new reduce and reduceKeyVal implementation

This commit is contained in:
Vladislav Vinogradov 2012-11-12 10:55:32 +04:00
parent d47c112434
commit 7a1874b2cc
8 changed files with 1149 additions and 14 deletions

View File

@ -0,0 +1,352 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_GPU_REDUCE_DETAIL_HPP__
#define __OPENCV_GPU_REDUCE_DETAIL_HPP__
#include <thrust/tuple.h>
#include "../warp.hpp"
#include "../warp_shuffle.hpp"
namespace cv { namespace gpu { namespace device
{
namespace reduce_detail
{
template <typename T> struct GetType;
template <typename T> struct GetType<T*>
{
typedef T type;
};
template <typename T> struct GetType<volatile T*>
{
typedef T type;
};
template <typename T> struct GetType<T&>
{
typedef T type;
};
template <unsigned int I, unsigned int N>
struct For
{
template <class PointerTuple, class ValTuple>
static __device__ void loadToSmem(const PointerTuple& smem, const ValTuple& val, unsigned int tid)
{
thrust::get<I>(smem)[tid] = thrust::get<I>(val);
For<I + 1, N>::loadToSmem(smem, val, tid);
}
template <class PointerTuple, class ValTuple>
static __device__ void loadFromSmem(const PointerTuple& smem, const ValTuple& val, unsigned int tid)
{
thrust::get<I>(val) = thrust::get<I>(smem)[tid];
For<I + 1, N>::loadFromSmem(smem, val, tid);
}
template <class PointerTuple, class ValTuple, class OpTuple>
static __device__ void merge(const PointerTuple& smem, const ValTuple& val, unsigned int tid, unsigned int delta, const OpTuple& op)
{
typename GetType<typename thrust::tuple_element<I, PointerTuple>::type>::type reg = thrust::get<I>(smem)[tid + delta];
thrust::get<I>(smem)[tid] = thrust::get<I>(val) = thrust::get<I>(op)(thrust::get<I>(val), reg);
For<I + 1, N>::merge(smem, val, tid, delta, op);
}
template <class ValTuple, class OpTuple>
static __device__ void mergeShfl(const ValTuple& val, unsigned int delta, unsigned int width, const OpTuple& op)
{
typename GetType<typename thrust::tuple_element<I, ValTuple>::type>::type reg = shfl_down(thrust::get<I>(val), delta, width);
thrust::get<I>(val) = thrust::get<I>(op)(thrust::get<I>(val), reg);
For<I + 1, N>::mergeShfl(val, delta, width, op);
}
};
template <unsigned int N>
struct For<N, N>
{
template <class PointerTuple, class ValTuple>
static __device__ void loadToSmem(const PointerTuple&, const ValTuple&, unsigned int)
{
}
template <class PointerTuple, class ValTuple>
static __device__ void loadFromSmem(const PointerTuple&, const ValTuple&, unsigned int)
{
}
template <class PointerTuple, class ValTuple, class OpTuple>
static __device__ void merge(const PointerTuple&, const ValTuple&, unsigned int, unsigned int, const OpTuple&)
{
}
template <class ValTuple, class OpTuple>
static __device__ void mergeShfl(const ValTuple&, unsigned int, unsigned int, const OpTuple&)
{
}
};
template <typename T>
__device__ __forceinline__ void loadToSmem(volatile T* smem, T& val, unsigned int tid)
{
smem[tid] = val;
}
template <typename T>
__device__ __forceinline__ void loadFromSmem(volatile T* smem, T& val, unsigned int tid)
{
val = smem[tid];
}
template <typename P0, typename P1, typename P2, typename P3, typename P4, typename P5, typename P6, typename P7, typename P8, typename P9,
typename R0, typename R1, typename R2, typename R3, typename R4, typename R5, typename R6, typename R7, typename R8, typename R9>
__device__ __forceinline__ void loadToSmem(const thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9>& smem,
const thrust::tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9>& val,
unsigned int tid)
{
For<0, thrust::tuple_size<thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9> >::value>::loadToSmem(smem, val, tid);
}
template <typename P0, typename P1, typename P2, typename P3, typename P4, typename P5, typename P6, typename P7, typename P8, typename P9,
typename R0, typename R1, typename R2, typename R3, typename R4, typename R5, typename R6, typename R7, typename R8, typename R9>
__device__ __forceinline__ void loadFromSmem(const thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9>& smem,
const thrust::tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9>& val,
unsigned int tid)
{
For<0, thrust::tuple_size<thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9> >::value>::loadFromSmem(smem, val, tid);
}
template <typename T, class Op>
__device__ __forceinline__ void merge(volatile T* smem, T& val, unsigned int tid, unsigned int delta, const Op& op)
{
T reg = smem[tid + delta];
smem[tid] = val = op(val, reg);
}
template <typename T, class Op>
