mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Merge pull request #2233 from palindromoroz:BGSubtract_KNN_new_code
This commit is contained in:
commit
7942494fb6
@ -134,6 +134,7 @@ typedef Ptr<DescriptorMatcher> Ptr_DescriptorMatcher;
|
||||
typedef Ptr<BackgroundSubtractor> Ptr_BackgroundSubtractor;
|
||||
typedef Ptr<BackgroundSubtractorMOG> Ptr_BackgroundSubtractorMOG;
|
||||
typedef Ptr<BackgroundSubtractorMOG2> Ptr_BackgroundSubtractorMOG2;
|
||||
typedef Ptr<BackgroundSubtractorKNN> Ptr_BackgroundSubtractorKNN;
|
||||
typedef Ptr<BackgroundSubtractorGMG> Ptr_BackgroundSubtractorGMG;
|
||||
|
||||
typedef Ptr<StereoMatcher> Ptr_StereoMatcher;
|
||||
|
@ -596,7 +596,7 @@ Returns the number of gaussian components in the background model
|
||||
|
||||
BackgroundSubtractorMOG2::setNMixtures
|
||||
--------------------------------------
|
||||
Sets the number of gaussian components in the background model
|
||||
Sets the number of gaussian components in the background model. The model needs to be reinitalized to reserve memory.
|
||||
|
||||
.. ocv:function:: void BackgroundSubtractorMOG2::setNMixtures(int nmixtures)
|
||||
|
||||
@ -615,9 +615,23 @@ Sets the "background ratio" parameter of the algorithm
|
||||
|
||||
.. ocv:function:: void BackgroundSubtractorMOG2::setBackgroundRatio(double ratio)
|
||||
|
||||
BackgroundSubtractorMOG2::getVarThreshold
|
||||
---------------------------------------------
|
||||
Returns the variance threshold for the pixel-model match
|
||||
|
||||
.. ocv:function:: double BackgroundSubtractorMOG2::getVarThreshold() const
|
||||
|
||||
The main threshold on the squared Mahalanobis distance to decide if the sample is well described by the background model or not. Related to Cthr from the paper.
|
||||
|
||||
BackgroundSubtractorMOG2::setVarThreshold
|
||||
---------------------------------------------
|
||||
Sets the variance threshold for the pixel-model match
|
||||
|
||||
.. ocv:function:: void BackgroundSubtractorMOG2::setVarThreshold(double varThreshold)
|
||||
|
||||
BackgroundSubtractorMOG2::getVarThresholdGen
|
||||
---------------------------------------------
|
||||
Returns the variance scale factor for the pixel-model match
|
||||
Returns the variance threshold for the pixel-model match used for new mixture component generation
|
||||
|
||||
.. ocv:function:: double BackgroundSubtractorMOG2::getVarThresholdGen() const
|
||||
|
||||
@ -625,7 +639,7 @@ Threshold for the squared Mahalanobis distance that helps decide when a sample i
|
||||
|
||||
BackgroundSubtractorMOG2::setVarThresholdGen
|
||||
---------------------------------------------
|
||||
Sets the variance scale factor for the pixel-model match
|
||||
Sets the variance threshold for the pixel-model match used for new mixture component generation
|
||||
|
||||
.. ocv:function:: void BackgroundSubtractorMOG2::setVarThresholdGen(double varThresholdGen)
|
||||
|
||||
@ -700,6 +714,126 @@ Sets the shadow threshold
|
||||
.. ocv:function:: void BackgroundSubtractorMOG2::setShadowThreshold(double threshold)
|
||||
|
||||
|
||||
BackgroundSubtractorKNN
|
||||
------------------------
|
||||
K-nearest neigbours - based Background/Foreground Segmentation Algorithm.
|
||||
|
||||
.. ocv:class:: BackgroundSubtractorKNN : public BackgroundSubtractor
|
||||
|
||||
The class implements the K-nearest neigbours background subtraction described in [Zivkovic2006]_ . Very efficient if number of foreground pixels is low.
|
||||
|
||||
|
||||
createBackgroundSubtractorKNN
|
||||
--------------------------------------------------
|
||||
Creates KNN Background Subtractor
|
||||
|
||||
.. ocv:function:: Ptr<BackgroundSubtractorKNN> createBackgroundSubtractorKNN( int history=500, double dist2Threshold=400.0, bool detectShadows=true )
|
||||
|
||||
:param history: Length of the history.
|
||||
|
||||
:param dist2Threshold: Threshold on the squared distance between the pixel and the sample to decide whether a pixel is close to that sample. This parameter does not affect the background update.
|
||||
|
||||
:param detectShadows: If true, the algorithm will detect shadows and mark them. It decreases the speed a bit, so if you do not need this feature, set the parameter to false.
|
||||
|
||||
|
||||
BackgroundSubtractorKNN::getHistory
|
||||
--------------------------------------
|
||||
Returns the number of last frames that affect the background model
|
||||
|
||||
.. ocv:function:: int BackgroundSubtractorKNN::getHistory() const
|
||||
|
||||
|
||||
BackgroundSubtractorKNN::setHistory
|
||||
--------------------------------------
|
||||
Sets the number of last frames that affect the background model
|
||||
|
||||
.. ocv:function:: void BackgroundSubtractorKNN::setHistory(int history)
|
||||
|
||||
|
||||
BackgroundSubtractorKNN::getNSamples
|
||||
--------------------------------------
|
||||
Returns the number of data samples in the background model
|
||||
|
||||
.. ocv:function:: int BackgroundSubtractorKNN::getNSamples() const
|
||||
|
||||
|
||||
BackgroundSubtractorKNN::setNSamples
|
||||
--------------------------------------
|
||||
Sets the number of data samples in the background model. The model needs to be reinitalized to reserve memory.
