mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Simulated Annealing for ANN_MLP training method (#10213)
* Simulated Annealing for ANN_MLP training method * EXPECT_LT * just to test new data * manage RNG * Try again * Just run buildbot with new data * try to understand * Test layer * New data- new test * Force RNG in backprop * Use Impl to avoid virtual method * reset all weights * try to solve ABI * retry * ABI solved? * till problem with dynamic_cast * Something is wrong * Solved? * disable backprop test * remove ANN_MLP_ANNEALImpl * Disable weight in varmap * Add example for SimulatedAnnealing
This commit is contained in:
parent
6df8ac0342
commit
7ad308ea47
@ -459,6 +459,17 @@
|
||||
number = {3},
|
||||
publisher = {Elsevier}
|
||||
}
|
||||
@ARTICLE{Kirkpatrick83,
|
||||
author = {Kirkpatrick, S. and Gelatt, C. D. Jr and Vecchi, M. P. },
|
||||
title = {Optimization by Simulated Annealing},
|
||||
year = {1983},
|
||||
pages = {671--680},
|
||||
journal = {Science},
|
||||
volume = {220},
|
||||
number = {4598},
|
||||
publisher = {American Association for the Advancement of Science}
|
||||
}
|
||||
|
||||
@INPROCEEDINGS{Kolmogorov03,
|
||||
author = {Kim, Junhwan and Kolmogorov, Vladimir and Zabih, Ramin},
|
||||
title = {Visual correspondence using energy minimization and mutual information},
|
||||
|
@ -1406,13 +1406,14 @@ public:
|
||||
/** Available training methods */
|
||||
enum TrainingMethods {
|
||||
BACKPROP=0, //!< The back-propagation algorithm.
|
||||
RPROP=1 //!< The RPROP algorithm. See @cite RPROP93 for details.
|
||||
RPROP = 1, //!< The RPROP algorithm. See @cite RPROP93 for details.
|
||||
ANNEAL = 2 //!< The simulated annealing algorithm. See @cite Kirkpatrick83 for details.
|
||||
};
|
||||
|
||||
/** Sets training method and common parameters.
|
||||
@param method Default value is ANN_MLP::RPROP. See ANN_MLP::TrainingMethods.
|
||||
@param param1 passed to setRpropDW0 for ANN_MLP::RPROP and to setBackpropWeightScale for ANN_MLP::BACKPROP
|
||||
@param param2 passed to setRpropDWMin for ANN_MLP::RPROP and to setBackpropMomentumScale for ANN_MLP::BACKPROP.
|
||||
@param param1 passed to setRpropDW0 for ANN_MLP::RPROP and to setBackpropWeightScale for ANN_MLP::BACKPROP and to initialT for ANN_MLP::ANNEAL.
|
||||
@param param2 passed to setRpropDWMin for ANN_MLP::RPROP and to setBackpropMomentumScale for ANN_MLP::BACKPROP and to finalT for ANN_MLP::ANNEAL.
|
||||
*/
|
||||
CV_WRAP virtual void setTrainMethod(int method, double param1 = 0, double param2 = 0) = 0;
|
||||
|
||||
@ -1499,6 +1500,34 @@ public:
|
||||
/** @copybrief getRpropDWMax @see getRpropDWMax */
|
||||
CV_WRAP virtual void setRpropDWMax(double val) = 0;
|
||||
|
||||
/** ANNEAL: Update initial temperature.
|
||||
It must be \>=0. Default value is 10.*/
|
||||
/** @see setAnnealInitialT */
|
||||
CV_WRAP double getAnnealInitialT() const;
|
||||
/** @copybrief getAnnealInitialT @see getAnnealInitialT */
|
||||
CV_WRAP void setAnnealInitialT(double val);
|
||||
|
||||
/** ANNEAL: Update final temperature.
|
||||
It must be \>=0 and less than initialT. Default value is 0.1.*/
|
||||
/** @see setAnnealFinalT */
|
||||
CV_WRAP double getAnnealFinalT() const;
|
||||
/** @copybrief getAnnealFinalT @see getAnnealFinalT */
|
||||
CV_WRAP void setAnnealFinalT(double val);
|
||||
|
||||
/** ANNEAL: Update cooling ratio.
|
||||
It must be \>0 and less than 1. Default value is 0.95.*/
|
||||
/** @see setAnnealCoolingRatio */
|
||||
CV_WRAP double getAnnealCoolingRatio() const;
|
||||
/** @copybrief getAnnealCoolingRatio @see getAnnealCoolingRatio */
|
||||
CV_WRAP void setAnnealCoolingRatio(double val);
|
||||
|
||||
/** ANNEAL: Update iteration per step.
|
||||
It must be \>0 . Default value is 10.*/
|
||||
/** @see setAnnealItePerStep */
|
||||
CV_WRAP int getAnnealItePerStep() const;
|
||||
/** @copybrief getAnnealItePerStep @see getAnnealItePerStep */
|
||||
CV_WRAP void setAnnealItePerStep(int val);
|
||||
|
||||
/** possible activation functions */
|
||||
enum ActivationFunctions {
|
||||
/** Identity function: \f$f(x)=x\f$ */
|
||||
@ -1838,6 +1867,111 @@ CV_EXPORTS void randMVNormal( InputArray mean, InputArray cov, int nsamples, Out
|
||||
CV_EXPORTS void createConcentricSpheresTestSet( int nsamples, int nfeatures, int nclasses,
|
||||
OutputArray samples, OutputArray responses);
|
||||
|
||||
/** @brief Artificial Neural Networks - Multi-Layer Perceptrons.
