mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 03:00:14 +08:00
updated demos and tutorial regarding the Retina class transfer to bioinspired module.
This commit is contained in:
parent
cdbbe0dfbe
commit
7bff79bbeb
@ -17,7 +17,7 @@ if(BUILD_DOCS AND HAVE_SPHINX)
|
||||
set(OPTIONAL_DOC_LIST "")
|
||||
|
||||
|
||||
set(OPENCV2_BASE_MODULES core imgproc highgui video calib3d features2d objdetect ml flann gpu photo stitching nonfree contrib legacy)
|
||||
set(OPENCV2_BASE_MODULES core imgproc highgui video calib3d features2d objdetect ml flann gpu photo stitching nonfree contrib legacy bioinspired)
|
||||
|
||||
# build lists of modules to be documented
|
||||
set(OPENCV2_MODULES "")
|
||||
|
@ -156,17 +156,17 @@ As always, we would be happy to hear your comments and receive your contribution
|
||||
:width: 80pt
|
||||
:alt: gpu icon
|
||||
|
||||
* :ref:`Table-Of-Content-Contrib`
|
||||
* :ref:`Table-Of-Content-Bioinspired`
|
||||
|
||||
.. tabularcolumns:: m{100pt} m{300pt}
|
||||
.. cssclass:: toctableopencv
|
||||
|
||||
=========== =======================================================
|
||||
|Contrib| Discover additional contribution to OpenCV.
|
||||
============= =======================================================
|
||||
|Bioinspired| Algorithms inspired from biological models.
|
||||
|
||||
=========== =======================================================
|
||||
============= =======================================================
|
||||
|
||||
.. |Contrib| image:: images/retina.jpg
|
||||
.. |Bioinspired| image:: images/retina.jpg
|
||||
:height: 80pt
|
||||
:width: 80pt
|
||||
:alt: gpu icon
|
||||
@ -219,6 +219,6 @@ As always, we would be happy to hear your comments and receive your contribution
|
||||
objdetect/table_of_content_objdetect/table_of_content_objdetect
|
||||
ml/table_of_content_ml/table_of_content_ml
|
||||
gpu/table_of_content_gpu/table_of_content_gpu
|
||||
contrib/table_of_content_contrib/table_of_content_contrib
|
||||
bioinspired/table_of_content_bioinspired/table_of_content_bioinspired
|
||||
ios/table_of_content_ios/table_of_content_ios
|
||||
general/table_of_content_general/table_of_content_general
|
||||
|
@ -52,6 +52,7 @@
|
||||
#include "opencv2/calib3d.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/contrib.hpp"
|
||||
#include "opencv2/bioinspired.hpp"
|
||||
#include "opencv2/ml.hpp"
|
||||
|
||||
#endif
|
||||
|
@ -47,5 +47,5 @@
|
||||
#include "opencv2/bioinspired/retina.hpp"
|
||||
#include "opencv2/bioinspired/retinafasttonemapping.hpp"
|
||||
|
||||
using namespace cv::hvstools;
|
||||
using namespace cv::hvstools; // used to avoid complex namespace inclusions cv::hvstools::Retina => cv::Retina preferred
|
||||
#endif
|
||||
|
@ -61,9 +61,12 @@ Here is an overview of the abstract Retina interface, allocate one instance with
|
||||
// parameters setup instance
|
||||
struct RetinaParameters; // this class is detailled later
|
||||
|
||||
// main method for input frame processing
|
||||
// main method for input frame processing (all use method, can also perform High Dynamic Range tone mapping)
|
||||
void run (InputArray inputImage);
|
||||
|
||||
// specific method aiming at correcting luminance only (faster High Dynamic Range tone mapping)
|
||||
void applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage)
|
||||
|
||||
// output buffers retreival methods
|
||||
// -> foveal color vision details channel with luminance and noise correction
|
||||
void getParvo (OutputArray retinaOutput_parvo);
|
||||
@ -138,6 +141,10 @@ This retina filter code includes the research contributions of phd/research coll
|
||||
|
||||
* take a look at *imagelogpolprojection.hpp* to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions. More informations in the above cited Jeanny Heraults's book.
|
||||
|
||||
* Meylan&al work on HDR tone mapping that is implemented as a specific method within the model :
|
||||
|
||||
.. [Meylan2007] L. Meylan , D. Alleysson, S. Susstrunk, "A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images", Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816
|
||||
|
||||
Demos and experiments !
|
||||
=======================
|
||||
|
||||
@ -161,12 +168,14 @@ Take a look at the provided C++ examples provided with OpenCV :
|
||||
|
||||
Then, take a HDR image using bracketing with your camera and generate an OpenEXR image and then process it using the demo.
