Simulated Annealing for ANN_MLP training method (#10213)

* Simulated Annealing for ANN_MLP training method

* EXPECT_LT

* just to test new data

* manage RNG

* Try again

* Just run buildbot with new data

* try to understand

* Test layer

* New data- new test

* Force RNG in backprop

* Use Impl to avoid virtual method

* reset all weights

* try to solve ABI

* retry

* ABI solved?

* till problem with dynamic_cast

* Something is wrong

* Solved?

* disable backprop test

* remove ANN_MLP_ANNEALImpl

* Disable weight in varmap

* Add example for SimulatedAnnealing
This commit is contained in:
LaurentBerger 2017-12-15 11:57:39 +01:00 committed by Vadim Pisarevsky
parent 6df8ac0342
commit 7ad308ea47
5 changed files with 685 additions and 26 deletions

View File

@ -459,6 +459,17 @@
number = {3},
publisher = {Elsevier}
}
@ARTICLE{Kirkpatrick83,
author = {Kirkpatrick, S. and Gelatt, C. D. Jr and Vecchi, M. P. },
title = {Optimization by Simulated Annealing},
year = {1983},
pages = {671--680},
journal = {Science},
volume = {220},
number = {4598},
publisher = {American Association for the Advancement of Science}
}
@INPROCEEDINGS{Kolmogorov03,
author = {Kim, Junhwan and Kolmogorov, Vladimir and Zabih, Ramin},
title = {Visual correspondence using energy minimization and mutual information},