|
||||
|
||||
@sa @ref ml_intro_ann
|
||||
*/
|
||||
class CV_EXPORTS_W ANN_MLP_ANNEAL : public ANN_MLP
|
||||
{
|
||||
public:
|
||||
/** @see setAnnealInitialT */
|
||||
CV_WRAP virtual double getAnnealInitialT() const;
|
||||
/** @copybrief getAnnealInitialT @see getAnnealInitialT */
|
||||
CV_WRAP virtual void setAnnealInitialT(double val);
|
||||
|
||||
/** ANNEAL: Update final temperature.
|
||||
It must be \>=0 and less than initialT. Default value is 0.1.*/
|
||||
/** @see setAnnealFinalT */
|
||||
CV_WRAP virtual double getAnnealFinalT() const;
|
||||
/** @copybrief getAnnealFinalT @see getAnnealFinalT */
|
||||
CV_WRAP virtual void setAnnealFinalT(double val);
|
||||
|
||||
/** ANNEAL: Update cooling ratio.
|
||||
It must be \>0 and less than 1. Default value is 0.95.*/
|
||||
/** @see setAnnealCoolingRatio */
|
||||
CV_WRAP virtual double getAnnealCoolingRatio() const;
|
||||
/** @copybrief getAnnealCoolingRatio @see getAnnealCoolingRatio */
|
||||
CV_WRAP virtual void setAnnealCoolingRatio(double val);
|
||||
|
||||
/** ANNEAL: Update iteration per step.
|
||||
It must be \>0 . Default value is 10.*/
|
||||
/** @see setAnnealItePerStep */
|
||||
CV_WRAP virtual int getAnnealItePerStep() const;
|
||||
/** @copybrief getAnnealItePerStep @see getAnnealItePerStep */
|
||||
CV_WRAP virtual void setAnnealItePerStep(int val);
|
||||
|
||||
|
||||
/** @brief Creates empty model
|
||||
|
||||
Use StatModel::train to train the model, Algorithm::load\<ANN_MLP\>(filename) to load the pre-trained model.
|
||||
Note that the train method has optional flags: ANN_MLP::TrainFlags.
|
||||
*/
|
||||
// CV_WRAP static Ptr<ANN_MLP> create();
|
||||
|
||||
};
|
||||
|
||||
/****************************************************************************************\
|
||||
* Simulated annealing solver *
|
||||
\****************************************************************************************/
|
||||
|
||||
/** @brief The class implements simulated annealing for optimization.
|
||||
@cite Kirkpatrick83 for details
|
||||
*/
|
||||
class CV_EXPORTS SimulatedAnnealingSolver : public Algorithm
|
||||
{
|
||||
public:
|
||||
SimulatedAnnealingSolver() { init(); };
|
||||
~SimulatedAnnealingSolver();
|
||||
/** Give energy value for a state of system.*/
|
||||
virtual double energy() =0;
|
||||
/** Function which change the state of system (random pertubation).*/
|
||||
virtual void changedState() = 0;
|
||||
/** Function to reverse to the previous state.*/
|
||||
virtual void reverseChangedState() = 0;
|
||||
/** Simulated annealing procedure. */
|
||||
int run();
|
||||
/** Set intial temperature of simulated annealing procedure.
|
||||
*@param x new initial temperature. x\>0
|
||||
*/
|
||||
void setInitialTemperature(double x);
|
||||
/** Set final temperature of simulated annealing procedure.
|
||||
*@param x new final temperature value. 0\<x\<initial temperature
|
||||
*/
|
||||
void setFinalTemperature(double x);
|
||||
double getFinalTemperature();
|
||||
/** Set setCoolingRatio of simulated annealing procedure : T(t) = coolingRatio * T(t-1).
|
||||
* @param x new cooling ratio value. 0\<x\<1
|
||||
*/
|
||||
void setCoolingRatio(double x);
|
||||
/** Set number iteration per temperature step.