|
||||
|
||||
.. ocv:function:: void BackgroundSubtractorKNN::setNSamples(int _nN)
|
||||
|
||||
|
||||
BackgroundSubtractorKNN::getDist2Threshold
|
||||
---------------------------------------------
|
||||
Returns the threshold on the squared distance between the pixel and the sample
|
||||
|
||||
.. ocv:function:: double BackgroundSubtractorKNN::getDist2Threshold() const
|
||||
|
||||
The threshold on the squared distance between the pixel and the sample to decide whether a pixel is close to a data sample.
|
||||
|
||||
BackgroundSubtractorKNN::setDist2Threshold
|
||||
---------------------------------------------
|
||||
Sets the threshold on the squared distance
|
||||
|
||||
.. ocv:function:: void BackgroundSubtractorKNN::setDist2Threshold(double _dist2Threshold)
|
||||
|
||||
BackgroundSubtractorKNN::getkNNSamples
|
||||
---------------------------------------------
|
||||
Returns the number of neighbours, the k in the kNN. K is the number of samples that need to be within dist2Threshold in order to decide that that pixel is matching the kNN background model.
|
||||
|
||||
.. ocv:function:: int BackgroundSubtractorKNN::getkNNSamples() const
|
||||
|
||||
BackgroundSubtractorKNN::setkNNSamples
|
||||
---------------------------------------------
|
||||
Sets the k in the kNN. How many nearest neigbours need to match.
|
||||
|
||||
.. ocv:function:: void BackgroundSubtractorKNN::setkNNSamples(int _nkNN)
|
||||
|
||||
|
||||
BackgroundSubtractorKNN::getDetectShadows
|
||||
---------------------------------------------
|
||||
Returns the shadow detection flag
|
||||
|
||||
.. ocv:function:: bool BackgroundSubtractorKNN::getDetectShadows() const
|
||||
|
||||
If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorKNN for details.
|
||||
|
||||
BackgroundSubtractorKNN::setDetectShadows
|
||||
---------------------------------------------
|
||||
Enables or disables shadow detection
|
||||
|
||||
.. ocv:function:: void BackgroundSubtractorKNN::setDetectShadows(bool detectShadows)
|
||||
|
||||
BackgroundSubtractorKNN::getShadowValue
|
||||
---------------------------------------------
|
||||
Returns the shadow value
|
||||
|
||||
.. ocv:function:: int BackgroundSubtractorKNN::getShadowValue() const
|
||||
|
||||
Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0 in the mask always means background, 255 means foreground.
|
||||
|
||||
BackgroundSubtractorKNN::setShadowValue
|
||||
---------------------------------------------
|
||||
Sets the shadow value
|
||||
|
||||
.. ocv:function:: void BackgroundSubtractorKNN::setShadowValue(int value)
|
||||
|
||||
BackgroundSubtractorKNN::getShadowThreshold
|
||||
---------------------------------------------
|
||||
Returns the shadow threshold
|
||||
|
||||
.. ocv:function:: double BackgroundSubtractorKNN::getShadowThreshold() const
|
||||
|
||||
A shadow is detected if pixel is a darker version of the background. The shadow threshold (``Tau`` in the paper) is a threshold defining how much darker the shadow can be. ``Tau= 0.5`` means that if a pixel is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiarra, *Detecting Moving Shadows...*, IEEE PAMI,2003.
|
||||
|
||||
BackgroundSubtractorKNN::setShadowThreshold
|
||||
---------------------------------------------
|
||||
Sets the shadow threshold
|
||||
|
||||
.. ocv:function:: void BackgroundSubtractorKNN::setShadowThreshold(double threshold)
|
||||
|
||||
|
||||
BackgroundSubtractorGMG
|
||||
------------------------
|
||||
Background Subtractor module based on the algorithm given in [Gold2012]_.
|
||||
@ -974,9 +1108,9 @@ Releases all inner buffers.
|
||||
|
||||
.. [Bradski98] Bradski, G.R. "Computer Vision Face Tracking for Use in a Perceptual User Interface", Intel, 1998
|
||||
|
||||
.. [Bradski00] Davis, J.W. and Bradski, G.R. “Motion Segmentation and Pose Recognition with Motion History Gradients”, WACV00, 2000
|
||||
.. [Bradski00] Davis, J.W. and Bradski, G.R. "Motion Segmentation and Pose Recognition with Motion History Gradients", WACV00, 2000
|
||||
|
||||
.. [Davis97] Davis, J.W. and Bobick, A.F. “The Representation and Recognition of Action Using Temporal Templates”, CVPR97, 1997
|
||||
.. [Davis97] Davis, J.W. and Bobick, A.F. "The Representation and Recognition of Action Using Temporal Templates", CVPR97, 1997
|
||||
|
||||
.. [EP08] Evangelidis, G.D. and Psarakis E.Z. "Parametric Image Alignment using Enhanced Correlation Coefficient Maximization", IEEE Transactions on PAMI, vol. 32, no. 10, 2008
|
||||
|
||||
@ -990,7 +1124,7 @@ Releases all inner buffers.