|
||||
|
||||
Typical use, supposing that you have the OpenEXR image *memorial.exr* (present in the samples/cpp/ folder)
|
||||
Typical use, supposing that you have the OpenEXR image such as *memorial.exr* (present in the samples/cpp/ folder)
|
||||
|
||||
**OpenCVReleaseFolder/bin/OpenEXRimages_HighDynamicRange_Retina_toneMapping memorial.exr**
|
||||
**OpenCVReleaseFolder/bin/OpenEXRimages_HighDynamicRange_Retina_toneMapping memorial.exr [optionnal: 'fast']**
|
||||
|
||||
Note that some sliders are made available to allow you to play with luminance compression.
|
||||
|
||||
If not using the 'fast' option, then, tone mapping is performed using the full retina model [Benoit2010]_. It includes spectral whitening that allows luminance energy to be reduced. When using the 'fast' option, then, a simpler method is used, it is an adaptation of the algorithm presented in [Meylan2007]_. This method gives also good results and is faster to process but it sometimes requires some more parameters adjustement.
|
||||
|
||||
|
||||
Methods description
|
||||
===================
|
||||
@ -275,7 +284,7 @@ Retina::printSetup
|
||||
|
||||
Outputs a string showing the used parameters setup
|
||||
|
||||
:return: a string which contains formatted parameters information
|
||||
:return: a string which contains formated parameters information
|
||||
|
||||
Retina::run
|
||||
+++++++++++
|
||||
@ -286,6 +295,17 @@ Retina::run
|
||||
|
||||
:param inputImage: the input Mat image to be processed, can be gray level or BGR coded in any format (from 8bit to 16bits)
|
||||
|
||||
Retina::applyFastToneMapping
|
||||
++++++++++++++++++++++++++++
|
||||
|
||||
.. ocv:function:: void Retina::applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage)
|
||||
|
||||
Method which processes an image in the aim to correct its luminance : correct backlight problems, enhance details in shadows. This method is designed to perform High Dynamic Range image tone mapping (compress >8bit/pixel images to 8bit/pixel). This is a simplified version of the Retina Parvocellular model (simplified version of the run/getParvo methods call) since it does not include the spatio-temporal filter modelling the Outer Plexiform Layer of the retina that performs spectral whitening and many other stuff. However, it works great for tone mapping and in a faster way.
|
||||
Check the demos and experiments section to see examples and the way to perform tone mapping using the original retina model and the method.
|
||||
|
||||
:param inputImage: the input image to process (should be coded in float format : CV_32F, CV_32FC1, CV832F_C3, CV832F_C4, the 4th channel won't be considered).
|
||||
:param outputToneMappedImage: the output 8bit/channel tone mapped image (CV_8U or CV_8UC3 format).
|
||||
|
||||
Retina::setColorSaturation
|
||||
++++++++++++++++++++++++++
|
||||
|
||||
|
@ -633,7 +633,6 @@ CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, int colormap);
|
||||
CV_EXPORTS bool initModule_contrib();
|
||||
}
|
||||
|
||||
#include "opencv2/contrib/retina.hpp"
|
||||
#include "opencv2/contrib/openfabmap.hpp"
|
||||
|
||||
#endif
|
||||
|
@ -5,7 +5,7 @@
|
||||
|
||||
SET(OPENCV_CPP_SAMPLES_REQUIRED_DEPS opencv_core opencv_flann opencv_imgproc
|
||||
opencv_highgui opencv_ml opencv_video opencv_objdetect opencv_photo opencv_nonfree opencv_softcascade
|
||||
opencv_features2d opencv_calib3d opencv_legacy opencv_contrib opencv_stitching opencv_videostab)
|
||||
opencv_features2d opencv_calib3d opencv_legacy opencv_contrib opencv_stitching opencv_videostab opencv_bioinspired)
|
||||
|
||||
ocv_check_dependencies(${OPENCV_CPP_SAMPLES_REQUIRED_DEPS})
|
||||
|
||||
|
@ -10,8 +10,9 @@
|
||||
#include <iostream>
|
||||
#include <cstring>
|
||||
|
||||
#include "opencv2/contrib.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/bioinspired.hpp" // retina based algorithms
|
||||
#include "opencv2/imgproc.hpp" // cvCvtcolor function
|
||||
#include "opencv2/highgui.hpp" // display
|
||||
|
||||
static void help(std::string errorMessage)
|
||||
{
|
||||
@ -127,7 +128,7 @@ static void drawPlot(const cv::Mat curve, const std::string figureTitle, const i
|
||||