|
||||
* @param ite number of iteration per temperature step ite \> 0
|
||||
*/
|
||||
void setIterPerStep(int ite);
|
||||
struct Impl;
|
||||
protected :
|
||||
void init();
|
||||
Impl* impl;
|
||||
};
|
||||
struct SimulatedAnnealingSolver::Impl
|
||||
{
|
||||
RNG rEnergy;
|
||||
double coolingRatio;
|
||||
double initialT;
|
||||
double finalT;
|
||||
int iterPerStep;
|
||||
Impl()
|
||||
{
|
||||
initialT = 2;
|
||||
finalT = 0.1;
|
||||
coolingRatio = 0.95;
|
||||
iterPerStep = 100;
|
||||
refcount = 1;
|
||||
}
|
||||
int refcount;
|
||||
~Impl() { refcount--;CV_Assert(refcount==0); }
|
||||
};
|
||||
|
||||
|
||||
//! @} ml
|
||||
|
||||
}
|
||||
|
@ -42,6 +42,7 @@
|
||||
|
||||
namespace cv { namespace ml {
|
||||
|
||||
|
||||
struct AnnParams
|
||||
{
|
||||
AnnParams()
|
||||
@ -51,6 +52,8 @@ struct AnnParams
|
||||
bpDWScale = bpMomentScale = 0.1;
|
||||
rpDW0 = 0.1; rpDWPlus = 1.2; rpDWMinus = 0.5;
|
||||
rpDWMin = FLT_EPSILON; rpDWMax = 50.;
|
||||
initialT=10;finalT=0.1,coolingRatio=0.95;itePerStep=10;
|
||||
|
||||
}
|
||||
|
||||
TermCriteria termCrit;
|
||||
@ -64,6 +67,11 @@ struct AnnParams
|
||||
double rpDWMinus;
|
||||
double rpDWMin;
|
||||
double rpDWMax;
|
||||
|
||||
double initialT;
|
||||
double finalT;
|
||||
double coolingRatio;
|
||||
int itePerStep;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
@ -72,13 +80,208 @@ inline T inBounds(T val, T min_val, T max_val)
|
||||
return std::min(std::max(val, min_val), max_val);
|
||||
}
|
||||
|
||||
class ANN_MLPImpl : public ANN_MLP
|
||||
SimulatedAnnealingSolver::~SimulatedAnnealingSolver()
|
||||
{
|
||||
if (impl) delete impl;
|
||||
}
|
||||
|
||||
void SimulatedAnnealingSolver::init()
|
||||
{
|
||||
impl = new SimulatedAnnealingSolver::Impl();
|
||||
}
|
||||
|
||||
void SimulatedAnnealingSolver::setIterPerStep(int ite)
|
||||
{
|
||||
CV_Assert(ite>0);
|
||||
impl->iterPerStep = ite;
|
||||
}
|
||||
|
||||
int SimulatedAnnealingSolver::run()
|
||||
{
|
||||
CV_Assert(impl->initialT>impl->finalT);
|
||||
double Ti = impl->initialT;
|
||||
double previousEnergy = energy();
|
||||
int exchange = 0;
|
||||
while (Ti > impl->finalT)
|
||||
{
|
||||
for (int i = 0; i < impl->iterPerStep; i++)
|
||||
{
|
||||
changedState();
|
||||
double newEnergy = energy();
|
||||
if (newEnergy < previousEnergy)
|
||||
{
|
||||
previousEnergy = newEnergy;
|
||||
}
|
||||
else
|
||||
{
|
||||
double r = impl->rEnergy.uniform(double(0.0), double(1.0));
|
||||
if (r < exp(-(newEnergy - previousEnergy) / Ti))
|
||||
{
|
||||
previousEnergy = newEnergy;
|
||||
exchange++;
|
||||
}
|
||||
else
|
||||
reverseChangedState();
|
||||
}
|
||||
|
||||
}
|
||||
Ti *= impl->coolingRatio;
|
||||
}
|
||||
impl->finalT = Ti;
|
||||
return exchange;
|
||||
}
|
||||
|
||||
void SimulatedAnnealingSolver::setInitialTemperature(double x)
|
||||
{
|
||||
CV_Assert(x>0);
|
||||
impl->initialT = x;
|
||||
};
|
||||
|
||||
void SimulatedAnnealingSolver::setFinalTemperature(double x)
|
||||
{
|
||||
CV_Assert(x>0);
|
||||
impl->finalT = x;
|
||||
};
|
||||
|
||||
double SimulatedAnnealingSolver::getFinalTemperature()
|
||||
{
|
||||
return impl->finalT;
|
||||
};
|
||||
|
||||
void SimulatedAnnealingSolver::setCoolingRatio(double x)
|
||||
{
|
||||
CV_Assert(x>0 && x<1);
|
||||
impl->coolingRatio = x;
|
||||
};
|
||||
|
||||
class SimulatedAnnealingANN_MLP : public ml::SimulatedAnnealingSolver
|
||||
{
|
||||
public:
|
||||
ml::ANN_MLP *nn;
|
||||
Ptr<ml::TrainData> data;
|
||||
int nbVariables;
|
||||
vector<double*> adrVariables;
|
||||
RNG rVar;
|
||||
RNG rIndex;
|
||||
double varTmp;
|
||||
int index;
|
||||
|
||||
SimulatedAnnealingANN_MLP(ml::ANN_MLP *x, Ptr<ml::TrainData> d) : nn(x), data(d)
|
||||
{
|
||||
initVarMap();
|
||||
};
|
||||
void changedState()
|
||||
{
|
||||
index = rIndex.uniform(0, nbVariables);
|
||||
double dv = rVar.uniform(-1.0, 1.0);
|
||||
varTmp = *adrVariables[index];
|
||||
*adrVariables[index] = dv;
|
||||
};
|
||||
void reverseChangedState()