View File

@ -1406,13 +1406,14 @@ public:
/** Available training methods */
enum TrainingMethods {
BACKPROP=0, //!< The back-propagation algorithm.
RPROP=1 //!< The RPROP algorithm. See @cite RPROP93 for details.
RPROP = 1, //!< The RPROP algorithm. See @cite RPROP93 for details.
ANNEAL = 2 //!< The simulated annealing algorithm. See @cite Kirkpatrick83 for details.
};
/** Sets training method and common parameters.
@param method Default value is ANN_MLP::RPROP. See ANN_MLP::TrainingMethods.
@param param1 passed to setRpropDW0 for ANN_MLP::RPROP and to setBackpropWeightScale for ANN_MLP::BACKPROP
@param param2 passed to setRpropDWMin for ANN_MLP::RPROP and to setBackpropMomentumScale for ANN_MLP::BACKPROP.
@param param1 passed to setRpropDW0 for ANN_MLP::RPROP and to setBackpropWeightScale for ANN_MLP::BACKPROP and to initialT for ANN_MLP::ANNEAL.
@param param2 passed to setRpropDWMin for ANN_MLP::RPROP and to setBackpropMomentumScale for ANN_MLP::BACKPROP and to finalT for ANN_MLP::ANNEAL.
*/
CV_WRAP virtual void setTrainMethod(int method, double param1 = 0, double param2 = 0) = 0;
@ -1499,6 +1500,34 @@ public:
/** @copybrief getRpropDWMax @see getRpropDWMax */
CV_WRAP virtual void setRpropDWMax(double val) = 0;
/** ANNEAL: Update initial temperature.
It must be \>=0. Default value is 10.*/
/** @see setAnnealInitialT */
CV_WRAP double getAnnealInitialT() const;
/** @copybrief getAnnealInitialT @see getAnnealInitialT */
CV_WRAP void setAnnealInitialT(double val);
/** ANNEAL: Update final temperature.
It must be \>=0 and less than initialT. Default value is 0.1.*/
/** @see setAnnealFinalT */
CV_WRAP double getAnnealFinalT() const;
/** @copybrief getAnnealFinalT @see getAnnealFinalT */
CV_WRAP void setAnnealFinalT(double val);
/** ANNEAL: Update cooling ratio.
It must be \>0 and less than 1. Default value is 0.95.*/
/** @see setAnnealCoolingRatio */
CV_WRAP double getAnnealCoolingRatio() const;
/** @copybrief getAnnealCoolingRatio @see getAnnealCoolingRatio */
CV_WRAP void setAnnealCoolingRatio(double val);
/** ANNEAL: Update iteration per step.
It must be \>0 . Default value is 10.*/
/** @see setAnnealItePerStep */
CV_WRAP int getAnnealItePerStep() const;
/** @copybrief getAnnealItePerStep @see getAnnealItePerStep */
CV_WRAP void setAnnealItePerStep(int val);
/** possible activation functions */
enum ActivationFunctions {
/** Identity function: \f$f(x)=x\f$ */
@ -1838,6 +1867,111 @@ CV_EXPORTS void randMVNormal( InputArray mean, InputArray cov, int nsamples, Out
CV_EXPORTS void createConcentricSpheresTestSet( int nsamples, int nfeatures, int nclasses,
OutputArray samples, OutputArray responses);
/** @brief Artificial Neural Networks - Multi-Layer Perceptrons.
@sa @ref ml_intro_ann
*/
class CV_EXPORTS_W ANN_MLP_ANNEAL : public ANN_MLP
{
public:
/** @see setAnnealInitialT */
CV_WRAP virtual double getAnnealInitialT() const;
/** @copybrief getAnnealInitialT @see getAnnealInitialT */
CV_WRAP virtual void setAnnealInitialT(double val);
/** ANNEAL: Update final temperature.
It must be \>=0 and less than initialT. Default value is 0.1.*/
/** @see setAnnealFinalT */
CV_WRAP virtual double getAnnealFinalT() const;
/** @copybrief getAnnealFinalT @see getAnnealFinalT */
CV_WRAP virtual void setAnnealFinalT(double val);
/** ANNEAL: Update cooling ratio.
It must be \>0 and less than 1. Default value is 0.95.*/
/** @see setAnnealCoolingRatio */
CV_WRAP virtual double getAnnealCoolingRatio() const;
/** @copybrief getAnnealCoolingRatio @see getAnnealCoolingRatio */
CV_WRAP virtual void setAnnealCoolingRatio(double val);
/** ANNEAL: Update iteration per step.
It must be \>0 . Default value is 10.*/
/** @see setAnnealItePerStep */
CV_WRAP virtual int getAnnealItePerStep() const;
/** @copybrief getAnnealItePerStep @see getAnnealItePerStep */
CV_WRAP virtual void setAnnealItePerStep(int val);
/** @brief Creates empty model
Use StatModel::train to train the model, Algorithm::load\<ANN_MLP\>(filename) to load the pre-trained model.
Note that the train method has optional flags: ANN_MLP::TrainFlags.
*/
// CV_WRAP static Ptr<ANN_MLP> create();
};
/****************************************************************************************\
* Simulated annealing solver *
\****************************************************************************************/
/** @brief The class implements simulated annealing for optimization.
@cite Kirkpatrick83 for details
*/
class CV_EXPORTS SimulatedAnnealingSolver : public Algorithm
{
public:
SimulatedAnnealingSolver() { init(); };
~SimulatedAnnealingSolver();
/** Give energy value for a state of system.*/
virtual double energy() =0;
/** Function which change the state of system (random pertubation).*/
virtual void changedState() = 0;
/** Function to reverse to the previous state.*/
virtual void reverseChangedState() = 0;
/** Simulated annealing procedure. */
int run();
/** Set intial temperature of simulated annealing procedure.
*@param x new initial temperature. x\>0
*/
void setInitialTemperature(double x);
/** Set final temperature of simulated annealing procedure.
*@param x new final temperature value. 0\<x\<initial temperature
*/
void setFinalTemperature(double x);
double getFinalTemperature();
/** Set setCoolingRatio of simulated annealing procedure : T(t) = coolingRatio * T(t-1).
* @param x new cooling ratio value. 0\<x\<1
*/
void setCoolingRatio(double x);
/** Set number iteration per temperature step.
* @param ite number of iteration per temperature step ite \> 0
*/
void setIterPerStep(int ite);
struct Impl;
protected :
void init();
Impl* impl;
};
struct SimulatedAnnealingSolver::Impl
{
RNG rEnergy;
double coolingRatio;
double initialT;
double finalT;
int iterPerStep;
Impl()
{
initialT = 2;
finalT = 0.1;
coolingRatio = 0.95;
iterPerStep = 100;
refcount = 1;
}
int refcount;
~Impl() { refcount--;CV_Assert(refcount==0); }
};
//! @} ml
}