__device__ __forceinline__ void mergeShfl(T& val, unsigned int delta, unsigned int width, const Op& op)
{
T reg = shfl_down(val, delta, width);
val = op(val, reg);
}
template <typename P0, typename P1, typename P2, typename P3, typename P4, typename P5, typename P6, typename P7, typename P8, typename P9,
typename R0, typename R1, typename R2, typename R3, typename R4, typename R5, typename R6, typename R7, typename R8, typename R9,
class Op0, class Op1, class Op2, class Op3, class Op4, class Op5, class Op6, class Op7, class Op8, class Op9>
__device__ __forceinline__ void merge(const thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9>& smem,
const thrust::tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9>& val,
unsigned int tid,
unsigned int delta,
const thrust::tuple<Op0, Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8, Op9>& op)
{
For<0, thrust::tuple_size<thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9> >::value>::merge(smem, val, tid, delta, op);
}
template <typename R0, typename R1, typename R2, typename R3, typename R4, typename R5, typename R6, typename R7, typename R8, typename R9,
class Op0, class Op1, class Op2, class Op3, class Op4, class Op5, class Op6, class Op7, class Op8, class Op9>
__device__ __forceinline__ void mergeShfl(const thrust::tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9>& val,
unsigned int delta,
unsigned int width,
const thrust::tuple<Op0, Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8, Op9>& op)
{
For<0, thrust::tuple_size<thrust::tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9> >::value>::mergeShfl(val, delta, width, op);
}
template <unsigned int N> struct Generic
{
template <typename Pointer, typename Reference, class Op>
static __device__ void reduce(Pointer smem, Reference val, unsigned int tid, Op op)
{
loadToSmem(smem, val, tid);
if (N >= 32)
__syncthreads();
if (N >= 2048)
{
if (tid < 1024)
merge(smem, val, tid, 1024, op);
__syncthreads();
}
if (N >= 1024)
{
if (tid < 512)
merge(smem, val, tid, 512, op);
__syncthreads();
}
if (N >= 512)
{
if (tid < 256)
merge(smem, val, tid, 256, op);
__syncthreads();
}
if (N >= 256)
{
if (tid < 128)
merge(smem, val, tid, 128, op);
__syncthreads();
}
if (N >= 128)
{
if (tid < 64)
merge(smem, val, tid, 64, op);
__syncthreads();
}
if (N >= 64)
{
if (tid < 32)
merge(smem, val, tid, 32, op);
}
if (tid < 16)
{
merge(smem, val, tid, 16, op);
merge(smem, val, tid, 8, op);
merge(smem, val, tid, 4, op);
merge(smem, val, tid, 2, op);
merge(smem, val, tid, 1, op);
}
}
};
template <unsigned int N> struct WarpOptimized
{
template <typename Pointer, typename Reference, class Op>
static __device__ void reduce(Pointer smem, Reference val, unsigned int tid, Op op)
{
#if __CUDA_ARCH >= 300
(void) smem;
(void) tid;
#pragma unroll
for (unsigned int i = N / 2; i >= 1; i /= 2)
mergeShfl(val, i, N, op);
#else
loadToSmem(smem, val, tid);
if (tid < N / 2)
{
#pragma unroll
for (unsigned int i = N / 2; i >= 1; i /= 2)
merge(smem, val, tid, i, op);
}
#endif
}
};
template <unsigned int N> struct GenericOptimized32
{
enum { M = N / 32 };
template <typename Pointer, typename Reference, class Op>
static __device__ void reduce(Pointer smem, Reference val, unsigned int tid, Op op)
{
const unsigned int laneId = Warp::laneId();
#if __CUDA_ARCH >= 300
#pragma unroll
for (int i = 16; i >= 1; i /= 2)
mergeShfl(val, i, warpSize, op);
if (laneId == 0)
loadToSmem(smem, val, tid / 32);
#else
loadToSmem(smem, val, tid);
if (laneId < 16)
{
#pragma unroll
for (int i = 16; i >= 1; i /= 2)
merge(smem, val, tid, i, op);
}
__syncthreads();
if (laneId == 0)
loadToSmem(smem, val, tid / 32);
#endif
__syncthreads();
loadFromSmem(smem, val, tid);
if (tid < 32)
{
#if __CUDA_ARCH >= 300
#pragma unroll
for (int i = M / 2; i >= 1; i /= 2)
mergeShfl(val, i, M, op);
#else
#pragma unroll
for (int i = M / 2; i >= 1; i /= 2)
merge(smem, val, tid, i, op);
#endif
}
}
};
template <bool val, class T1, class T2> struct StaticIf;
template <class T1, class T2> struct StaticIf<true, T1, T2>
{
typedef T1 type;
};
template <class T1, class T2> struct StaticIf<false, T1, T2>
{
typedef T2 type;
};
template <unsigned int N> struct IsPowerOf2
{
enum { value = ((N != 0) && !(N & (N - 1))) };
};
template <unsigned int N> struct Dispatcher
{
typedef typename StaticIf<
(N <= 32) && IsPowerOf2<N>::value,
WarpOptimized<N>,
typename StaticIf<
(N <= 1024) && IsPowerOf2<N>::value,
GenericOptimized32<N>,
Generic<N>
>::type
>::type reductor;
};
}
}}}
#endif // __OPENCV_GPU_REDUCE_DETAIL_HPP__