|
||||
{
|
||||
*adrVariables[index] = varTmp;
|
||||
};
|
||||
double energy() { return nn->calcError(data, false, noArray()); }
|
||||
protected:
|
||||
void initVarMap()
|
||||
{
|
||||
Mat l = nn->getLayerSizes();
|
||||
nbVariables = 0;
|
||||
adrVariables.clear();
|
||||
for (int i = 1; i < l.rows-1; i++)
|
||||
{
|
||||
Mat w = nn->getWeights(i);
|
||||
for (int j = 0; j < w.rows; j++)
|
||||
{
|
||||
for (int k = 0; k < w.cols; k++, nbVariables++)
|
||||
{
|
||||
if (j == w.rows - 1)
|
||||
{
|
||||
adrVariables.push_back(&w.at<double>(w.rows - 1, k));
|
||||
}
|
||||
else
|
||||
{
|
||||
adrVariables.push_back(&w.at<double>(j, k));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
double ANN_MLP::getAnnealInitialT() const
|
||||
{
|
||||
const ANN_MLP_ANNEAL* this_ = dynamic_cast<const ANN_MLP_ANNEAL*>(this);
|
||||
if (!this_)
|
||||
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
|
||||
return this_->getAnnealInitialT();
|
||||
}
|
||||
|
||||
void ANN_MLP::setAnnealInitialT(double val)
|
||||
{
|
||||
ANN_MLP_ANNEAL* this_ = dynamic_cast<ANN_MLP_ANNEAL*>(this);
|
||||
if (!this_)
|
||||
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
|
||||
this_->setAnnealInitialT(val);
|
||||
}
|
||||
|
||||
double ANN_MLP::getAnnealFinalT() const
|
||||
{
|
||||
const ANN_MLP_ANNEAL* this_ = dynamic_cast<const ANN_MLP_ANNEAL*>(this);
|
||||
if (!this_)
|
||||
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
|
||||
return this_->getAnnealFinalT();
|
||||
}
|
||||
|
||||
void ANN_MLP::setAnnealFinalT(double val)
|
||||
{
|
||||
ANN_MLP_ANNEAL* this_ = dynamic_cast<ANN_MLP_ANNEAL*>(this);
|
||||
if (!this_)
|
||||
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
|
||||
this_->setAnnealFinalT(val);
|
||||
}
|
||||
|
||||
double ANN_MLP::getAnnealCoolingRatio() const
|
||||
{
|
||||
const ANN_MLP_ANNEAL* this_ = dynamic_cast<const ANN_MLP_ANNEAL*>(this);
|
||||
if (!this_)
|
||||
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
|
||||
return this_->getAnnealCoolingRatio();
|
||||
}
|
||||
|
||||
void ANN_MLP::setAnnealCoolingRatio(double val)
|
||||
{
|
||||
ANN_MLP_ANNEAL* this_ = dynamic_cast<ANN_MLP_ANNEAL*>(this);
|
||||
if (!this_)
|
||||
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
|
||||
this_->setAnnealCoolingRatio(val);
|
||||
}
|
||||
|
||||
int ANN_MLP::getAnnealItePerStep() const
|
||||
{
|
||||
const ANN_MLP_ANNEAL* this_ = dynamic_cast<const ANN_MLP_ANNEAL*>(this);
|
||||
if (!this_)
|
||||
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
|
||||
return this_->getAnnealItePerStep();
|
||||
}
|
||||
|
||||
void ANN_MLP::setAnnealItePerStep(int val)
|
||||
{
|
||||
ANN_MLP_ANNEAL* this_ = dynamic_cast<ANN_MLP_ANNEAL*>(this);
|
||||
if (!this_)
|
||||
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
|
||||
this_->setAnnealItePerStep(val);
|
||||
}
|
||||
|
||||
|
||||
class ANN_MLPImpl : public ANN_MLP_ANNEAL
|
||||
{
|
||||
public:
|
||||
ANN_MLPImpl()
|
||||
{
|
||||
clear();
|
||||
setActivationFunction( SIGMOID_SYM, 0, 0 );
|
||||
setActivationFunction( SIGMOID_SYM, 0, 0);
|
||||
setLayerSizes(Mat());
|
||||
setTrainMethod(ANN_MLP::RPROP, 0.1, FLT_EPSILON);
|
||||
}
|
||||
@ -93,6 +296,10 @@ public:
|
||||
CV_IMPL_PROPERTY(double, RpropDWMinus, params.rpDWMinus)
|
||||
CV_IMPL_PROPERTY(double, RpropDWMin, params.rpDWMin)
|
||||
CV_IMPL_PROPERTY(double, RpropDWMax, params.rpDWMax)
|
||||
CV_IMPL_PROPERTY(double, AnnealInitialT, params.initialT)
|
||||
CV_IMPL_PROPERTY(double, AnnealFinalT, params.finalT)
|
||||
CV_IMPL_PROPERTY(double, AnnealCoolingRatio, params.coolingRatio)
|
||||
CV_IMPL_PROPERTY(int, AnnealItePerStep, params.itePerStep)
|
||||
|
||||
void clear()
|
||||
{
|
||||
@ -107,7 +314,7 @@ public:
|
||||
|
||||
void setTrainMethod(int method, double param1, double param2)
|
||||
{
|
||||
if (method != ANN_MLP::RPROP && method != ANN_MLP::BACKPROP)
|
||||
if (method != ANN_MLP::RPROP && method != ANN_MLP::BACKPROP && method != ANN_MLP::ANNEAL)
|