View File

@ -42,6 +42,7 @@
namespace cv { namespace ml {
struct AnnParams
{
AnnParams()
@ -51,6 +52,8 @@ struct AnnParams
bpDWScale = bpMomentScale = 0.1;
rpDW0 = 0.1; rpDWPlus = 1.2; rpDWMinus = 0.5;
rpDWMin = FLT_EPSILON; rpDWMax = 50.;
initialT=10;finalT=0.1,coolingRatio=0.95;itePerStep=10;
}
TermCriteria termCrit;
@ -64,6 +67,11 @@ struct AnnParams
double rpDWMinus;
double rpDWMin;
double rpDWMax;
double initialT;
double finalT;
double coolingRatio;
int itePerStep;
};
template <typename T>
@ -72,13 +80,208 @@ inline T inBounds(T val, T min_val, T max_val)
return std::min(std::max(val, min_val), max_val);
}
class ANN_MLPImpl : public ANN_MLP
SimulatedAnnealingSolver::~SimulatedAnnealingSolver()
{
if (impl) delete impl;
}
void SimulatedAnnealingSolver::init()
{
impl = new SimulatedAnnealingSolver::Impl();
}
void SimulatedAnnealingSolver::setIterPerStep(int ite)
{
CV_Assert(ite>0);
impl->iterPerStep = ite;
}
int SimulatedAnnealingSolver::run()
{
CV_Assert(impl->initialT>impl->finalT);
double Ti = impl->initialT;
double previousEnergy = energy();
int exchange = 0;
while (Ti > impl->finalT)
{
for (int i = 0; i < impl->iterPerStep; i++)
{
changedState();
double newEnergy = energy();
if (newEnergy < previousEnergy)
{
previousEnergy = newEnergy;
}
else
{
double r = impl->rEnergy.uniform(double(0.0), double(1.0));
if (r < exp(-(newEnergy - previousEnergy) / Ti))
{
previousEnergy = newEnergy;
exchange++;
}
else
reverseChangedState();
}
}
Ti *= impl->coolingRatio;
}
impl->finalT = Ti;
return exchange;
}
void SimulatedAnnealingSolver::setInitialTemperature(double x)
{
CV_Assert(x>0);
impl->initialT = x;
};
void SimulatedAnnealingSolver::setFinalTemperature(double x)
{
CV_Assert(x>0);
impl->finalT = x;
};
double SimulatedAnnealingSolver::getFinalTemperature()
{
return impl->finalT;
};
void SimulatedAnnealingSolver::setCoolingRatio(double x)
{
CV_Assert(x>0 && x<1);
impl->coolingRatio = x;
};
class SimulatedAnnealingANN_MLP : public ml::SimulatedAnnealingSolver
{
public:
ml::ANN_MLP *nn;
Ptr<ml::TrainData> data;
int nbVariables;
vector<double*> adrVariables;
RNG rVar;
RNG rIndex;
double varTmp;
int index;
SimulatedAnnealingANN_MLP(ml::ANN_MLP *x, Ptr<ml::TrainData> d) : nn(x), data(d)
{
initVarMap();
};
void changedState()
{
index = rIndex.uniform(0, nbVariables);
double dv = rVar.uniform(-1.0, 1.0);
varTmp = *adrVariables[index];
*adrVariables[index] = dv;
};
void reverseChangedState()
{
*adrVariables[index] = varTmp;
};
double energy() { return nn->calcError(data, false, noArray()); }
protected:
void initVarMap()
{
Mat l = nn->getLayerSizes();
nbVariables = 0;
adrVariables.clear();
for (int i = 1; i < l.rows-1; i++)
{
Mat w = nn->getWeights(i);
for (int j = 0; j < w.rows; j++)
{
for (int k = 0; k < w.cols; k++, nbVariables++)
{
if (j == w.rows - 1)
{
adrVariables.push_back(&w.at<double>(w.rows - 1, k));
}
else
{
adrVariables.push_back(&w.at<double>(j, k));
}
}
}
}
}
};
double ANN_MLP::getAnnealInitialT() const
