mirror of
https://github.com/opencv/opencv.git
synced 2025-06-11 19:59:08 +08:00
Fixed java wrappers
This commit is contained in:
parent
55e3deac46
commit
7a7a2749e0
@ -1347,7 +1347,7 @@ class JavaWrapperGenerator(object):
|
||||
ret = "return (jlong) new %s(_retval_);" % self.fullTypeName(fi.ctype)
|
||||
elif fi.ctype.startswith('Ptr_'):
|
||||
c_prologue.append("typedef Ptr<%s> %s;" % (self.fullTypeName(fi.ctype[4:]), fi.ctype))
|
||||
ret = "%(ctype)s* curval = new %(ctype)s(_retval_);return (jlong)curval->get();" % { 'ctype':fi.ctype }
|
||||
ret = "return (jlong)(new %(ctype)s(_retval_));" % { 'ctype':fi.ctype }
|
||||
elif self.isWrapped(ret_type): # pointer to wrapped class:
|
||||
ret = "return (jlong) _retval_;"
|
||||
elif type_dict[fi.ctype]["jni_type"] == "jdoubleArray":
|
||||
@ -1538,7 +1538,7 @@ JNIEXPORT void JNICALL Java_org_opencv_%(module)s_%(j_cls)s_delete
|
||||
'''
|
||||
Check if class stores Ptr<T>* instead of T* in nativeObj field
|
||||
'''
|
||||
return False
|
||||
return self.isWrapped(classname)
|
||||
|
||||
def smartWrap(self, name, fullname):
|
||||
'''
|
||||
|
@ -289,7 +289,7 @@ public:
|
||||
<number_of_variables_in_responses>`, containing types of each input and output variable. See
|
||||
ml::VariableTypes.
|
||||
*/
|
||||
CV_WRAP static Ptr<cv::ml::TrainData> create(InputArray samples, int layout, InputArray responses,
|
||||
CV_WRAP static Ptr<TrainData> create(InputArray samples, int layout, InputArray responses,
|
||||
InputArray varIdx=noArray(), InputArray sampleIdx=noArray(),
|
||||
InputArray sampleWeights=noArray(), InputArray varType=noArray());
|
||||
};
|
||||
@ -324,7 +324,7 @@ public:
|
||||
@param flags optional flags, depending on the model. Some of the models can be updated with the
|
||||
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).
|
||||
*/
|
||||
CV_WRAP virtual bool train( const Ptr<cv::ml::TrainData>& trainData, int flags=0 );
|
||||
CV_WRAP virtual bool train( const Ptr<TrainData>& trainData, int flags=0 );
|
||||
|
||||
/** @brief Trains the statistical model
|
||||
|
||||
@ -347,7 +347,7 @@ public:
|
||||
The method uses StatModel::predict to compute the error. For regression models the error is
|
||||
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
|
||||
*/
|
||||
CV_WRAP virtual float calcError( const Ptr<cv::ml::TrainData>& data, bool test, OutputArray resp ) const;
|
||||
CV_WRAP virtual float calcError( const Ptr<TrainData>& data, bool test, OutputArray resp ) const;
|
||||
|
||||
/** @brief Predicts response(s) for the provided sample(s)
|
||||
|
||||
@ -361,7 +361,7 @@ public:
|
||||
|
||||
The class must implement static `create()` method with no parameters or with all default parameter values
|
||||
*/
|
||||
template<typename _Tp> static Ptr<_Tp> train(const Ptr<cv::ml::TrainData>& data, int flags=0)
|
||||
template<typename _Tp> static Ptr<_Tp> train(const Ptr<TrainData>& data, int flags=0)
|
||||
{
|
||||
Ptr<_Tp> model = _Tp::create();
|
||||
return !model.empty() && model->train(data, flags) ? model : Ptr<_Tp>();
|
||||
@ -671,7 +671,7 @@ public:
|
||||
regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
|
||||
the usual %SVM with parameters specified in params is executed.
|
||||
*/
|
||||
virtual bool trainAuto( const Ptr<cv::ml::TrainData>& data, int kFold = 10,
|
||||
virtual bool trainAuto( const Ptr<TrainData>& data, int kFold = 10,
|
||||
ParamGrid Cgrid = SVM::getDefaultGrid(SVM::C),
|
||||
ParamGrid gammaGrid = SVM::getDefaultGrid(SVM::GAMMA),
|
||||
ParamGrid pGrid = SVM::getDefaultGrid(SVM::P),
|
||||
|
Loading…
Reference in New Issue
Block a user