View File

@ -0,0 +1,489 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_GPU_PRED_VAL_REDUCE_DETAIL_HPP__
#define __OPENCV_GPU_PRED_VAL_REDUCE_DETAIL_HPP__
#include <thrust/tuple.h>
#include "../warp.hpp"
#include "../warp_shuffle.hpp"
namespace cv { namespace gpu { namespace device
{
namespace reduce_key_val_detail
{
template <typename T> struct GetType;
template <typename T> struct GetType<T*>
{
typedef T type;
};
template <typename T> struct GetType<volatile T*>
{
typedef T type;
};
template <typename T> struct GetType<T&>
{
typedef T type;
};
template <unsigned int I, unsigned int N>
struct For
{
template <class PointerTuple, class ReferenceTuple>
static __device__ void loadToSmem(const PointerTuple& smem, const ReferenceTuple& data, unsigned int tid)
{
thrust::get<I>(smem)[tid] = thrust::get<I>(data);
For<I + 1, N>::loadToSmem(smem, data, tid);
}
template <class PointerTuple, class ReferenceTuple>
static __device__ void loadFromSmem(const PointerTuple& smem, const ReferenceTuple& data, unsigned int tid)
{
thrust::get<I>(data) = thrust::get<I>(smem)[tid];
For<I + 1, N>::loadFromSmem(smem, data, tid);
}
template <class ReferenceTuple>
static __device__ void copyShfl(const ReferenceTuple& val, unsigned int delta, int width)
{
thrust::get<I>(val) = shfl_down(thrust::get<I>(val), delta, width);
For<I + 1, N>::copyShfl(val, delta, width);
}
template <class PointerTuple, class ReferenceTuple>
static __device__ void copy(const PointerTuple& svals, const ReferenceTuple& val, unsigned int tid, unsigned int delta)
{
thrust::get<I>(svals)[tid] = thrust::get<I>(val) = thrust::get<I>(svals)[tid + delta];
For<I + 1, N>::copy(svals, val, tid, delta);
}
template <class KeyReferenceTuple, class ValReferenceTuple, class CmpTuple>
static __device__ void mergeShfl(const KeyReferenceTuple& key, const ValReferenceTuple& val, const CmpTuple& cmp, unsigned int delta, int width)
{
typename GetType<typename thrust::tuple_element<I, KeyReferenceTuple>::type>::type reg = shfl_down(thrust::get<I>(key), delta, width);
if (thrust::get<I>(cmp)(reg, thrust::get<I>(key)))
{
thrust::get<I>(key) = reg;
thrust::get<I>(val) = shfl_down(thrust::get<I>(val), delta, width);
}
For<I + 1, N>::mergeShfl(key, val, cmp, delta, width);
}
template <class KeyPointerTuple, class KeyReferenceTuple, class ValPointerTuple, class ValReferenceTuple, class CmpTuple>
static __device__ void merge(const KeyPointerTuple& skeys, const KeyReferenceTuple& key,
const ValPointerTuple& svals, const ValReferenceTuple& val,
const CmpTuple& cmp,
unsigned int tid, unsigned int delta)
{
typename GetType<typename thrust::tuple_element<I, KeyPointerTuple>::type>::type reg = thrust::get<I>(skeys)[tid + delta];
if (thrust::get<I>(cmp)(reg, thrust::get<I>(key)))
{
thrust::get<I>(skeys)[tid] = thrust::get<I>(key) = reg;
thrust::get<I>(svals)[tid] = thrust::get<I>(val) = thrust::get<I>(svals)[tid + delta];
}
For<I + 1, N>::merge(skeys, key, svals, val, cmp, tid, delta);
}
};
template <unsigned int N>
struct For<N, N>
{
template <class PointerTuple, class ReferenceTuple>
static __device__ void loadToSmem(const PointerTuple&, const ReferenceTuple&, unsigned int)
{
}
template <class PointerTuple, class ReferenceTuple>
static __device__ void loadFromSmem(const PointerTuple&, const ReferenceTuple&, unsigned int)
{
}
template <class ReferenceTuple>
static __device__ void copyShfl(const ReferenceTuple&, unsigned int, int)
{
}
template <class PointerTuple, class ReferenceTuple>
static __device__ void copy(const PointerTuple&, const ReferenceTuple&, unsigned int, unsigned int)
{
}
template <class KeyReferenceTuple, class ValReferenceTuple, class CmpTuple>
static __device__ void mergeShfl(const KeyReferenceTuple&, const ValReferenceTuple&, const CmpTuple&, unsigned int, int)
{
}
template <class KeyPointerTuple, class KeyReferenceTuple, class ValPointerTuple, class ValReferenceTuple, class CmpTuple>
static __device__ void merge(const KeyPointerTuple&, const KeyReferenceTuple&,
const ValPointerTuple&, const ValReferenceTuple&,
const CmpTuple&,
unsigned int, unsigned int)
{
}
};
//////////////////////////////////////////////////////
// loadToSmem
template <typename T>
__device__ __forceinline__ void loadToSmem(volatile T* smem, T& data, unsigned int tid)
{
smem[tid] = data;
}
template <typename T>
__device__ __forceinline__ void loadFromSmem(volatile T* smem, T& data, unsigned int tid)
{
data = smem[tid];
}
template <typename VP0, typename VP1, typename VP2, typename VP3, typename VP4, typename VP5, typename VP6, typename VP7, typename VP8, typename VP9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9>