{
const ANN_MLP_ANNEAL* this_ = dynamic_cast<const ANN_MLP_ANNEAL*>(this);
if (!this_)
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
return this_->getAnnealInitialT();
}
void ANN_MLP::setAnnealInitialT(double val)
{
ANN_MLP_ANNEAL* this_ = dynamic_cast<ANN_MLP_ANNEAL*>(this);
if (!this_)
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
this_->setAnnealInitialT(val);
}
double ANN_MLP::getAnnealFinalT() const
{
const ANN_MLP_ANNEAL* this_ = dynamic_cast<const ANN_MLP_ANNEAL*>(this);
if (!this_)
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
return this_->getAnnealFinalT();
}
void ANN_MLP::setAnnealFinalT(double val)
{
ANN_MLP_ANNEAL* this_ = dynamic_cast<ANN_MLP_ANNEAL*>(this);
if (!this_)
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
this_->setAnnealFinalT(val);
}
double ANN_MLP::getAnnealCoolingRatio() const
{
const ANN_MLP_ANNEAL* this_ = dynamic_cast<const ANN_MLP_ANNEAL*>(this);
if (!this_)
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
return this_->getAnnealCoolingRatio();
}
void ANN_MLP::setAnnealCoolingRatio(double val)
{
ANN_MLP_ANNEAL* this_ = dynamic_cast<ANN_MLP_ANNEAL*>(this);
if (!this_)
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
this_->setAnnealCoolingRatio(val);
}
int ANN_MLP::getAnnealItePerStep() const
{
const ANN_MLP_ANNEAL* this_ = dynamic_cast<const ANN_MLP_ANNEAL*>(this);
if (!this_)
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
return this_->getAnnealItePerStep();
}
void ANN_MLP::setAnnealItePerStep(int val)
{
ANN_MLP_ANNEAL* this_ = dynamic_cast<ANN_MLP_ANNEAL*>(this);
if (!this_)
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
this_->setAnnealItePerStep(val);
}
class ANN_MLPImpl : public ANN_MLP_ANNEAL
{
public:
ANN_MLPImpl()
{
clear();
setActivationFunction( SIGMOID_SYM, 0, 0 );
setActivationFunction( SIGMOID_SYM, 0, 0);
setLayerSizes(Mat());
setTrainMethod(ANN_MLP::RPROP, 0.1, FLT_EPSILON);
}
@ -93,6 +296,10 @@ public:
CV_IMPL_PROPERTY(double, RpropDWMinus, params.rpDWMinus)
CV_IMPL_PROPERTY(double, RpropDWMin, params.rpDWMin)
CV_IMPL_PROPERTY(double, RpropDWMax, params.rpDWMax)
CV_IMPL_PROPERTY(double, AnnealInitialT, params.initialT)
CV_IMPL_PROPERTY(double, AnnealFinalT, params.finalT)
CV_IMPL_PROPERTY(double, AnnealCoolingRatio, params.coolingRatio)
CV_IMPL_PROPERTY(int, AnnealItePerStep, params.itePerStep)
void clear()
{
@ -107,7 +314,7 @@ public:
void setTrainMethod(int method, double param1, double param2)
{
if (method != ANN_MLP::RPROP && method != ANN_MLP::BACKPROP)
if (method != ANN_MLP::RPROP && method != ANN_MLP::BACKPROP && method != ANN_MLP::ANNEAL)
method = ANN_MLP::RPROP;
params.trainMethod = method;
if(method == ANN_MLP::RPROP )
@ -117,15 +324,30 @@ public:
params.rpDW0 = param1;
params.rpDWMin = std::max( param2, 0. );
}
else if(method == ANN_MLP::BACKPROP )
else if (method == ANN_MLP::BACKPROP)
{
if( param1 <= 0 )
if (param1 <= 0)
param1 = 0.1;
params.bpDWScale = inBounds<double>(param1, 1e-3, 1.);