|
||||
|
||||
.. [Lucas81] Lucas, B., and Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision, Proc. of 7th International Joint Conference on Artificial Intelligence (IJCAI), pp. 674-679.
|
||||
|
||||
.. [Welch95] Greg Welch and Gary Bishop “An Introduction to the Kalman Filter”, 1995
|
||||
.. [Welch95] Greg Welch and Gary Bishop "An Introduction to the Kalman Filter", 1995
|
||||
|
||||
.. [Tao2012] Michael Tao, Jiamin Bai, Pushmeet Kohli and Sylvain Paris. SimpleFlow: A Non-iterative, Sublinear Optical Flow Algorithm. Computer Graphics Forum (Eurographics 2012)
|
||||
|
||||
|
@ -113,7 +113,7 @@ public:
|
||||
CV_WRAP virtual void setHistory(int history) = 0;
|
||||
|
||||
CV_WRAP virtual int getNMixtures() const = 0;
|
||||
CV_WRAP virtual void setNMixtures(int nmixtures) = 0;
|
||||
CV_WRAP virtual void setNMixtures(int nmixtures) = 0;//needs reinitialization!
|
||||
|
||||
CV_WRAP virtual double getBackgroundRatio() const = 0;
|
||||
CV_WRAP virtual void setBackgroundRatio(double ratio) = 0;
|
||||
@ -150,6 +150,45 @@ CV_EXPORTS_W Ptr<BackgroundSubtractorMOG2>
|
||||
createBackgroundSubtractorMOG2(int history=500, double varThreshold=16,
|
||||
bool detectShadows=true);
|
||||
|
||||
/*!
|
||||
The class implements the K nearest neigbours algorithm from:
|
||||
"Efficient Adaptive Density Estimation per Image Pixel for the Task of Background Subtraction"
|
||||
Z.Zivkovic, F. van der Heijden
|
||||
Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006
|
||||
http://www.zoranz.net/Publications/zivkovicPRL2006.pdf
|
||||
|
||||
Fast for small foreground object. Results on the benchmark data is at http://www.changedetection.net.
|
||||
*/
|
||||
|
||||
class CV_EXPORTS_W BackgroundSubtractorKNN : public BackgroundSubtractor
|
||||
{
|
||||
public:
|
||||
CV_WRAP virtual int getHistory() const = 0;
|
||||
CV_WRAP virtual void setHistory(int history) = 0;
|
||||
|
||||
CV_WRAP virtual int getNSamples() const = 0;
|
||||
CV_WRAP virtual void setNSamples(int _nN) = 0;//needs reinitialization!
|
||||
|
||||
CV_WRAP virtual double getDist2Threshold() const = 0;
|
||||
CV_WRAP virtual void setDist2Threshold(double _dist2Threshold) = 0;
|
||||
|
||||
CV_WRAP virtual int getkNNSamples() const = 0;
|
||||
CV_WRAP virtual void setkNNSamples(int _nkNN) = 0;
|
||||
|
||||
CV_WRAP virtual bool getDetectShadows() const = 0;
|
||||
CV_WRAP virtual void setDetectShadows(bool detectShadows) = 0;
|
||||
|
||||
CV_WRAP virtual int getShadowValue() const = 0;
|
||||
CV_WRAP virtual void setShadowValue(int value) = 0;
|
||||
|
||||
CV_WRAP virtual double getShadowThreshold() const = 0;
|
||||
CV_WRAP virtual void setShadowThreshold(double threshold) = 0;
|
||||
};
|
||||
|
||||
CV_EXPORTS_W Ptr<BackgroundSubtractorKNN>
|
||||
createBackgroundSubtractorKNN(int history=500, double dist2Threshold=400.0,
|
||||
bool detectShadows=true);
|
||||
|
||||
/**
|
||||
* Background Subtractor module. Takes a series of images and returns a sequence of mask (8UC1)
|
||||
* images of the same size, where 255 indicates Foreground and 0 represents Background.
|
||||
|
654
modules/video/src/bgfg_KNN.cpp
Executable file
654
modules/video/src/bgfg_KNN.cpp
Executable file
@ -0,0 +1,654 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
//#include <math.h>
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
/*!