__device__ __forceinline__ void loadToSmem(const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>& smem,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& data,
unsigned int tid)
{
For<0, thrust::tuple_size<thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9> >::value>::loadToSmem(smem, data, tid);
}
template <typename VP0, typename VP1, typename VP2, typename VP3, typename VP4, typename VP5, typename VP6, typename VP7, typename VP8, typename VP9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9>
__device__ __forceinline__ void loadFromSmem(const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>& smem,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& data,
unsigned int tid)
{
For<0, thrust::tuple_size<thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9> >::value>::loadFromSmem(smem, data, tid);
}
//////////////////////////////////////////////////////
// copyVals
template <typename V>
__device__ __forceinline__ void copyValsShfl(V& val, unsigned int delta, int width)
{
val = shfl_down(val, delta, width);
}
template <typename V>
__device__ __forceinline__ void copyVals(volatile V* svals, V& val, unsigned int tid, unsigned int delta)
{
svals[tid] = val = svals[tid + delta];
}
template <typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9>
__device__ __forceinline__ void copyValsShfl(const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
unsigned int delta,
int width)
{
For<0, thrust::tuple_size<thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9> >::value>::copyShfl(val, delta, width);
}
template <typename VP0, typename VP1, typename VP2, typename VP3, typename VP4, typename VP5, typename VP6, typename VP7, typename VP8, typename VP9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9>
__device__ __forceinline__ void copyVals(const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>& svals,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
unsigned int tid, unsigned int delta)
{
For<0, thrust::tuple_size<thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9> >::value>::copy(svals, val, tid, delta);
}
//////////////////////////////////////////////////////
// merge
template <typename K, typename V, class Cmp>
__device__ __forceinline__ void mergeShfl(K& key, V& val, const Cmp& cmp, unsigned int delta, int width)
{
K reg = shfl_down(key, delta, width);
if (cmp(reg, key))
{
key = reg;
copyValsShfl(val, delta, width);
}
}
template <typename K, typename V, class Cmp>
__device__ __forceinline__ void merge(volatile K* skeys, K& key, volatile V* svals, V& val, const Cmp& cmp, unsigned int tid, unsigned int delta)
{
K reg = skeys[tid + delta];
if (cmp(reg, key))
{
skeys[tid] = key = reg;
copyVals(svals, val, tid, delta);
}
}
template <typename K,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9,
class Cmp>
__device__ __forceinline__ void mergeShfl(K& key,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
const Cmp& cmp,
unsigned int delta, int width)
{
K reg = shfl_down(key, delta, width);
if (cmp(reg, key))
{
key = reg;
copyValsShfl(val, delta, width);
}
}
template <typename K,
typename VP0, typename VP1, typename VP2, typename VP3, typename VP4, typename VP5, typename VP6, typename VP7, typename VP8, typename VP9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9,
class Cmp>
__device__ __forceinline__ void merge(volatile K* skeys, K& key,
const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>& svals,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
const Cmp& cmp, unsigned int tid, unsigned int delta)
{
K reg = skeys[tid + delta];
if (cmp(reg, key))
{
skeys[tid] = key = reg;
copyVals(svals, val, tid, delta);
}
}
template <typename KR0, typename KR1, typename KR2, typename KR3, typename KR4, typename KR5, typename KR6, typename KR7, typename KR8, typename KR9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9,
class Cmp0, class Cmp1, class Cmp2, class Cmp3, class Cmp4, class Cmp5, class Cmp6, class Cmp7, class Cmp8, class Cmp9>
__device__ __forceinline__ void mergeShfl(const thrust::tuple<KR0, KR1, KR2, KR3, KR4, KR5, KR6, KR7, KR8, KR9>& key,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
const thrust::tuple<Cmp0, Cmp1, Cmp2, Cmp3, Cmp4, Cmp5, Cmp6, Cmp7, Cmp8, Cmp9>& cmp,
unsigned int delta, int width)
{
For<0, thrust::tuple_size<thrust::tuple<KR0, KR1, KR2, KR3, KR4, KR5, KR6, KR7, KR8, KR9> >::value>::mergeShfl(key, val, cmp, delta, width);
}
template <typename KP0, typename KP1, typename KP2, typename KP3, typename KP4, typename KP5, typename KP6, typename KP7, typename KP8, typename KP9,