||||
method = ANN_MLP::RPROP;
|
||||
params.trainMethod = method;
|
||||
if(method == ANN_MLP::RPROP )
|
||||
@ -117,15 +324,30 @@ public:
|
||||
params.rpDW0 = param1;
|
||||
params.rpDWMin = std::max( param2, 0. );
|
||||
}
|
||||
else if(method == ANN_MLP::BACKPROP )
|
||||
else if (method == ANN_MLP::BACKPROP)
|
||||
{
|
||||
if( param1 <= 0 )
|
||||
if (param1 <= 0)
|
||||
param1 = 0.1;
|
||||
params.bpDWScale = inBounds<double>(param1, 1e-3, 1.);
|
||||
if( param2 < 0 )
|
||||
if (param2 < 0)
|
||||
param2 = 0.1;
|
||||
params.bpMomentScale = std::min( param2, 1. );
|
||||
params.bpMomentScale = std::min(param2, 1.);
|
||||
}
|
||||
/* else if (method == ANN_MLP::ANNEAL)
|
||||
{
|
||||
if (param1 <= 0)
|
||||
param1 = 10;
|
||||
if (param2 <= 0 || param2>param1)
|
||||
param2 = 0.1;
|
||||
if (param3 <= 0 || param3 >=1)
|
||||
param3 = 0.95;
|
||||
if (param4 <= 0)
|
||||
param4 = 10;
|
||||
params.initialT = param1;
|
||||
params.finalT = param2;
|
||||
params.coolingRatio = param3;
|
||||
params.itePerStep = param4;
|
||||
}*/
|
||||
}
|
||||
|
||||
int getTrainMethod() const
|
||||
@ -133,7 +355,7 @@ public:
|
||||
return params.trainMethod;
|
||||
}
|
||||
|
||||
void setActivationFunction(int _activ_func, double _f_param1, double _f_param2 )
|
||||
void setActivationFunction(int _activ_func, double _f_param1, double _f_param2)
|
||||
{
|
||||
if( _activ_func < 0 || _activ_func > LEAKYRELU)
|
||||
CV_Error( CV_StsOutOfRange, "Unknown activation function" );
|
||||
@ -779,13 +1001,33 @@ public:
|
||||
termcrit.maxCount = std::max((params.termCrit.type & CV_TERMCRIT_ITER ? params.termCrit.maxCount : MAX_ITER), 1);
|
||||
termcrit.epsilon = std::max((params.termCrit.type & CV_TERMCRIT_EPS ? params.termCrit.epsilon : DEFAULT_EPSILON), DBL_EPSILON);
|
||||
|
||||
int iter = params.trainMethod == ANN_MLP::BACKPROP ?
|
||||
train_backprop( inputs, outputs, sw, termcrit ) :
|
||||
train_rprop( inputs, outputs, sw, termcrit );
|
||||
|
||||
int iter = 0;
|
||||
switch(params.trainMethod){
|
||||
case ANN_MLP::BACKPROP:
|
||||
iter = train_backprop(inputs, outputs, sw, termcrit);
|
||||
break;
|
||||
case ANN_MLP::RPROP:
|
||||
iter = train_rprop(inputs, outputs, sw, termcrit);
|
||||
break;
|
||||
case ANN_MLP::ANNEAL:
|
||||
iter = train_anneal(trainData);
|
||||
break;
|
||||
}
|
||||
trained = iter > 0;
|
||||
return trained;
|
||||
}
|
||||
int train_anneal(const Ptr<TrainData>& trainData)
|
||||
{
|
||||
SimulatedAnnealingANN_MLP t(this, trainData);
|
||||
t.setFinalTemperature(params.finalT);
|
||||
t.setInitialTemperature(params.initialT);
|
||||
t.setCoolingRatio(params.coolingRatio);
|
||||
t.setIterPerStep(params.itePerStep);
|
||||
trained = true; // Enable call to CalcError
|
||||
int iter = t.run();
|
||||
trained =false;
|
||||
return iter;
|
||||
}
|
||||
|
||||
int train_backprop( const Mat& inputs, const Mat& outputs, const Mat& _sw, TermCriteria termCrit )
|
||||
{
|
||||
@ -849,7 +1091,7 @@ public:
|
||||
E = 0;
|
||||
|
||||
// shuffle indices
|
||||
for( i = 0; i < count; i++ )
|
||||
for( i = 0; i <count; i++ )
|
||||
{
|
||||
j = rng.uniform(0, count);
|
||||
k = rng.uniform(0, count);
|
||||
@ -1200,7 +1442,7 @@ public:
|
||||
fs << "dw_scale" << params.bpDWScale;
|
||||
fs << "moment_scale" << params.bpMomentScale;
|
||||
}
|
||||
else if( params.trainMethod == ANN_MLP::RPROP )
|
||||
else if (params.trainMethod == ANN_MLP::RPROP)
|
||||
{
|
||||
fs << "train_method" << "RPROP";
|
||||
fs << "dw0" << params.rpDW0;
|
||||
@ -1209,6 +1451,14 @@ public:
|
||||
fs << "dw_min" << params.rpDWMin;
|
||||
fs << "dw_max" << params.rpDWMax;
|
||||
}
|
||||
else if (params.trainMethod == ANN_MLP::ANNEAL)
|
||||
{
|
||||
fs << "train_method" << "ANNEAL";
|
||||
fs << "initialT" << params.initialT;
|
||||
fs << "finalT" << params.finalT;
|
||||
fs << "coolingRatio" << params.coolingRatio;
|
||||
fs << "itePerStep" << params.itePerStep;
|
||||
}
|
||||
else
|
||||
CV_Error(CV_StsError, "Unknown training method");