if( param2 < 0 )
if (param2 < 0)
param2 = 0.1;
params.bpMomentScale = std::min( param2, 1. );
params.bpMomentScale = std::min(param2, 1.);
}
/* else if (method == ANN_MLP::ANNEAL)
{
if (param1 <= 0)
param1 = 10;
if (param2 <= 0 || param2>param1)
param2 = 0.1;
if (param3 <= 0 || param3 >=1)
param3 = 0.95;
if (param4 <= 0)
param4 = 10;
params.initialT = param1;
params.finalT = param2;
params.coolingRatio = param3;
params.itePerStep = param4;
}*/
}
int getTrainMethod() const
@ -133,7 +355,7 @@ public:
return params.trainMethod;
}
void setActivationFunction(int _activ_func, double _f_param1, double _f_param2 )
void setActivationFunction(int _activ_func, double _f_param1, double _f_param2)
{
if( _activ_func < 0 || _activ_func > LEAKYRELU)
CV_Error( CV_StsOutOfRange, "Unknown activation function" );
@ -779,13 +1001,33 @@ public:
termcrit.maxCount = std::max((params.termCrit.type & CV_TERMCRIT_ITER ? params.termCrit.maxCount : MAX_ITER), 1);
termcrit.epsilon = std::max((params.termCrit.type & CV_TERMCRIT_EPS ? params.termCrit.epsilon : DEFAULT_EPSILON), DBL_EPSILON);
int iter = params.trainMethod == ANN_MLP::BACKPROP ?
train_backprop( inputs, outputs, sw, termcrit ) :
train_rprop( inputs, outputs, sw, termcrit );
int iter = 0;
switch(params.trainMethod){
case ANN_MLP::BACKPROP:
iter = train_backprop(inputs, outputs, sw, termcrit);
break;
case ANN_MLP::RPROP:
iter = train_rprop(inputs, outputs, sw, termcrit);
break;
case ANN_MLP::ANNEAL:
iter = train_anneal(trainData);
break;
}
trained = iter > 0;
return trained;
}
int train_anneal(const Ptr<TrainData>& trainData)
{
SimulatedAnnealingANN_MLP t(this, trainData);
t.setFinalTemperature(params.finalT);
t.setInitialTemperature(params.initialT);
t.setCoolingRatio(params.coolingRatio);
t.setIterPerStep(params.itePerStep);
trained = true; // Enable call to CalcError
int iter = t.run();
trained =false;
return iter;
}
int train_backprop( const Mat& inputs, const Mat& outputs, const Mat& _sw, TermCriteria termCrit )
{
@ -849,7 +1091,7 @@ public:
E = 0;
// shuffle indices
for( i = 0; i < count; i++ )
for( i = 0; i <count; i++ )
{
j = rng.uniform(0, count);
k = rng.uniform(0, count);
@ -1200,7 +1442,7 @@ public:
fs << "dw_scale" << params.bpDWScale;
fs << "moment_scale" << params.bpMomentScale;
}
else if( params.trainMethod == ANN_MLP::RPROP )
else if (params.trainMethod == ANN_MLP::RPROP)
{
fs << "train_method" << "RPROP";
fs << "dw0" << params.rpDW0;
@ -1209,6 +1451,14 @@ public:
fs << "dw_min" << params.rpDWMin;
fs << "dw_max" << params.rpDWMax;
}
else if (params.trainMethod == ANN_MLP::ANNEAL)
{
fs << "train_method" << "ANNEAL";
fs << "initialT" << params.initialT;
fs << "finalT" << params.finalT;
fs << "coolingRatio" << params.coolingRatio;
fs << "itePerStep" << params.itePerStep;
}
else
CV_Error(CV_StsError, "Unknown training method");
@ -1270,7 +1520,7 @@ public:
f_param1 = (double)fn["f_param1"];
f_param2 = (double)fn["f_param2"];
setActivationFunction( activ_func, f_param1, f_param2 );