|
||||
The class implements the following algorithm:
|
||||
"Efficient Adaptive Density Estimation per Image Pixel for the Task of Background Subtraction"
|
||||
Z.Zivkovic, F. van der Heijden
|
||||
Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006
|
||||
http://www.zoranz.net/Publications/zivkovicPRL2006.pdf
|
||||
*/
|
||||
|
||||
// default parameters of gaussian background detection algorithm
|
||||
static const int defaultHistory2 = 500; // Learning rate; alpha = 1/defaultHistory2
|
||||
static const int defaultNsamples = 7; // number of samples saved in memory
|
||||
static const float defaultDist2Threshold = 20.0f*20.0f;//threshold on distance from the sample
|
||||
|
||||
// additional parameters
|
||||
static const unsigned char defaultnShadowDetection2 = (unsigned char)127; // value to use in the segmentation mask for shadows, set 0 not to do shadow detection
|
||||
static const float defaultfTau = 0.5f; // Tau - shadow threshold, see the paper for explanation
|
||||
|
||||
class BackgroundSubtractorKNNImpl : public BackgroundSubtractorKNN
|
||||
{
|
||||
public:
|
||||
//! the default constructor
|
||||
BackgroundSubtractorKNNImpl()
|
||||
{
|
||||
frameSize = Size(0,0);
|
||||
frameType = 0;
|
||||
nframes = 0;
|
||||
history = defaultHistory2;
|
||||
|
||||
//set parameters
|
||||
// N - the number of samples stored in memory per model
|
||||
nN = defaultNsamples;
|
||||
|
||||
//kNN - k nearest neighbour - number on NN for detecting background - default K=[0.1*nN]
|
||||
nkNN=MAX(1,cvRound(0.1*nN*3+0.40));
|
||||
|
||||
//Tb - Threshold Tb*kernelwidth
|
||||
fTb = defaultDist2Threshold;
|
||||
|
||||
// Shadow detection
|
||||
bShadowDetection = 1;//turn on
|
||||
nShadowDetection = defaultnShadowDetection2;
|
||||
fTau = defaultfTau;// Tau - shadow threshold
|
||||
name_ = "BackgroundSubtractor.KNN";
|
||||
}
|
||||
//! the full constructor that takes the length of the history,
|
||||
// the number of gaussian mixtures, the background ratio parameter and the noise strength
|
||||
BackgroundSubtractorKNNImpl(int _history, float _dist2Threshold, bool _bShadowDetection=true)
|
||||
{
|
||||
frameSize = Size(0,0);
|
||||
frameType = 0;
|
||||
|
||||
nframes = 0;
|
||||
history = _history > 0 ? _history : defaultHistory2;
|
||||
|
||||
//set parameters
|
||||
// N - the number of samples stored in memory per model
|
||||
nN = defaultNsamples;
|
||||
//kNN - k nearest neighbour - number on NN for detcting background - default K=[0.1*nN]
|
||||
nkNN=MAX(1,cvRound(0.1*nN*3+0.40));
|
||||
|
||||
//Tb - Threshold Tb*kernelwidth
|
||||
fTb = _dist2Threshold>0? _dist2Threshold : defaultDist2Threshold;
|
||||
|
||||
bShadowDetection = _bShadowDetection;
|
||||
nShadowDetection = defaultnShadowDetection2;
|
||||
fTau = defaultfTau;
|
||||
name_ = "BackgroundSubtractor.KNN";
|
||||
}
|
||||
//! the destructor
|
||||
~BackgroundSubtractorKNNImpl() {}
|
||||
//! the update operator
|
||||
void apply(InputArray image, OutputArray fgmask, double learningRate=-1);
|
||||
|
||||
//! computes a background image which are the mean of all background gaussians
|
||||
virtual void getBackgroundImage(OutputArray backgroundImage) const;
|
||||
|
||||
//! re-initiaization method
|
||||
void initialize(Size _frameSize, int _frameType)
|
||||
{
|
||||
frameSize = _frameSize;
|
||||
frameType = _frameType;
|
||||
nframes = 0;
|
||||
|
||||
int nchannels = CV_MAT_CN(frameType);
|
||||
CV_Assert( nchannels <= CV_CN_MAX );
|
||||
|
||||
// Reserve memory for the model
|
||||
int size=frameSize.height*frameSize.width;
|
||||
// for each sample of 3 speed pixel models each pixel bg model we store ...
|
||||
// values + flag (nchannels+1 values)
|
||||
bgmodel.create( 1,(nN * 3) * (nchannels+1)* size,CV_8U);
|
||||
|
||||
//index through the three circular lists
|
||||
aModelIndexShort.create(1,size,CV_8U);
|
||||
aModelIndexMid.create(1,size,CV_8U);
|
||||
aModelIndexLong.create(1,size,CV_8U);
|
||||
//when to update next
|
||||
nNextShortUpdate.create(1,size,CV_8U);
|
||||
nNextMidUpdate.create(1,size,CV_8U);
|
||||
nNextLongUpdate.create(1,size,CV_8U);
|
||||
|
||||
//Reset counters
|
||||
nShortCounter = 0;
|
||||
nMidCounter = 0;
|
||||
nLongCounter = 0;
|
||||
|
||||
aModelIndexShort = Scalar::all(0);//random? //((m_nN)*rand())/(RAND_MAX+1);//0...m_nN-1
|
||||
aModelIndexMid = Scalar::all(0);
|
||||
aModelIndexLong = Scalar::all(0);
|
||||
nNextShortUpdate = Scalar::all(0);
|
||||
nNextMidUpdate = Scalar::all(0);
|
||||
nNextLongUpdate = Scalar::all(0);
|
||||
}
|
||||
|
||||
virtual AlgorithmInfo* info() const { return 0; }
|
||||
|
||||
virtual int getHistory() const { return history; }
|
||||
virtual void setHistory(int _nframes) { history = _nframes; }
|
||||
|
||||
virtual int getNSamples() const { return nN; }
|
||||
virtual void setNSamples(int _nN) { nN = _nN; }//needs reinitialization!