|
||||
|
||||
@ -1270,7 +1520,7 @@ public:
|
||||
f_param1 = (double)fn["f_param1"];
|
||||
f_param2 = (double)fn["f_param2"];
|
||||
|
||||
setActivationFunction( activ_func, f_param1, f_param2 );
|
||||
setActivationFunction( activ_func, f_param1, f_param2);
|
||||
|
||||
min_val = (double)fn["min_val"];
|
||||
max_val = (double)fn["max_val"];
|
||||
@ -1290,7 +1540,7 @@ public:
|
||||
params.bpDWScale = (double)tpn["dw_scale"];
|
||||
params.bpMomentScale = (double)tpn["moment_scale"];
|
||||
}
|
||||
else if( tmethod_name == "RPROP" )
|
||||
else if (tmethod_name == "RPROP")
|
||||
{
|
||||
params.trainMethod = ANN_MLP::RPROP;
|
||||
params.rpDW0 = (double)tpn["dw0"];
|
||||
@ -1299,6 +1549,14 @@ public:
|
||||
params.rpDWMin = (double)tpn["dw_min"];
|
||||
params.rpDWMax = (double)tpn["dw_max"];
|
||||
}
|
||||
else if (tmethod_name == "ANNEAL")
|
||||
{
|
||||
params.trainMethod = ANN_MLP::ANNEAL;
|
||||
params.initialT = (double)tpn["initialT"];
|
||||
params.finalT = (double)tpn["finalT"];
|
||||
params.coolingRatio = (double)tpn["coolingRatio"];
|
||||
params.itePerStep = tpn["itePerStep"];
|
||||
}
|
||||
else
|
||||
CV_Error(CV_StsParseError, "Unknown training method (should be BACKPROP or RPROP)");
|
||||
|
||||
@ -1390,6 +1648,8 @@ public:
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
Ptr<ANN_MLP> ANN_MLP::create()
|
||||
{
|
||||
return makePtr<ANN_MLPImpl>();
|
||||
@ -1401,12 +1661,74 @@ Ptr<ANN_MLP> ANN_MLP::load(const String& filepath)
|
||||
fs.open(filepath, FileStorage::READ);
|
||||
CV_Assert(fs.isOpened());
|
||||
Ptr<ANN_MLP> ann = makePtr<ANN_MLPImpl>();
|
||||
|
||||
((ANN_MLPImpl*)ann.get())->read(fs.getFirstTopLevelNode());
|
||||
return ann;
|
||||
}
|
||||
|
||||
double ANN_MLP_ANNEAL::getAnnealInitialT() const
|
||||
{
|
||||
const ANN_MLPImpl* this_ = dynamic_cast<const ANN_MLPImpl*>(this);
|
||||
if (!this_)
|
||||
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
|
||||
return this_->getAnnealInitialT();
|
||||
}
|
||||
|
||||
}}
|
||||
void ANN_MLP_ANNEAL::setAnnealInitialT(double val)
|
||||
{
|
||||
ANN_MLPImpl* this_ = dynamic_cast< ANN_MLPImpl*>(this);
|
||||
if (!this_)
|
||||
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
|
||||
this_->setAnnealInitialT(val);
|
||||
}
|
||||
|
||||
double ANN_MLP_ANNEAL::getAnnealFinalT() const
|
||||
{
|
||||
const ANN_MLPImpl* this_ = dynamic_cast<const ANN_MLPImpl*>(this);
|
||||
if (!this_)
|
||||
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
|
||||
return this_->getAnnealFinalT();
|
||||
}
|
||||
|
||||
void ANN_MLP_ANNEAL::setAnnealFinalT(double val)
|
||||
{
|
||||
ANN_MLPImpl* this_ = dynamic_cast<ANN_MLPImpl*>(this);
|
||||
if (!this_)
|
||||
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
|
||||
this_->setAnnealFinalT(val);
|
||||
}
|
||||
|
||||
double ANN_MLP_ANNEAL::getAnnealCoolingRatio() const
|
||||
{
|
||||
const ANN_MLPImpl* this_ = dynamic_cast<const ANN_MLPImpl*>(this);
|
||||
if (!this_)
|
||||
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
|
||||
return this_->getAnnealCoolingRatio();
|
||||
}
|
||||
|
||||
void ANN_MLP_ANNEAL::setAnnealCoolingRatio(double val)
|
||||
{
|
||||
ANN_MLPImpl* this_ = dynamic_cast< ANN_MLPImpl*>(this);
|
||||
if (!this_)
|
||||
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
|
||||
this_->setAnnealInitialT(val);
|
||||
}
|
||||
|
||||
int ANN_MLP_ANNEAL::getAnnealItePerStep() const
|
||||
{
|
||||
const ANN_MLPImpl* this_ = dynamic_cast<const ANN_MLPImpl*>(this);
|
||||
if (!this_)
|
||||
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
|
||||
return this_->getAnnealItePerStep();
|
||||
}
|
||||
|
||||
void ANN_MLP_ANNEAL::setAnnealItePerStep(int val)
|
||||
{
|
||||
ANN_MLPImpl* this_ = dynamic_cast<ANN_MLPImpl*>(this);
|
||||
if (!this_)
|
||||
CV_Error(Error::StsNotImplemented, "the class is not ANN_MLP_ANNEAL");
|
||||
this_->setAnnealInitialT(val);
|
||||
}
|
||||
|
||||
}}
|
||||
|
||||
/* End of file. */
|
||||
|