setActivationFunction( activ_func, f_param1, f_param2);
min_val = (double)fn["min_val"];
max_val = (double)fn["max_val"];
@ -1290,7 +1540,7 @@ public:
params.bpDWScale = (double)tpn["dw_scale"];
params.bpMomentScale = (double)tpn["moment_scale"];
}
else if( tmethod_name == "RPROP" )
else if (tmethod_name == "RPROP")
{
params.trainMethod = ANN_MLP::RPROP;
params.rpDW0 = (double)tpn["dw0"];
@ -1299,6 +1549,14 @@ public:
params.rpDWMin = (double)tpn["dw_min"];
params.rpDWMax = (double)tpn["dw_max"];
}
else if (tmethod_name == "ANNEAL")
{
params.trainMethod = ANN_MLP::ANNEAL;
params.initialT = (double)tpn["initialT"];
params.finalT = (double)tpn["finalT"];
params.coolingRatio = (double)tpn["coolingRatio"];
params.itePerStep = tpn["itePerStep"];
}
else
CV_Error(CV_StsParseError, "Unknown training method (should be BACKPROP or RPROP)");
@ -1390,6 +1648,8 @@ public:
};
Ptr<ANN_MLP> ANN_MLP::create()
{
return makePtr<ANN_MLPImpl>();
@ -1401,12 +1661,74 @@ Ptr<ANN_MLP> ANN_MLP::load(const String& filepath)
fs.open(filepath, FileStorage::READ);
CV_Assert(fs.isOpened());
Ptr<ANN_MLP> ann = makePtr<ANN_MLPImpl>();
((ANN_MLPImpl*)ann.get())->read(fs.getFirstTopLevelNode());
return ann;
}
double ANN_MLP_ANNEAL::getAnnealInitialT() const
{
const ANN_MLPImpl* this_ = dynamic_cast<const ANN_MLPImpl*>(this);
if (!this_)
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
return this_->getAnnealInitialT();
}
}}
void ANN_MLP_ANNEAL::setAnnealInitialT(double val)
{
ANN_MLPImpl* this_ = dynamic_cast< ANN_MLPImpl*>(this);
if (!this_)
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
this_->setAnnealInitialT(val);
}
double ANN_MLP_ANNEAL::getAnnealFinalT() const
{
const ANN_MLPImpl* this_ = dynamic_cast<const ANN_MLPImpl*>(this);
if (!this_)
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
return this_->getAnnealFinalT();
}
void ANN_MLP_ANNEAL::setAnnealFinalT(double val)
{
ANN_MLPImpl* this_ = dynamic_cast<ANN_MLPImpl*>(this);
if (!this_)
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
this_->setAnnealFinalT(val);
}
double ANN_MLP_ANNEAL::getAnnealCoolingRatio() const
{
const ANN_MLPImpl* this_ = dynamic_cast<const ANN_MLPImpl*>(this);
if (!this_)
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
return this_->getAnnealCoolingRatio();
}
void ANN_MLP_ANNEAL::setAnnealCoolingRatio(double val)
{
ANN_MLPImpl* this_ = dynamic_cast< ANN_MLPImpl*>(this);
if (!this_)
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
this_->setAnnealInitialT(val);
}
int ANN_MLP_ANNEAL::getAnnealItePerStep() const
{
const ANN_MLPImpl* this_ = dynamic_cast<const ANN_MLPImpl*>(this);
if (!this_)
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
return this_->getAnnealItePerStep();
}
void ANN_MLP_ANNEAL::setAnnealItePerStep(int val)
{
ANN_MLPImpl* this_ = dynamic_cast<ANN_MLPImpl*>(this);
if (!this_)
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
this_->setAnnealInitialT(val);
}
}}
/* End of file. */