normalize(imageInputRescaled, imageInputRescaled, 0.0, 255.0, cv::NORM_MINMAX);
|
||||
}
|
||||
|
||||
cv::Ptr<cv::Retina> retina;
|
||||
cv::Ptr<Retina> retina;
|
||||
int retinaHcellsGain;
|
||||
int localAdaptation_photoreceptors, localAdaptation_Gcells;
|
||||
static void callBack_updateRetinaParams(int, void*)
|
||||
@ -175,6 +176,12 @@ static void drawPlot(const cv::Mat curve, const std::string figureTitle, const i
|
||||
}
|
||||
|
||||
bool useLogSampling = !strcmp(argv[argc-1], "log"); // check if user wants retina log sampling processing
|
||||
int chosenMethod=0;
|
||||
if (!strcmp(argv[argc-1], "fast"))
|
||||
{
|
||||
chosenMethod=1;
|
||||
std::cout<<"Using fast method (no spectral whithning), adaptation of Meylan&al 2008 method"<<std::endl;
|
||||
}
|
||||
|
||||
std::string inputImageName=argv[1];
|
||||
|
||||
@ -211,10 +218,15 @@ static void drawPlot(const cv::Mat curve, const std::string figureTitle, const i
|
||||
*/
|
||||
if (useLogSampling)
|
||||
{
|
||||
retina = cv::createRetina(inputImage.size(),true, cv::RETINA_COLOR_BAYER, true, 2.0, 10.0);
|
||||
retina = createRetina(inputImage.size(),true, RETINA_COLOR_BAYER, true, 2.0, 10.0);
|
||||
}
|
||||
else// -> else allocate "classical" retina :
|
||||
retina = cv::createRetina(inputImage.size());
|
||||
retina = createRetina(inputImage.size());
|
||||
|
||||
// create a fast retina tone mapper (Meyla&al algorithm)
|
||||
std::cout<<"Allocating fast tone mapper..."<<std::endl;
|
||||
//cv::Ptr<cv::RetinaFastToneMapping> fastToneMapper=createRetinaFastToneMapping(inputImage.size());
|
||||
std::cout<<"Fast tone mapper allocated"<<std::endl;
|
||||
|
||||
// save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup"
|
||||
retina->write("RetinaDefaultParameters.xml");
|
||||
@ -230,20 +242,19 @@ static void drawPlot(const cv::Mat curve, const std::string figureTitle, const i
|
||||
histogramClippingValue=0; // default value... updated with interface slider
|
||||
//inputRescaleMat = inputImage;
|
||||
//outputRescaleMat = imageInputRescaled;
|
||||
cv::namedWindow("Retina input image (with cut edges histogram for basic pixels error avoidance)",1);
|
||||
cv::createTrackbar("histogram edges clipping limit", "Retina input image (with cut edges histogram for basic pixels error avoidance)",&histogramClippingValue,50,callBack_rescaleGrayLevelMat);
|
||||
cv::namedWindow("Processing configuration",1);
|
||||
cv::createTrackbar("histogram edges clipping limit", "Processing configuration",&histogramClippingValue,50,callBack_rescaleGrayLevelMat);
|
||||
|
||||
cv::namedWindow("Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", 1);
|
||||
colorSaturationFactor=3;
|
||||
cv::createTrackbar("Color saturation", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &colorSaturationFactor,5,callback_saturateColors);
|
||||
cv::createTrackbar("Color saturation", "Processing configuration", &colorSaturationFactor,5,callback_saturateColors);
|
||||
|
||||
retinaHcellsGain=40;
|
||||
cv::createTrackbar("Hcells gain", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping",&retinaHcellsGain,100,callBack_updateRetinaParams);
|
||||
cv::createTrackbar("Hcells gain", "Processing configuration",&retinaHcellsGain,100,callBack_updateRetinaParams);
|
||||
|
||||
localAdaptation_photoreceptors=197;
|
||||
localAdaptation_Gcells=190;
|
||||
cv::createTrackbar("Ph sensitivity", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &localAdaptation_photoreceptors,199,callBack_updateRetinaParams);
|
||||
cv::createTrackbar("Gcells sensitivity", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &localAdaptation_Gcells,199,callBack_updateRetinaParams);
|
||||
cv::createTrackbar("Ph sensitivity", "Processing configuration", &localAdaptation_photoreceptors,199,callBack_updateRetinaParams);
|
||||
cv::createTrackbar("Gcells sensitivity", "Processing configuration", &localAdaptation_Gcells,199,callBack_updateRetinaParams);
|
||||
|
||||
|
||||
/////////////////////////////////////////////
|
||||
@ -257,11 +268,28 @@ static void drawPlot(const cv::Mat curve, const std::string figureTitle, const i
|
||||
while(continueProcessing)
|
||||
{
|
||||
// run retina filter
|
||||