|
||||
|
||||
virtual int getkNNSamples() const { return nkNN; }
|
||||
virtual void setkNNSamples(int _nkNN) { nkNN = _nkNN; }
|
||||
|
||||
virtual double getDist2Threshold() const { return fTb; }
|
||||
virtual void setDist2Threshold(double _dist2Threshold) { fTb = (float)_dist2Threshold; }
|
||||
|
||||
virtual bool getDetectShadows() const { return bShadowDetection; }
|
||||
virtual void setDetectShadows(bool detectshadows) { bShadowDetection = detectshadows; }
|
||||
|
||||
virtual int getShadowValue() const { return nShadowDetection; }
|
||||
virtual void setShadowValue(int value) { nShadowDetection = (uchar)value; }
|
||||
|
||||
virtual double getShadowThreshold() const { return fTau; }
|
||||
virtual void setShadowThreshold(double value) { fTau = (float)value; }
|
||||
|
||||
virtual void write(FileStorage& fs) const
|
||||
{
|
||||
fs << "name" << name_
|
||||
<< "history" << history
|
||||
<< "nsamples" << nN
|
||||
<< "nKNN" << nkNN
|
||||
<< "dist2Threshold" << fTb
|
||||
<< "detectShadows" << (int)bShadowDetection
|
||||
<< "shadowValue" << (int)nShadowDetection
|
||||
<< "shadowThreshold" << fTau;
|
||||
}
|
||||
|
||||
virtual void read(const FileNode& fn)
|
||||
{
|
||||
CV_Assert( (String)fn["name"] == name_ );
|
||||
history = (int)fn["history"];
|
||||
nN = (int)fn["nsamples"];
|
||||
nkNN = (int)fn["nKNN"];
|
||||
fTb = (float)fn["dist2Threshold"];
|
||||
bShadowDetection = (int)fn["detectShadows"] != 0;
|
||||
nShadowDetection = saturate_cast<uchar>((int)fn["shadowValue"]);
|
||||
fTau = (float)fn["shadowThreshold"];
|
||||
}
|
||||
|
||||
protected:
|
||||
Size frameSize;
|
||||
int frameType;
|
||||
int nframes;
|
||||
/////////////////////////
|
||||
//very important parameters - things you will change
|
||||
////////////////////////
|
||||
int history;
|
||||
//alpha=1/history - speed of update - if the time interval you want to average over is T
|
||||
//set alpha=1/history. It is also usefull at start to make T slowly increase
|
||||
//from 1 until the desired T
|
||||
float fTb;
|
||||
//Tb - threshold on the squared distance from the sample used to decide if it is well described
|
||||
//by the background model or not. A typical value could be 2 sigma
|
||||
//and that is Tb=2*2*10*10 =400; where we take typical pixel level sigma=10
|
||||
|
||||
/////////////////////////
|
||||
//less important parameters - things you might change but be carefull
|
||||
////////////////////////
|
||||
int nN;//totlal number of samples
|
||||
int nkNN;//number on NN for detcting background - default K=[0.1*nN]
|
||||
|
||||
//shadow detection parameters
|
||||
bool bShadowDetection;//default 1 - do shadow detection
|
||||
unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result - 127 default value
|
||||
float fTau;
|
||||
// Tau - shadow threshold. The shadow is detected if the pixel is darker
|
||||
//version of the background. Tau is a threshold on how much darker the shadow can be.
|
||||
//Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
|
||||
//See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
|
||||
|
||||
//model data
|
||||
int nLongCounter;//circular counter
|
||||
int nMidCounter;
|
||||
int nShortCounter;
|
||||
Mat bgmodel; // model data pixel values
|
||||
Mat aModelIndexShort;// index into the models
|
||||
Mat aModelIndexMid;
|
||||
Mat aModelIndexLong;
|
||||
Mat nNextShortUpdate;//random update points per model
|
||||
Mat nNextMidUpdate;
|
||||
Mat nNextLongUpdate;
|
||||
|
||||
String name_;
|
||||
};
|
||||
|
||||
//{ to do - paralelization ...
|
||||
//struct KNNInvoker....
|
||||
CV_INLINE void
|
||||
_cvUpdatePixelBackgroundNP( long pixel,const uchar* data, int nchannels, int m_nN,
|
||||
uchar* m_aModel,
|
||||
uchar* m_nNextLongUpdate,
|
||||
uchar* m_nNextMidUpdate,
|
||||
uchar* m_nNextShortUpdate,
|
||||
uchar* m_aModelIndexLong,
|
||||
uchar* m_aModelIndexMid,
|
||||
uchar* m_aModelIndexShort,
|
||||
int m_nLongCounter,
|
||||
int m_nMidCounter,
|
||||
int m_nShortCounter,
|
||||
int m_nLongUpdate,
|
||||
int m_nMidUpdate,
|
||||
int m_nShortUpdate,
|
||||
uchar include
|
||||
)
|
||||
{
|
||||
// hold the offset
|
||||
int ndata=1+nchannels;
|
||||
long offsetLong = ndata * (pixel * m_nN * 3 + m_aModelIndexLong[pixel] + m_nN * 2);
|
||||
long offsetMid = ndata * (pixel * m_nN * 3 + m_aModelIndexMid[pixel] + m_nN * 1);
|
||||
long offsetShort = ndata * (pixel * m_nN * 3 + m_aModelIndexShort[pixel]);
|
||||
|
||||
// Long update?