typename KR0, typename KR1, typename KR2, typename KR3, typename KR4, typename KR5, typename KR6, typename KR7, typename KR8, typename KR9,
typename VP0, typename VP1, typename VP2, typename VP3, typename VP4, typename VP5, typename VP6, typename VP7, typename VP8, typename VP9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9,
class Cmp0, class Cmp1, class Cmp2, class Cmp3, class Cmp4, class Cmp5, class Cmp6, class Cmp7, class Cmp8, class Cmp9>
__device__ __forceinline__ void merge(const thrust::tuple<KP0, KP1, KP2, KP3, KP4, KP5, KP6, KP7, KP8, KP9>& skeys,
const thrust::tuple<KR0, KR1, KR2, KR3, KR4, KR5, KR6, KR7, KR8, KR9>& key,
const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>& svals,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
const thrust::tuple<Cmp0, Cmp1, Cmp2, Cmp3, Cmp4, Cmp5, Cmp6, Cmp7, Cmp8, Cmp9>& cmp,
unsigned int tid, unsigned int delta)
{
For<0, thrust::tuple_size<thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9> >::value>::merge(skeys, key, svals, val, cmp, tid, delta);
}
//////////////////////////////////////////////////////
// Generic
template <unsigned int N> struct Generic
{
template <class KP, class KR, class VP, class VR, class Cmp>
static __device__ void reduce(KP skeys, KR key, VP svals, VR val, unsigned int tid, Cmp cmp)
{
loadToSmem(skeys, key, tid);
loadValsToSmem(svals, val, tid);
if (N >= 32)
__syncthreads();
if (N >= 2048)
{
if (tid < 1024)
merge(skeys, key, svals, val, cmp, tid, 1024);
__syncthreads();
}
if (N >= 1024)
{
if (tid < 512)
merge(skeys, key, svals, val, cmp, tid, 512);
__syncthreads();
}
if (N >= 512)
{
if (tid < 256)
merge(skeys, key, svals, val, cmp, tid, 256);
__syncthreads();
}
if (N >= 256)
{
if (tid < 128)
merge(skeys, key, svals, val, cmp, tid, 128);
__syncthreads();
}
if (N >= 128)
{
if (tid < 64)
merge(skeys, key, svals, val, cmp, tid, 64);
__syncthreads();
}
if (N >= 64)
{
if (tid < 32)
merge(skeys, key, svals, val, cmp, tid, 32);
}
if (tid < 16)
{
merge(skeys, key, svals, val, cmp, tid, 16);
merge(skeys, key, svals, val, cmp, tid, 8);
merge(skeys, key, svals, val, cmp, tid, 4);
merge(skeys, key, svals, val, cmp, tid, 2);
merge(skeys, key, svals, val, cmp, tid, 1);
}
}
};
template <unsigned int N> struct WarpOptimized
{
template <class KP, class KR, class VP, class VR, class Cmp>
static __device__ void reduce(KP skeys, KR key, VP svals, VR val, unsigned int tid, Cmp cmp)
{
#if __CUDA_ARCH >= 300
(void) skeys;
(void) svals;
(void) tid;
#pragma unroll
for (unsigned int i = N / 2; i >= 1; i /= 2)
mergeShfl(key, val, cml, i, N);
#else
loadToSmem(skeys, key, tid);
loadToSmem(svals, val, tid);
if (tid < N / 2)
{
#pragma unroll
for (unsigned int i = N / 2; i >= 1; i /= 2)
merge(skeys, key, svals, val, cmp, tid, i);
}
#endif
}
};
template <unsigned int N> struct GenericOptimized32
{
enum { M = N / 32 };
template <class KP, class KR, class VP, class VR, class Cmp>
static __device__ void reduce(KP skeys, KR key, VP svals, VR val, unsigned int tid, Cmp cmp)
{
const unsigned int laneId = Warp::laneId();
#if __CUDA_ARCH >= 300
#pragma unroll
for (unsigned int i = 16; i >= 1; i /= 2)
mergeShfl(key, val, cml, i, warpSize);
if (laneId == 0)
{
loadToSmem(skeys, key, tid / 32);
loadToSmem(svals, val, tid / 32);
}
#else
loadToSmem(skeys, key, tid);
loadToSmem(svals, val, tid);
if (laneId < 16)
{
#pragma unroll
for (int i = 16; i >= 1; i /= 2)
merge(skeys, key, svals, val, cmp, tid, i);
}
__syncthreads();
if (laneId == 0)
{
loadToSmem(skeys, key, tid / 32);
loadToSmem(svals, val, tid / 32);
}
#endif
__syncthreads();
loadFromSmem(skeys, key, tid);
if (tid < 32)
{
#if __CUDA_ARCH >= 300
loadFromSmem(svals, val, tid);
#pragma unroll
for (unsigned int i = M / 2; i >= 1; i /= 2)
mergeShfl(key, val, cml, i, M);
#else
#pragma unroll
for (unsigned int i = M / 2; i >= 1; i /= 2)
merge(skeys, key, svals, val, cmp, tid, i);
#endif
}
}
};
template <bool val, class T1, class T2> struct StaticIf;
template <class T1, class T2> struct StaticIf<true, T1, T2>
{
typedef T1 type;
};
template <class T1, class T2> struct StaticIf<false, T1, T2>
{
typedef T2 type;
};
template <unsigned int N> struct IsPowerOf2
{
enum { value = ((N != 0) && !(N & (N - 1))) };
};
template <unsigned int N> struct Dispatcher
{
typedef typename StaticIf<
(N <= 32) && IsPowerOf2<N>::value,
WarpOptimized<N>,
typename StaticIf<
(N <= 1024) && IsPowerOf2<N>::value,
GenericOptimized32<N>,
Generic<N>
>::type
>::type reductor;
};
}
}}}
#endif // __OPENCV_GPU_PRED_VAL_REDUCE_DETAIL_HPP__