if (!chosenMethod)
|
||||
{
|
||||
retina->run(imageInputRescaled);
|
||||
// Retrieve and display retina output
|
||||
retina->getParvo(retinaOutput_parvo);
|
||||
cv::imshow("Retina input image (with cut edges histogram for basic pixels error avoidance)", imageInputRescaled/255.0);
|
||||
cv::imshow("Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", retinaOutput_parvo);
|
||||
cv::imwrite("HDRinput.jpg",imageInputRescaled/255.0);
|
||||
cv::imwrite("RetinaToneMapping.jpg",retinaOutput_parvo);
|
||||
}
|
||||
else
|
||||
{
|
||||
// apply the simplified hdr tone mapping method
|
||||
cv::Mat fastToneMappingOutput;
|
||||
retina->applyFastToneMapping(imageInputRescaled, fastToneMappingOutput);
|
||||
cv::imshow("Retina fast tone mapping output : 16bit=>8bit image retina tonemapping", fastToneMappingOutput);
|
||||
}
|
||||
/*cv::Mat fastToneMappingOutput_specificObject;
|
||||
fastToneMapper->setup(3.f, 1.5f, 1.f);
|
||||
fastToneMapper->applyFastToneMapping(imageInputRescaled, fastToneMappingOutput_specificObject);
|
||||
cv::imshow("### Retina fast tone mapping output : 16bit=>8bit image retina tonemapping", fastToneMappingOutput_specificObject);
|
||||
*/
|
||||
cv::waitKey(10);
|
||||
}
|
||||
}catch(cv::Exception e)
|
||||
|
@ -14,8 +14,9 @@
|
||||
#include <stdio.h>
|
||||
#include <cstring>
|
||||
|
||||
#include "opencv2/contrib.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/bioinspired.hpp" // retina based algorithms
|
||||
#include "opencv2/imgproc.hpp" // cvCvtcolor function
|
||||
#include "opencv2/highgui.hpp" // display
|
||||
|
||||
static void help(std::string errorMessage)
|
||||
{
|
||||
@ -160,7 +161,7 @@ static void rescaleGrayLevelMat(const cv::Mat &inputMat, cv::Mat &outputMat, con
|
||||
|
||||
}
|
||||
|
||||
cv::Ptr<cv::Retina> retina;
|
||||
cv::Ptr<Retina> retina;
|
||||
int retinaHcellsGain;
|
||||
int localAdaptation_photoreceptors, localAdaptation_Gcells;
|
||||
static void callBack_updateRetinaParams(int, void*)
|
||||
@ -280,10 +281,10 @@ static void loadNewFrame(const std::string filenamePrototype, const int currentF
|
||||
*/
|
||||
if (useLogSampling)
|
||||
{
|
||||
retina = cv::createRetina(inputImage.size(),true, cv::RETINA_COLOR_BAYER, true, 2.0, 10.0);
|
||||
retina = createRetina(inputImage.size(),true, RETINA_COLOR_BAYER, true, 2.0, 10.0);
|
||||
}
|
||||
else// -> else allocate "classical" retina :
|
||||
retina = cv::createRetina(inputImage.size());
|
||||
retina = createRetina(inputImage.size());
|
||||
|
||||
// save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup"
|
||||
retina->write("RetinaDefaultParameters.xml");
|
||||
|
@ -9,7 +9,7 @@
|
||||
#include <iostream>
|
||||
#include <cstring>
|
||||
|
||||
#include "opencv2/contrib.hpp"
|
||||
#include "opencv2/bioinspired.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
static void help(std::string errorMessage)
|
||||
@ -106,15 +106,15 @@ int main(int argc, char* argv[]) {
|
||||
try
|
||||
{
|
||||
// create a retina instance with default parameters setup, uncomment the initialisation you wanna test
|
||||
cv::Ptr<cv::Retina> myRetina;
|
||||
cv::Ptr<Retina> myRetina;
|
||||
|
||||
// if the last parameter is 'log', then activate log sampling (favour foveal vision and subsamples peripheral vision)
|
||||
if (useLogSampling)
|
||||
{
|
||||
myRetina = cv::createRetina(inputFrame.size(), true, cv::RETINA_COLOR_BAYER, true, 2.0, 10.0);
|
||||
myRetina = createRetina(inputFrame.size(), true, RETINA_COLOR_BAYER, true, 2.0, 10.0);
|
||||
}
|
||||
else// -> else allocate "classical" retina :
|
||||
myRetina = cv::createRetina(inputFrame.size());
|
||||
myRetina = createRetina(inputFrame.size());
|
||||
|
||||
// save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup"
|
||||
myRetina->write("RetinaDefaultParameters.xml");
|
||||
@ -143,7 +143,8 @@ int main(int argc, char* argv[]) {
|
||||
cv::imshow("retina input", inputFrame);
|
||||
cv::imshow("Retina Parvo", retinaOutput_parvo);
|
||||
cv::imshow("Retina Magno", retinaOutput_magno);
|
||||
cv::waitKey(10);
|
||||
|
||||
cv::waitKey(5);
|
||||
}
|
||||
}catch(cv::Exception e)
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user