|
||||
if (m_nNextLongUpdate[pixel] == m_nLongCounter)
|
||||
{
|
||||
// add the oldest pixel from Mid to the list of values (for each color)
|
||||
memcpy(&m_aModel[offsetLong],&m_aModel[offsetMid],ndata*sizeof(unsigned char));
|
||||
// increase the index
|
||||
m_aModelIndexLong[pixel] = (m_aModelIndexLong[pixel] >= (m_nN-1)) ? 0 : (m_aModelIndexLong[pixel] + 1);
|
||||
};
|
||||
if (m_nLongCounter == (m_nLongUpdate-1))
|
||||
{
|
||||
//m_nNextLongUpdate[pixel] = (uchar)(((m_nLongUpdate)*(rand()-1))/RAND_MAX);//0,...m_nLongUpdate-1;
|
||||
m_nNextLongUpdate[pixel] = (uchar)( rand() % m_nLongUpdate );//0,...m_nLongUpdate-1;
|
||||
};
|
||||
|
||||
// Mid update?
|
||||
if (m_nNextMidUpdate[pixel] == m_nMidCounter)
|
||||
{
|
||||
// add this pixel to the list of values (for each color)
|
||||
memcpy(&m_aModel[offsetMid],&m_aModel[offsetShort],ndata*sizeof(unsigned char));
|
||||
// increase the index
|
||||
m_aModelIndexMid[pixel] = (m_aModelIndexMid[pixel] >= (m_nN-1)) ? 0 : (m_aModelIndexMid[pixel] + 1);
|
||||
};
|
||||
if (m_nMidCounter == (m_nMidUpdate-1))
|
||||
{
|
||||
m_nNextMidUpdate[pixel] = (uchar)( rand() % m_nMidUpdate );
|
||||
};
|
||||
|
||||
// Short update?
|
||||
if (m_nNextShortUpdate[pixel] == m_nShortCounter)
|
||||
{
|
||||
// add this pixel to the list of values (for each color)
|
||||
memcpy(&m_aModel[offsetShort],data,ndata*sizeof(unsigned char));
|
||||
//set the include flag
|
||||
m_aModel[offsetShort+nchannels]=include;
|
||||
// increase the index
|
||||
m_aModelIndexShort[pixel] = (m_aModelIndexShort[pixel] >= (m_nN-1)) ? 0 : (m_aModelIndexShort[pixel] + 1);
|
||||
};
|
||||
if (m_nShortCounter == (m_nShortUpdate-1))
|
||||
{
|
||||
m_nNextShortUpdate[pixel] = (uchar)( rand() % m_nShortUpdate );
|
||||
};
|
||||
};
|
||||
|
||||
CV_INLINE int
|
||||
_cvCheckPixelBackgroundNP(long pixel,
|
||||
const uchar* data, int nchannels,
|
||||
int m_nN,
|
||||
uchar* m_aModel,
|
||||
float m_fTb,
|
||||
int m_nkNN,
|
||||
float tau,
|
||||
int m_nShadowDetection,
|
||||
uchar& include)
|
||||
{
|
||||
int Pbf = 0; // the total probability that this pixel is background
|
||||
int Pb = 0; //background model probability
|
||||
float dData[CV_CN_MAX];
|
||||
|
||||
//uchar& include=data[nchannels];
|
||||
include=0;//do we include this pixel into background model?
|
||||
|
||||
int ndata=nchannels+1;
|
||||
long posPixel = pixel * ndata * m_nN * 3;
|
||||
// float k;
|
||||
// now increase the probability for each pixel
|
||||
for (int n = 0; n < m_nN*3; n++)
|
||||
{
|
||||
uchar* mean_m = &m_aModel[posPixel + n*ndata];
|
||||
|
||||
//calculate difference and distance
|
||||
float dist2;
|
||||
|
||||
if( nchannels == 3 )
|
||||
{
|
||||
dData[0] = (float)mean_m[0] - data[0];
|
||||
dData[1] = (float)mean_m[1] - data[1];
|
||||
dData[2] = (float)mean_m[2] - data[2];
|
||||
dist2 = dData[0]*dData[0] + dData[1]*dData[1] + dData[2]*dData[2];
|
||||
}
|
||||
else
|
||||
{
|
||||
dist2 = 0.f;
|
||||
for( int c = 0; c < nchannels; c++ )
|
||||
{
|
||||
dData[c] = (float)mean_m[c] - data[c];
|
||||
dist2 += dData[c]*dData[c];
|
||||
}
|
||||
}
|
||||
|
||||
if (dist2<m_fTb)
|
||||
{
|
||||
Pbf++;//all
|
||||
//background only
|
||||
//if(m_aModel[subPosPixel + nchannels])//indicator
|
||||
if(mean_m[nchannels])//indicator
|
||||
{
|
||||
Pb++;
|
||||
if (Pb >= m_nkNN)//Tb
|
||||
{
|
||||
include=1;//include
|
||||
return 1;//background ->exit
|
||||
};
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
//include?
