * width * i_d + width * i_h + i_w;
int src_i = out_c * input_c * width * height * i_d +
out_c * input_c * width * i_h + out_c * input_c * i_w + out_c * i_ic + i_oc;
CV_Assert(dst_i < total);
CV_Assert(src_i < total);
dstData[dst_i] = data[src_i];
}
}
}
}
@ -745,7 +792,7 @@ void TFImporter::populateNet(Net dstNet)
int predictedLayout = predictOutputDataLayout(net, layer, data_layouts);
data_layouts[name] = predictedLayout;
if (type == "Conv2D" || type == "SpaceToBatchND" || type == "DepthwiseConv2dNative" || type == "Pad")
if (type == "Conv2D" || type == "SpaceToBatchND" || type == "DepthwiseConv2dNative" || type == "Pad" || type == "Conv3D")
{
// The first node of dilated convolution subgraph.
// Extract input node, dilation rate and paddings.
@ -917,9 +964,9 @@ void TFImporter::populateNet(Net dstNet)
{
layerParams.blobs[0] = sharedWeightsIt->second;
}
Mat weights = layerParams.blobs[0];
layerParams.set("kernel_size", DictValue::arrayInt(&weights.size[2], weights.dims - 2));
layerParams.set("kernel_h", layerParams.blobs[0].size[2]);
layerParams.set("kernel_w", layerParams.blobs[0].size[3]);
layerParams.set("num_output", layerParams.blobs[0].size[0]);
setStrides(layerParams, layer);
@ -1290,7 +1337,7 @@ void TFImporter::populateNet(Net dstNet)
connect(layer_id, dstNet, inp, id, ii - from);
}
}
else if (type == "MaxPool")
else if (type == "MaxPool" || type == "MaxPool3D")
{
layerParams.set("pool", "max");
@ -1303,11 +1350,10 @@ void TFImporter::populateNet(Net dstNet)
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
}
else if (type == "AvgPool")
else if (type == "AvgPool" || type == "AvgPool3D")
{
layerParams.set("pool", "ave");
layerParams.set("ave_pool_padded_area", false);
setKSize(layerParams, layer);
setStrides(layerParams, layer);
setPadding(layerParams, layer);

View File

@ -81,6 +81,13 @@ TEST_P(Test_ONNX_layers, Convolution)
testONNXModels("convolution");
}
TEST_P(Test_ONNX_layers, Convolution3D)
{
if (backend != DNN_BACKEND_INFERENCE_ENGINE || target != DNN_TARGET_CPU)
throw SkipTestException("Only DLIE backend on CPU is supported");
testONNXModels("conv3d");
testONNXModels("conv3d_bias");
}
TEST_P(Test_ONNX_layers, Two_convolution)
{
@ -138,6 +145,20 @@ TEST_P(Test_ONNX_layers, AveragePooling)
testONNXModels("average_pooling");
}
TEST_P(Test_ONNX_layers, MaxPooling3D)
{
if (backend != DNN_BACKEND_INFERENCE_ENGINE || target != DNN_TARGET_CPU)
throw SkipTestException("Only DLIE backend on CPU is supported");
testONNXModels("max_pool3d");
}
TEST_P(Test_ONNX_layers, AvePooling3D)
{
if (backend != DNN_BACKEND_INFERENCE_ENGINE || target != DNN_TARGET_CPU)
throw SkipTestException("Only DLIE backend on CPU is supported");
testONNXModels("ave_pool3d");
}
TEST_P(Test_ONNX_layers, BatchNormalization)
{
testONNXModels("batch_norm");

View File

@ -131,6 +131,13 @@ TEST_P(Test_TensorFlow_layers, conv)
runTensorFlowNet("conv_pool_nchw");
}
TEST_P(Test_TensorFlow_layers, Convolution3D)
{
if (backend != DNN_BACKEND_INFERENCE_ENGINE || target != DNN_TARGET_CPU)
throw SkipTestException("Only DLIE backend on CPU is supported");
runTensorFlowNet("conv3d");
}
TEST_P(Test_TensorFlow_layers, padding)
{
runTensorFlowNet("padding_valid");
@ -212,6 +219,20 @@ TEST_P(Test_TensorFlow_layers, ave_pool_same)
runTensorFlowNet("ave_pool_same");
}
TEST_P(Test_TensorFlow_layers, MaxPooling3D)
{
if (backend != DNN_BACKEND_INFERENCE_ENGINE || target != DNN_TARGET_CPU)
throw SkipTestException("Only DLIE backend on CPU is supported");
runTensorFlowNet("max_pool3d");
}
TEST_P(Test_TensorFlow_layers, AvePooling3D)
{
if (backend != DNN_BACKEND_INFERENCE_ENGINE || target != DNN_TARGET_CPU)
throw SkipTestException("Only DLIE backend on CPU is supported");
runTensorFlowNet("ave_pool3d");
}
TEST_P(Test_TensorFlow_layers, deconvolution)
{
runTensorFlowNet("deconvolution");