View File

@ -0,0 +1,197 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_GPU_REDUCE_HPP__
#define __OPENCV_GPU_REDUCE_HPP__
#include <thrust/tuple.h>
#include "detail/reduce.hpp"
#include "detail/reduce_key_val.hpp"
namespace cv { namespace gpu { namespace device
{
template <int N, typename T, class Op>
__device__ __forceinline__ void reduce(volatile T* smem, T& val, unsigned int tid, const Op& op)
{
reduce_detail::Dispatcher<N>::reductor::template reduce<volatile T*, T&, const Op&>(smem, val, tid, op);
}
template <int N,
typename P0, typename P1, typename P2, typename P3, typename P4, typename P5, typename P6, typename P7, typename P8, typename P9,
typename R0, typename R1, typename R2, typename R3, typename R4, typename R5, typename R6, typename R7, typename R8, typename R9,
class Op0, class Op1, class Op2, class Op3, class Op4, class Op5, class Op6, class Op7, class Op8, class Op9>
__device__ __forceinline__ void reduce(const thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9>& smem,
const thrust::tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9>& val,
unsigned int tid,
const thrust::tuple<Op0, Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8, Op9>& op)
{
reduce_detail::Dispatcher<N>::reductor::template reduce<
const thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9>&,
const thrust::tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9>&,
const thrust::tuple<Op0, Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8, Op9>&>(smem, val, tid, op);
}
template <unsigned int N, typename K, typename V, class Cmp>
__device__ __forceinline__ void reduceKeyVal(volatile K* skeys, K& key, volatile V* svals, V& val, unsigned int tid, const Cmp& cmp)
{
reduce_key_val_detail::Dispatcher<N>::reductor::template reduce<volatile K*, K&, volatile V*, V&, const Cmp&>(skeys, key, svals, val, tid, cmp);
}
template <unsigned int N,
typename K,
typename VP0, typename VP1, typename VP2, typename VP3, typename VP4, typename VP5, typename VP6, typename VP7, typename VP8, typename VP9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9,
class Cmp>
__device__ __forceinline__ void reduceKeyVal(volatile K* skeys, K& key,
const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>& svals,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
unsigned int tid, const Cmp& cmp)
{
reduce_key_val_detail::Dispatcher<N>::reductor::template reduce<volatile K*, K&,
const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>&,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>&,
const Cmp&>(skeys, key, svals, val, tid, cmp);
}
template <unsigned int N,
typename KP0, typename KP1, typename KP2, typename KP3, typename KP4, typename KP5, typename KP6, typename KP7, typename KP8, typename KP9,
typename KR0, typename KR1, typename KR2, typename KR3, typename KR4, typename KR5, typename KR6, typename KR7, typename KR8, typename KR9,
typename VP0, typename VP1, typename VP2, typename VP3, typename VP4, typename VP5, typename VP6, typename VP7, typename VP8, typename VP9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9,
class Cmp0, class Cmp1, class Cmp2, class Cmp3, class Cmp4, class Cmp5, class Cmp6, class Cmp7, class Cmp8, class Cmp9>
__device__ __forceinline__ void reduceKeyVal(const thrust::tuple<KP0, KP1, KP2, KP3, KP4, KP5, KP6, KP7, KP8, KP9>& skeys,
const thrust::tuple<KR0, KR1, KR2, KR3, KR4, KR5, KR6, KR7, KR8, KR9>& key,
const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>& svals,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
unsigned int tid,
const thrust::tuple<Cmp0, Cmp1, Cmp2, Cmp3, Cmp4, Cmp5, Cmp6, Cmp7, Cmp8, Cmp9>& cmp)
{
reduce_key_val_detail::Dispatcher<N>::reductor::template reduce<
const thrust::tuple<KP0, KP1, KP2, KP3, KP4, KP5, KP6, KP7, KP8, KP9>&,
const thrust::tuple<KR0, KR1, KR2, KR3, KR4, KR5, KR6, KR7, KR8, KR9>&,
const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>&,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>&,
const thrust::tuple<Cmp0, Cmp1, Cmp2, Cmp3, Cmp4, Cmp5, Cmp6, Cmp7, Cmp8, Cmp9>&
>(skeys, key, svals, val, tid, cmp);
}
// smem_tuple
template <typename T0>
__device__ __forceinline__
thrust::tuple<volatile T0*>
smem_tuple(T0* t0)
{
return thrust::make_tuple((volatile T0*) t0);
}