|
||||
if (Pbf>=m_nkNN)//m_nTbf)
|
||||
{
|
||||
include=1;
|
||||
}
|
||||
|
||||
int Ps = 0; // the total probability that this pixel is background shadow
|
||||
// Detected as moving object, perform shadow detection
|
||||
if (m_nShadowDetection)
|
||||
{
|
||||
for (int n = 0; n < m_nN*3; n++)
|
||||
{
|
||||
//long subPosPixel = posPixel + n*ndata;
|
||||
uchar* mean_m = &m_aModel[posPixel + n*ndata];
|
||||
|
||||
if(mean_m[nchannels])//check only background
|
||||
{
|
||||
float numerator = 0.0f;
|
||||
float denominator = 0.0f;
|
||||
for( int c = 0; c < nchannels; c++ )
|
||||
{
|
||||
numerator += (float)data[c] * mean_m[c];
|
||||
denominator += (float)mean_m[c] * mean_m[c];
|
||||
}
|
||||
|
||||
// no division by zero allowed
|
||||
if( denominator == 0 )
|
||||
return 0;
|
||||
|
||||
// if tau < a < 1 then also check the color distortion
|
||||
if( numerator <= denominator && numerator >= tau*denominator )
|
||||
{
|
||||
float a = numerator / denominator;
|
||||
float dist2a = 0.0f;
|
||||
|
||||
for( int c = 0; c < nchannels; c++ )
|
||||
{
|
||||
float dD= a*mean_m[c] - data[c];
|
||||
dist2a += dD*dD;
|
||||
}
|
||||
|
||||
if (dist2a<m_fTb*a*a)
|
||||
{
|
||||
Ps++;
|
||||
if (Ps >= m_nkNN)//shadow
|
||||
return 2;
|
||||
};
|
||||
};
|
||||
};
|
||||
};
|
||||
}
|
||||
return 0;
|
||||
};
|
||||
|
||||
CV_INLINE void
|
||||
icvUpdatePixelBackgroundNP(const Mat& _src, Mat& _dst,
|
||||
Mat& _bgmodel,
|
||||
Mat& _nNextLongUpdate,
|
||||
Mat& _nNextMidUpdate,
|
||||
Mat& _nNextShortUpdate,
|
||||
Mat& _aModelIndexLong,
|
||||
Mat& _aModelIndexMid,
|
||||
Mat& _aModelIndexShort,
|
||||
int& _nLongCounter,
|
||||
int& _nMidCounter,
|
||||
int& _nShortCounter,
|
||||
int _nN,
|
||||
float _fAlphaT,
|
||||
float _fTb,
|
||||
int _nkNN,
|
||||
float _fTau,
|
||||
int _bShadowDetection,
|
||||
uchar nShadowDetection
|
||||
)
|
||||
{
|
||||
int size=_src.rows*_src.cols;
|
||||
int nchannels = CV_MAT_CN(_src.type());
|
||||
const uchar* pDataCurrent=_src.ptr(0);
|
||||
uchar* pDataOutput=_dst.ptr(0);
|
||||
//model
|
||||
uchar* m_aModel=_bgmodel.ptr(0);
|
||||
uchar* m_nNextLongUpdate=_nNextLongUpdate.ptr(0);
|
||||
uchar* m_nNextMidUpdate=_nNextMidUpdate.ptr(0);
|
||||
uchar* m_nNextShortUpdate=_nNextShortUpdate.ptr(0);
|
||||
uchar* m_aModelIndexLong=_aModelIndexLong.ptr(0);
|
||||
uchar* m_aModelIndexMid=_aModelIndexMid.ptr(0);
|
||||
uchar* m_aModelIndexShort=_aModelIndexShort.ptr(0);
|
||||
|
||||
//some constants
|
||||
int m_nN=_nN;
|
||||
float m_fAlphaT=_fAlphaT;
|
||||
float m_fTb=_fTb;//Tb - threshold on the distance
|
||||
float m_fTau=_fTau;
|
||||
int m_nkNN=_nkNN;
|
||||
int m_bShadowDetection=_bShadowDetection;
|
||||
|
||||
//recalculate update rates - in case alpha is changed
|
||||
// calculate update parameters (using alpha)
|
||||
int Kshort,Kmid,Klong;
|
||||
//approximate exponential learning curve
|
||||
Kshort=(int)(log(0.7)/log(1-m_fAlphaT))+1;//Kshort
|
||||
Kmid=(int)(log(0.4)/log(1-m_fAlphaT))-Kshort+1;//Kmid
|
||||
Klong=(int)(log(0.1)/log(1-m_fAlphaT))-Kshort-Kmid+1;//Klong
|
||||
|
||||
//refresh rates
|
||||
int m_nShortUpdate = (Kshort/m_nN)+1;
|
||||
int m_nMidUpdate = (Kmid/m_nN)+1;
|
||||
int m_nLongUpdate = (Klong/m_nN)+1;
|
||||
|
||||
//int m_nShortUpdate = MAX((Kshort/m_nN),m_nN);
|
||||
//int m_nMidUpdate = MAX((Kmid/m_nN),m_nN);
|
||||
//int m_nLongUpdate = MAX((Klong/m_nN),m_nN);
|
||||
|
||||
//update counters for the refresh rate
|
||||
int m_nLongCounter=_nLongCounter;
|
||||
int m_nMidCounter=_nMidCounter;
|
||||
int m_nShortCounter=_nShortCounter;
|
||||
|
||||
_nShortCounter++;//0,1,...,m_nShortUpdate-1
|
||||
_nMidCounter++;
|
||||
_nLongCounter++;
|
||||
if (_nShortCounter >= m_nShortUpdate) _nShortCounter = 0;
|
||||
if (_nMidCounter >= m_nMidUpdate) _nMidCounter = 0;
|
||||
if (_nLongCounter >= m_nLongUpdate) _nLongCounter = 0;