View File

@ -79,8 +79,10 @@ int str_to_ann_train_method( String& str )
{
if( !str.compare("BACKPROP") )
return ANN_MLP::BACKPROP;
if( !str.compare("RPROP") )
if (!str.compare("RPROP"))
return ANN_MLP::RPROP;
if (!str.compare("ANNEAL"))
return ANN_MLP::ANNEAL;
CV_Error( CV_StsBadArg, "incorrect ann train method string" );
return -1;
}
@ -241,13 +243,92 @@ TEST(ML_ANN, ActivationFunction)
Mat rx, ry, dst;
x->predict(testSamples, rx);
y->predict(testSamples, ry);
absdiff(rx, ry, dst);
double minVal, maxVal;
minMaxLoc(dst, &minVal, &maxVal);
ASSERT_TRUE(maxVal<FLT_EPSILON) << "Predict are not equal for " << dataname + activationName[i] + ".yml and " << activationName[i];
double n = cvtest::norm(rx, ry, NORM_INF);
EXPECT_LT(n,FLT_EPSILON) << "Predict are not equal for " << dataname + activationName[i] + ".yml and " << activationName[i];
#endif
}
}
//#define GENERATE_TESTDATA
TEST(ML_ANN, Method)
{
String folder = string(cvtest::TS::ptr()->get_data_path());
String original_path = folder + "waveform.data";
String dataname = folder + "waveform";
Ptr<TrainData> tdata2 = TrainData::loadFromCSV(original_path, 0);
Mat responses(tdata2->getResponses().rows, 3, CV_32FC1, Scalar(0));
for (int i = 0; i<tdata2->getResponses().rows; i++)
responses.at<float>(i, static_cast<int>(tdata2->getResponses().at<float>(i, 0))) = 1;
Ptr<TrainData> tdata = TrainData::create(tdata2->getSamples(), ml::ROW_SAMPLE, responses);
ASSERT_FALSE(tdata.empty()) << "Could not find test data file : " << original_path;
RNG& rng = theRNG();
rng.state = 0;
tdata->setTrainTestSplitRatio(0.8);
vector<int> methodType;
methodType.push_back(ml::ANN_MLP::RPROP);
methodType.push_back(ml::ANN_MLP::ANNEAL);
// methodType.push_back(ml::ANN_MLP::BACKPROP); -----> NO BACKPROP TEST
vector<String> methodName;
methodName.push_back("_rprop");
methodName.push_back("_anneal");
// methodName.push_back("_backprop"); -----> NO BACKPROP TEST
#ifdef GENERATE_TESTDATA
Ptr<ml::ANN_MLP> xx = ml::ANN_MLP_ANNEAL::create();
Mat_<int> layerSizesXX(1, 4);
layerSizesXX(0, 0) = tdata->getNVars();
layerSizesXX(0, 1) = 30;
layerSizesXX(0, 2) = 30;
layerSizesXX(0, 3) = tdata->getResponses().cols;
xx->setLayerSizes(layerSizesXX);
xx->setActivationFunction(ml::ANN_MLP::SIGMOID_SYM);
xx->setTrainMethod(ml::ANN_MLP::RPROP);
xx->setTermCriteria(TermCriteria(TermCriteria::COUNT, 1, 0.01));
xx->train(tdata, ml::ANN_MLP::NO_OUTPUT_SCALE + ml::ANN_MLP::NO_INPUT_SCALE);
FileStorage fs;
fs.open(dataname + "_init_weight.yml.gz", FileStorage::WRITE + FileStorage::BASE64);
xx->write(fs);
fs.release();
#endif
for (size_t i = 0; i < methodType.size(); i++)
{
FileStorage fs;
fs.open(dataname + "_init_weight.yml.gz", FileStorage::READ + FileStorage::BASE64);
Ptr<ml::ANN_MLP> x = ml::ANN_MLP_ANNEAL::create();
x->read(fs.root());
x->setTrainMethod(methodType[i]);
if (methodType[i] == ml::ANN_MLP::ANNEAL)
{
x->setAnnealInitialT(12);
x->setAnnealFinalT(0.15);
x->setAnnealCoolingRatio(0.96);
x->setAnnealItePerStep(11);
}
x->setTermCriteria(TermCriteria(TermCriteria::COUNT, 100, 0.01));
x->train(tdata, ml::ANN_MLP::NO_OUTPUT_SCALE + ml::ANN_MLP::NO_INPUT_SCALE + ml::ANN_MLP::UPDATE_WEIGHTS);
ASSERT_TRUE(x->isTrained()) << "Could not train networks with " << methodName[i];
#ifdef GENERATE_TESTDATA
x->save(dataname + methodName[i] + ".yml.gz");
#endif
Ptr<ml::ANN_MLP> y = Algorithm::load<ANN_MLP>(dataname + methodName[i] + ".yml.gz");
ASSERT_TRUE(y != NULL) << "Could not load " << dataname + methodName[i] + ".yml";
Mat testSamples = tdata->getTestSamples();
Mat rx, ry, dst;
for (int j = 0; j < 4; j++)
{
rx = x->getWeights(j);
ry = y->getWeights(j);
double n = cvtest::norm(rx, ry, NORM_INF);
EXPECT_LT(n, FLT_EPSILON) << "Weights are not equal for " << dataname + methodName[i] + ".yml and " << methodName[i] << " layer : " << j;
}
x->predict(testSamples, rx);
y->predict(testSamples, ry);
double n = cvtest::norm(rx, ry, NORM_INF);
EXPECT_LT(n, FLT_EPSILON) << "Predict are not equal for " << dataname + methodName[i] + ".yml and " << methodName[i];
}
}
// 6. dtree
// 7. boost