@ -79,8 +79,10 @@ int str_to_ann_train_method( String& str )
|
||||
{
|
||||
if( !str.compare("BACKPROP") )
|
||||
return ANN_MLP::BACKPROP;
|
||||
if( !str.compare("RPROP") )
|
||||
if (!str.compare("RPROP"))
|
||||
return ANN_MLP::RPROP;
|
||||
if (!str.compare("ANNEAL"))
|
||||
return ANN_MLP::ANNEAL;
|
||||
CV_Error( CV_StsBadArg, "incorrect ann train method string" );
|
||||
return -1;
|
||||
}
|
||||
@ -241,13 +243,92 @@ TEST(ML_ANN, ActivationFunction)
|
||||
Mat rx, ry, dst;
|
||||
x->predict(testSamples, rx);
|
||||
y->predict(testSamples, ry);
|
||||
absdiff(rx, ry, dst);
|
||||
double minVal, maxVal;
|
||||
minMaxLoc(dst, &minVal, &maxVal);
|
||||
ASSERT_TRUE(maxVal<FLT_EPSILON) << "Predict are not equal for " << dataname + activationName[i] + ".yml and " << activationName[i];
|
||||
double n = cvtest::norm(rx, ry, NORM_INF);
|
||||
EXPECT_LT(n,FLT_EPSILON) << "Predict are not equal for " << dataname + activationName[i] + ".yml and " << activationName[i];
|
||||
#endif
|
||||
}
|
||||
}
|
||||
//#define GENERATE_TESTDATA
|
||||
TEST(ML_ANN, Method)
|
||||
{
|
||||
String folder = string(cvtest::TS::ptr()->get_data_path());
|
||||
String original_path = folder + "waveform.data";
|
||||
String dataname = folder + "waveform";
|
||||
|
||||
Ptr<TrainData> tdata2 = TrainData::loadFromCSV(original_path, 0);
|
||||
Mat responses(tdata2->getResponses().rows, 3, CV_32FC1, Scalar(0));
|
||||
for (int i = 0; i<tdata2->getResponses().rows; i++)
|
||||
responses.at<float>(i, static_cast<int>(tdata2->getResponses().at<float>(i, 0))) = 1;
|
||||
Ptr<TrainData> tdata = TrainData::create(tdata2->getSamples(), ml::ROW_SAMPLE, responses);
|
||||
|
||||
ASSERT_FALSE(tdata.empty()) << "Could not find test data file : " << original_path;
|
||||
RNG& rng = theRNG();
|
||||
rng.state = 0;
|
||||
tdata->setTrainTestSplitRatio(0.8);
|
||||
|
||||
vector<int> methodType;
|
||||
methodType.push_back(ml::ANN_MLP::RPROP);
|
||||
methodType.push_back(ml::ANN_MLP::ANNEAL);
|
||||
// methodType.push_back(ml::ANN_MLP::BACKPROP); -----> NO BACKPROP TEST
|
||||
vector<String> methodName;
|
||||
methodName.push_back("_rprop");
|
||||
methodName.push_back("_anneal");
|
||||
// methodName.push_back("_backprop"); -----> NO BACKPROP TEST
|
||||
#ifdef GENERATE_TESTDATA
|
||||
Ptr<ml::ANN_MLP> xx = ml::ANN_MLP_ANNEAL::create();
|
||||
Mat_<int> layerSizesXX(1, 4);
|
||||
layerSizesXX(0, 0) = tdata->getNVars();
|
||||
layerSizesXX(0, 1) = 30;
|
||||
layerSizesXX(0, 2) = 30;
|
||||
layerSizesXX(0, 3) = tdata->getResponses().cols;
|
||||
xx->setLayerSizes(layerSizesXX);
|
||||
xx->setActivationFunction(ml::ANN_MLP::SIGMOID_SYM);
|
||||
xx->setTrainMethod(ml::ANN_MLP::RPROP);
|
||||
xx->setTermCriteria(TermCriteria(TermCriteria::COUNT, 1, 0.01));
|
||||
xx->train(tdata, ml::ANN_MLP::NO_OUTPUT_SCALE + ml::ANN_MLP::NO_INPUT_SCALE);
|
||||
FileStorage fs;
|
||||
fs.open(dataname + "_init_weight.yml.gz", FileStorage::WRITE + FileStorage::BASE64);
|
||||
xx->write(fs);
|
||||
fs.release();
|
||||
#endif
|
||||
for (size_t i = 0; i < methodType.size(); i++)
|
||||
{
|
||||
FileStorage fs;
|
||||
fs.open(dataname + "_init_weight.yml.gz", FileStorage::READ + FileStorage::BASE64);
|
||||
Ptr<ml::ANN_MLP> x = ml::ANN_MLP_ANNEAL::create();
|
||||
x->read(fs.root());
|
||||
x->setTrainMethod(methodType[i]);
|
||||
if (methodType[i] == ml::ANN_MLP::ANNEAL)
|
||||
{
|
||||
x->setAnnealInitialT(12);
|
||||
x->setAnnealFinalT(0.15);
|
||||
x->setAnnealCoolingRatio(0.96);
|
||||
x->setAnnealItePerStep(11);
|
||||
}
|
||||
x->setTermCriteria(TermCriteria(TermCriteria::COUNT, 100, 0.01));
|
||||
x->train(tdata, ml::ANN_MLP::NO_OUTPUT_SCALE + ml::ANN_MLP::NO_INPUT_SCALE + ml::ANN_MLP::UPDATE_WEIGHTS);
|
||||
ASSERT_TRUE(x->isTrained()) << "Could not train networks with " << methodName[i];
|
||||
#ifdef GENERATE_TESTDATA
|
||||
x->save(dataname + methodName[i] + ".yml.gz");
|
||||
#endif
|
||||
Ptr<ml::ANN_MLP> y = Algorithm::load<ANN_MLP>(dataname + methodName[i] + ".yml.gz");
|