|
||||
|
||||
//go through the image
|
||||
for (long i=0;i<size;i++)
|
||||
{
|
||||
const uchar* data=pDataCurrent;
|
||||
pDataCurrent=pDataCurrent+nchannels;
|
||||
|
||||
//update model+ background subtract
|
||||
uchar include=0;
|
||||
int result= _cvCheckPixelBackgroundNP(i, data, nchannels,
|
||||
m_nN, m_aModel, m_fTb,m_nkNN, m_fTau,m_bShadowDetection,include);
|
||||
|
||||
_cvUpdatePixelBackgroundNP(i,data,nchannels,
|
||||
m_nN, m_aModel,
|
||||
m_nNextLongUpdate,
|
||||
m_nNextMidUpdate,
|
||||
m_nNextShortUpdate,
|
||||
m_aModelIndexLong,
|
||||
m_aModelIndexMid,
|
||||
m_aModelIndexShort,
|
||||
m_nLongCounter,
|
||||
m_nMidCounter,
|
||||
m_nShortCounter,
|
||||
m_nLongUpdate,
|
||||
m_nMidUpdate,
|
||||
m_nShortUpdate,
|
||||
include
|
||||
);
|
||||
switch (result)
|
||||
{
|
||||
case 0:
|
||||
//foreground
|
||||
(* pDataOutput)=255;
|
||||
break;
|
||||
case 1:
|
||||
//background
|
||||
(* pDataOutput)=0;
|
||||
break;
|
||||
case 2:
|
||||
//shadow
|
||||
(* pDataOutput)=nShadowDetection;
|
||||
break;
|
||||
}
|
||||
pDataOutput++;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
void BackgroundSubtractorKNNImpl::apply(InputArray _image, OutputArray _fgmask, double learningRate)
|
||||
{
|
||||
Mat image = _image.getMat();
|
||||
bool needToInitialize = nframes == 0 || learningRate >= 1 || image.size() != frameSize || image.type() != frameType;
|
||||
|
||||
if( needToInitialize )
|
||||
initialize(image.size(), image.type());
|
||||
|
||||
_fgmask.create( image.size(), CV_8U );
|
||||
Mat fgmask = _fgmask.getMat();
|
||||
|
||||
++nframes;
|
||||
learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./std::min( 2*nframes, history );
|
||||
CV_Assert(learningRate >= 0);
|
||||
|
||||
//parallel_for_(Range(0, image.rows),
|
||||
// KNNInvoker(image, fgmask,
|
||||
icvUpdatePixelBackgroundNP(image, fgmask,
|
||||
bgmodel,
|
||||
nNextLongUpdate,
|
||||
nNextMidUpdate,
|
||||
nNextShortUpdate,
|
||||
aModelIndexLong,
|
||||
aModelIndexMid,
|
||||
aModelIndexShort,
|
||||
nLongCounter,
|
||||
nMidCounter,
|
||||
nShortCounter,
|
||||
nN,
|
||||
(float)learningRate,
|
||||
fTb,
|
||||
nkNN,
|
||||
fTau,
|
||||
bShadowDetection,
|
||||
nShadowDetection
|
||||
);
|
||||
}
|
||||
|
||||
void BackgroundSubtractorKNNImpl::getBackgroundImage(OutputArray backgroundImage) const
|
||||
{
|
||||
int nchannels = CV_MAT_CN(frameType);
|
||||
//CV_Assert( nchannels == 3 );
|
||||
Mat meanBackground(frameSize, CV_8UC3, Scalar::all(0));
|
||||
|
||||
int ndata=nchannels+1;
|
||||
int modelstep=(ndata * nN * 3);
|
||||
|
||||
const uchar* pbgmodel=bgmodel.ptr(0);
|
||||
for(int row=0; row<meanBackground.rows; row++)
|
||||
{
|
||||
for(int col=0; col<meanBackground.cols; col++)
|
||||
{
|
||||
for (int n = 0; n < nN*3; n++)
|
||||
{
|
||||
const uchar* mean_m = &pbgmodel[n*ndata];
|
||||
if (mean_m[nchannels])
|
||||
{
|
||||
meanBackground.at<Vec3b>(row, col) = Vec3b(mean_m);
|
||||
break;
|
||||
}
|
||||
}
|
||||
pbgmodel=pbgmodel+modelstep;
|
||||
}
|
||||
}
|
||||
|
||||
switch(CV_MAT_CN(frameType))
|
||||
{
|
||||
case 1:
|
||||
{
|
||||
std::vector<Mat> channels;
|
||||
split(meanBackground, channels);
|
||||
channels[0].copyTo(backgroundImage);
|
||||
break;
|
||||
}
|
||||
case 3:
|
||||
{
|
||||
meanBackground.copyTo(backgroundImage);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
CV_Error(Error::StsUnsupportedFormat, "");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Ptr<BackgroundSubtractorKNN> createBackgroundSubtractorKNN(int _history, double _threshold2,
|
||||
bool _bShadowDetection)
|
||||
{
|
||||
return makePtr<BackgroundSubtractorKNNImpl>(_history, (float)_threshold2, _bShadowDetection);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/* End of file. */
|
Loading…
Reference in New Issue
Block a user