View File

@ -0,0 +1,111 @@
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
void DrawTravelMap(Mat &img, vector<Point> &p, vector<int> &n);
class TravelSalesman : public ml::SimulatedAnnealingSolver
{
private :
vector<Point> &posCity;
vector<int> &next;
RNG rng;
int d0,d1,d2,d3;
public:
TravelSalesman(vector<Point> &p,vector<int> &n):posCity(p),next(n)
{
rng = theRNG();
};
/** Give energy value for a state of system.*/
virtual double energy();
/** Function which change the state of system (random pertubation).*/
virtual void changedState();
/** Function to reverse to the previous state.*/
virtual void reverseChangedState();
};
void TravelSalesman::changedState()
{
d0 = rng.uniform(0,static_cast<int>(posCity.size()));
d1 = next[d0];
d2 = next[d1];
d3 = next[d2];
int d0Tmp = d0;
int d1Tmp = d1;
int d2Tmp = d2;
next[d0Tmp] = d2;
next[d2Tmp] = d1;
next[d1Tmp] = d3;
}
void TravelSalesman::reverseChangedState()
{
next[d0] = d1;
next[d1] = d2;
next[d2] = d3;
}
double TravelSalesman::energy()
{
double e=0;
for (size_t i = 0; i < next.size(); i++)
{
e += norm(posCity[i]-posCity[next[i]]);
}
return e;
}
void DrawTravelMap(Mat &img, vector<Point> &p, vector<int> &n)
{
for (size_t i = 0; i < n.size(); i++)
{
circle(img,p[i],5,Scalar(0,0,255),2);
line(img,p[i],p[n[i]],Scalar(0,255,0),2);
}
}
int main(void)
{
int nbCity=40;
Mat img(500,500,CV_8UC3,Scalar::all(0));
RNG &rng=theRNG();
int radius=static_cast<int>(img.cols*0.45);
Point center(img.cols/2,img.rows/2);
vector<Point> posCity(nbCity);
vector<int> next(nbCity);
for (size_t i = 0; i < posCity.size(); i++)
{
double theta = rng.uniform(0., 2 * CV_PI);
posCity[i].x = static_cast<int>(radius*cos(theta)) + center.x;
posCity[i].y = static_cast<int>(radius*sin(theta)) + center.y;
next[i]=(i+1)%nbCity;
}
TravelSalesman ts(posCity,next);
ts.setCoolingRatio(0.99);
ts.setInitialTemperature(100);
ts.setIterPerStep(10000*nbCity);
ts.setFinalTemperature(100*0.97);
DrawTravelMap(img,posCity,next);
imshow("Map",img);
waitKey(10);
for (int i = 0; i < 100; i++)
{
ts.run();
img = Mat::zeros(img.size(),CV_8UC3);
DrawTravelMap(img, posCity, next);
imshow("Map", img);
waitKey(10);
double ti=ts.getFinalTemperature();
cout<<ti <<" -> "<<ts.energy()<<"\n";
ts.setInitialTemperature(ti);
ts.setFinalTemperature(ti*0.97);
}
return 0;
}