template <typename T0, typename T1>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*>
smem_tuple(T0* t0, T1* t1)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1);
}
template <typename T0, typename T1, typename T2>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*>
smem_tuple(T0* t0, T1* t1, T2* t2)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2);
}
template <typename T0, typename T1, typename T2, typename T3>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*, volatile T3*>
smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3);
}
template <typename T0, typename T1, typename T2, typename T3, typename T4>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*, volatile T3*, volatile T4*>
smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4);
}
template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*, volatile T3*, volatile T4*, volatile T5*>
smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5);
}
template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*, volatile T3*, volatile T4*, volatile T5*, volatile T6*>
smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5, T6* t6)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5, (volatile T6*) t6);
}
template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*, volatile T3*, volatile T4*, volatile T5*, volatile T6*, volatile T7*>
smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5, T6* t6, T7* t7)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5, (volatile T6*) t6, (volatile T7*) t7);
}
template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*, volatile T3*, volatile T4*, volatile T5*, volatile T6*, volatile T7*, volatile T8*>
smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5, T6* t6, T7* t7, T8* t8)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5, (volatile T6*) t6, (volatile T7*) t7, (volatile T8*) t8);
}
template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*, volatile T3*, volatile T4*, volatile T5*, volatile T6*, volatile T7*, volatile T8*, volatile T9*>
smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5, T6* t6, T7* t7, T8* t8, T9* t9)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5, (volatile T6*) t6, (volatile T7*) t7, (volatile T8*) t8, (volatile T9*) t9);
}
}}}
#endif // __OPENCV_GPU_UTILITY_HPP__

View File

@ -159,7 +159,7 @@ namespace cv { namespace gpu { namespace device
///////////////////////////////////////////////////////////////////////////////
// Reduction
template <int n, typename T, typename Op> __device__ __forceinline__ void reduce(volatile T* data, T& partial_reduction, int tid, const Op& op)
template <int n, typename T, typename Op> __device__ __forceinline__ void reduce_old(volatile T* data, T& partial_reduction, int tid, const Op& op)
{
StaticAssert<n >= 8 && n <= 512>::check();
utility_detail::ReductionDispatcher<n <= 64>::reduce<n>(data, partial_reduction, tid, op);

View File

@ -63,7 +63,7 @@ namespace cv { namespace gpu { namespace device
template <int THREAD_DIM> __device__ __forceinline__ void reduceAll(int* smem, int tid)
{
reduce<THREAD_DIM>(smem, mySum, tid, plus<volatile int>());
reduce_old<THREAD_DIM>(smem, mySum, tid, plus<volatile int>());
}
__device__ __forceinline__ operator int() const
@ -87,7 +87,7 @@ namespace cv { namespace gpu { namespace device
template <int THREAD_DIM> __device__ __forceinline__ void reduceAll(float* smem, int tid)
{
reduce<THREAD_DIM>(smem, mySum, tid, plus<volatile float>());
reduce_old<THREAD_DIM>(smem, mySum, tid, plus<volatile float>());
}
__device__ __forceinline__ operator float() const
@ -113,7 +113,7 @@ namespace cv { namespace gpu { namespace device
template <int THREAD_DIM> __device__ __forceinline__ void reduceAll(float* smem, int tid)
{
reduce<THREAD_DIM>(smem, mySum, tid, plus<volatile float>());
reduce_old<THREAD_DIM>(smem, mySum, tid, plus<volatile float>());
}
__device__ __forceinline__ operator float() const
@ -138,7 +138,7 @@ namespace cv { namespace gpu { namespace device
template <int THREAD_DIM> __device__ __forceinline__ void reduceAll(int* smem, int tid)
{
reduce<THREAD_DIM>(smem, mySum, tid, plus<volatile int>());
reduce_old<THREAD_DIM>(smem, mySum, tid, plus<volatile int>());
}
__device__ __forceinline__ operator int() const