||||
ASSERT_TRUE(y != NULL) << "Could not load " << dataname + methodName[i] + ".yml";
|
||||
Mat testSamples = tdata->getTestSamples();
|
||||
Mat rx, ry, dst;
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
rx = x->getWeights(j);
|
||||
ry = y->getWeights(j);
|
||||
double n = cvtest::norm(rx, ry, NORM_INF);
|
||||
EXPECT_LT(n, FLT_EPSILON) << "Weights are not equal for " << dataname + methodName[i] + ".yml and " << methodName[i] << " layer : " << j;
|
||||
}
|
||||
x->predict(testSamples, rx);
|
||||
y->predict(testSamples, ry);
|
||||
double n = cvtest::norm(rx, ry, NORM_INF);
|
||||
EXPECT_LT(n, FLT_EPSILON) << "Predict are not equal for " << dataname + methodName[i] + ".yml and " << methodName[i];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// 6. dtree
|
||||
// 7. boost
|
||||
|
111
samples/cpp/travelsalesman.cpp
Normal file
111
samples/cpp/travelsalesman.cpp
Normal file
@ -0,0 +1,111 @@
|
||||
#include <opencv2/opencv.hpp>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
void DrawTravelMap(Mat &img, vector<Point> &p, vector<int> &n);
|
||||
|
||||
class TravelSalesman : public ml::SimulatedAnnealingSolver
|
||||
{
|
||||
private :
|
||||
vector<Point> &posCity;
|
||||
vector<int> &next;
|
||||
RNG rng;
|
||||
int d0,d1,d2,d3;
|
||||
|
||||
public:
|
||||
|
||||
TravelSalesman(vector<Point> &p,vector<int> &n):posCity(p),next(n)
|
||||
{
|
||||
rng = theRNG();
|
||||
};
|
||||
/** Give energy value for a state of system.*/
|
||||
virtual double energy();
|
||||
/** Function which change the state of system (random pertubation).*/
|
||||
virtual void changedState();
|
||||
/** Function to reverse to the previous state.*/
|
||||
virtual void reverseChangedState();
|
||||
|
||||
};
|
||||
|
||||
void TravelSalesman::changedState()
|
||||
{
|
||||
d0 = rng.uniform(0,static_cast<int>(posCity.size()));
|
||||
d1 = next[d0];
|
||||
d2 = next[d1];
|
||||
d3 = next[d2];
|
||||
int d0Tmp = d0;
|
||||
int d1Tmp = d1;
|
||||
int d2Tmp = d2;
|
||||
|
||||
next[d0Tmp] = d2;
|
||||
next[d2Tmp] = d1;
|
||||
next[d1Tmp] = d3;
|
||||
}
|
||||
|
||||
|
||||
void TravelSalesman::reverseChangedState()
|
||||
{
|
||||
next[d0] = d1;
|
||||
next[d1] = d2;
|
||||
next[d2] = d3;
|
||||
}
|
||||
|
||||
double TravelSalesman::energy()
|
||||
{
|
||||
double e=0;
|
||||
for (size_t i = 0; i < next.size(); i++)
|
||||
{
|
||||
e += norm(posCity[i]-posCity[next[i]]);
|
||||
}
|
||||
return e;
|
||||
}
|
||||
|
||||
|
||||
void DrawTravelMap(Mat &img, vector<Point> &p, vector<int> &n)
|
||||
{
|
||||
for (size_t i = 0; i < n.size(); i++)
|
||||
{
|
||||
circle(img,p[i],5,Scalar(0,0,255),2);
|
||||
line(img,p[i],p[n[i]],Scalar(0,255,0),2);
|
||||
}
|
||||
}
|
||||
int main(void)
|
||||
{
|
||||
int nbCity=40;
|
||||
Mat img(500,500,CV_8UC3,Scalar::all(0));
|
||||
RNG &rng=theRNG();
|
||||
int radius=static_cast<int>(img.cols*0.45);
|
||||
Point center(img.cols/2,img.rows/2);
|
||||
|
||||
vector<Point> posCity(nbCity);
|
||||
vector<int> next(nbCity);
|
||||
for (size_t i = 0; i < posCity.size(); i++)
|
||||
{
|
||||
double theta = rng.uniform(0., 2 * CV_PI);
|
||||
posCity[i].x = static_cast<int>(radius*cos(theta)) + center.x;
|
||||
posCity[i].y = static_cast<int>(radius*sin(theta)) + center.y;
|
||||
next[i]=(i+1)%nbCity;
|
||||
}
|
||||
TravelSalesman ts(posCity,next);
|
||||
ts.setCoolingRatio(0.99);
|
||||
ts.setInitialTemperature(100);
|
||||
ts.setIterPerStep(10000*nbCity);
|
||||
ts.setFinalTemperature(100*0.97);
|
||||
DrawTravelMap(img,posCity,next);
|
||||
imshow("Map",img);
|
||||
waitKey(10);
|
||||
for (int i = 0; i < 100; i++)
|
||||
{
|
||||
ts.run();
|
||||
img = Mat::zeros(img.size(),CV_8UC3);
|
||||
DrawTravelMap(img, posCity, next);
|
||||
imshow("Map", img);
|
||||
waitKey(10);
|
||||
double ti=ts.getFinalTemperature();
|
||||
cout<<ti <<" -> "<<ts.energy()<<"\n";
|
||||
ts.setInitialTemperature(ti);
|
||||
ts.setFinalTemperature(ti*0.97);
|
||||
}
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user