View File

@ -0,0 +1,97 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_GPU_WARP_SHUFFLE_HPP__
#define __OPENCV_GPU_WARP_SHUFFLE_HPP__
namespace cv { namespace gpu { namespace device
{
template <typename T>
__device__ __forceinline__ T shfl(T val, int srcLane, int width = warpSize)
{
#if __CUDA_ARCH__ >= 300
return __shfl(val, srcLane, width);
#else
return T();
#endif
}
__device__ __forceinline__ double shfl(double val, int srcLane, int width = warpSize)
{
#if __CUDA_ARCH__ >= 300
int lo = __double2loint(val);
int hi = __double2hiint(val);
lo = __shfl(lo, srcLane, width);
hi = __shfl(hi, srcLane, width);
return __hiloint2double(hi, lo);
#else
return 0.0;
#endif
}
template <typename T>
__device__ __forceinline__ T shfl_down(T val, unsigned int delta, int width = warpSize)
{
#if __CUDA_ARCH__ >= 300
return __shfl_down(val, delta, width);
#else
return T();
#endif
}
__device__ __forceinline__ double shfl_down(double val, unsigned int delta, int width = warpSize)
{
#if __CUDA_ARCH__ >= 300
int lo = __double2loint(val);
int hi = __double2hiint(val);
lo = __shfl_down(lo, delta, width);
hi = __shfl_down(hi, delta, width);
return __hiloint2double(hi, lo);
#else
return 0.0;
#endif
}
}}}
#endif // __OPENCV_GPU_WARP_SHUFFLE_HPP__

View File

@ -109,9 +109,9 @@ namespace cv { namespace gpu { namespace device
c += Ix * Iy;
}
reduce<32>(srow, a, threadIdx.x, plus<volatile int>());
reduce<32>(srow, b, threadIdx.x, plus<volatile int>());
reduce<32>(srow, c, threadIdx.x, plus<volatile int>());
reduce_old<32>(srow, a, threadIdx.x, plus<volatile int>());
reduce_old<32>(srow, b, threadIdx.x, plus<volatile int>());
reduce_old<32>(srow, c, threadIdx.x, plus<volatile int>());
if (threadIdx.x == 0)
{
@ -167,7 +167,7 @@ namespace cv { namespace gpu { namespace device
for (int u = threadIdx.x - half_k; u <= half_k; u += blockDim.x)
m_10 += u * image(loc.y, loc.x + u);
reduce<32>(srow, m_10, threadIdx.x, plus<volatile int>());
reduce_old<32>(srow, m_10, threadIdx.x, plus<volatile int>());
for (int v = 1; v <= half_k; ++v)
{
@ -185,8 +185,8 @@ namespace cv { namespace gpu { namespace device
m_sum += u * (val_plus + val_minus);
}
reduce<32>(srow, v_sum, threadIdx.x, plus<volatile int>());
reduce<32>(srow, m_sum, threadIdx.x, plus<volatile int>());
reduce_old<32>(srow, v_sum, threadIdx.x, plus<volatile int>());
reduce_old<32>(srow, m_sum, threadIdx.x, plus<volatile int>());
m_10 += m_sum;
m_01 += v * v_sum;
@ -419,4 +419,4 @@ namespace cv { namespace gpu { namespace device
}
}}}
#endif /* CUDA_DISABLER */
#endif /* CUDA_DISABLER */

View File

@ -599,8 +599,8 @@ namespace cv { namespace gpu { namespace device
sumy += s_Y[threadIdx.x + 96];
}
device::reduce<32>(s_sumx + threadIdx.y * 32, sumx, threadIdx.x, plus<volatile float>());
device::reduce<32>(s_sumy + threadIdx.y * 32, sumy, threadIdx.x, plus<volatile float>());
device::reduce_old<32>(s_sumx + threadIdx.y * 32, sumx, threadIdx.x, plus<volatile float>());
device::reduce_old<32>(s_sumy + threadIdx.y * 32, sumy, threadIdx.x, plus<volatile float>());
const float temp_mod = sumx * sumx + sumy * sumy;
if (temp_mod > best_mod)