mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 21:20:18 +08:00
Merge pull request #975 from SpecLad:merge-2.4
This commit is contained in:
commit
7c4e3715b3
2
.gitattributes
vendored
2
.gitattributes
vendored
@ -33,7 +33,7 @@
|
||||
CMakeLists.txt text whitespace=tabwidth=2
|
||||
|
||||
*.png binary
|
||||
*.jepg binary
|
||||
*.jpeg binary
|
||||
*.jpg binary
|
||||
*.exr binary
|
||||
*.ico binary
|
||||
|
@ -287,6 +287,10 @@ endif()
|
||||
set(OPENCV_CONFIG_FILE_INCLUDE_DIR "${CMAKE_BINARY_DIR}/" CACHE PATH "Where to create the platform-dependant cvconfig.h")
|
||||
ocv_include_directories(${OPENCV_CONFIG_FILE_INCLUDE_DIR})
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Path for additional modules
|
||||
# ----------------------------------------------------------------------------
|
||||
set(OPENCV_EXTRA_MODULES_PATH "" CACHE PATH "Where to look for additional OpenCV modules")
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Autodetect if we are in a GIT repository
|
||||
|
@ -47,6 +47,9 @@ macro(add_extra_compiler_option option)
|
||||
endif()
|
||||
endmacro()
|
||||
|
||||
# OpenCV fails some tests when 'char' is 'unsigned' by default
|
||||
add_extra_compiler_option(-fsigned-char)
|
||||
|
||||
if(MINGW)
|
||||
# http://gcc.gnu.org/bugzilla/show_bug.cgi?id=40838
|
||||
# here we are trying to workaround the problem
|
||||
|
@ -33,7 +33,7 @@ if(WITH_QT)
|
||||
endif()
|
||||
|
||||
if(NOT HAVE_QT)
|
||||
find_package(Qt4)
|
||||
find_package(Qt4 REQUIRED QtCore QtGui QtTest)
|
||||
if(QT4_FOUND)
|
||||
set(HAVE_QT TRUE)
|
||||
add_definitions(-DHAVE_QT) # We need to define the macro this way, using cvconfig.h does not work
|
||||
|
@ -303,7 +303,7 @@ macro(ocv_glob_modules)
|
||||
# collect modules
|
||||
set(OPENCV_INITIAL_PASS ON)
|
||||
foreach(__path ${ARGN})
|
||||
ocv_get_real_path(__path "${__path}")
|
||||
get_filename_component(__path "${__path}" ABSOLUTE)
|
||||
|
||||
list(FIND __directories_observed "${__path}" __pathIdx)
|
||||
if(__pathIdx GREATER -1)
|
||||
@ -315,7 +315,7 @@ macro(ocv_glob_modules)
|
||||
if(__ocvmodules)
|
||||
list(SORT __ocvmodules)
|
||||
foreach(mod ${__ocvmodules})
|
||||
ocv_get_real_path(__modpath "${__path}/${mod}")
|
||||
get_filename_component(__modpath "${__path}/${mod}" ABSOLUTE)
|
||||
if(EXISTS "${__modpath}/CMakeLists.txt")
|
||||
|
||||
list(FIND __directories_observed "${__modpath}" __pathIdx)
|
||||
|
@ -411,16 +411,6 @@ macro(ocv_regex_escape var regex)
|
||||
endmacro()
|
||||
|
||||
|
||||
# get absolute path with symlinks resolved
|
||||
macro(ocv_get_real_path VAR PATHSTR)
|
||||
if(CMAKE_VERSION VERSION_LESS 2.8)
|
||||
get_filename_component(${VAR} "${PATHSTR}" ABSOLUTE)
|
||||
else()
|
||||
get_filename_component(${VAR} "${PATHSTR}" REALPATH)
|
||||
endif()
|
||||
endmacro()
|
||||
|
||||
|
||||
# convert list of paths to full paths
|
||||
macro(ocv_convert_to_full_paths VAR)
|
||||
if(${VAR})
|
||||
|
@ -4,4 +4,4 @@ if(NOT OPENCV_MODULES_PATH)
|
||||
set(OPENCV_MODULES_PATH "${CMAKE_CURRENT_SOURCE_DIR}")
|
||||
endif()
|
||||
|
||||
ocv_glob_modules(${OPENCV_MODULES_PATH})
|
||||
ocv_glob_modules(${OPENCV_MODULES_PATH} ${OPENCV_EXTRA_MODULES_PATH})
|
||||
|
@ -2136,7 +2136,7 @@ template<typename _Tp> inline void Seq<_Tp>::remove(int idx)
|
||||
{ seqRemove(seq, idx); }
|
||||
|
||||
template<typename _Tp> inline void Seq<_Tp>::remove(const Range& r)
|
||||
{ seqRemoveSlice(seq, r); }
|
||||
{ seqRemoveSlice(seq, cvSlice(r.start, r.end)); }
|
||||
|
||||
template<typename _Tp> inline void Seq<_Tp>::copyTo(std::vector<_Tp>& vec, const Range& range) const
|
||||
{
|
||||
|
@ -1041,7 +1041,7 @@ typedef struct CvSlice
|
||||
{
|
||||
int start_index, end_index;
|
||||
|
||||
#ifdef __cplusplus
|
||||
#if defined(__cplusplus) && !defined(__CUDACC__)
|
||||
CvSlice(int start = 0, int end = 0) : start_index(start), end_index(end) {}
|
||||
CvSlice(const cv::Range& r) { *this = (r.start != INT_MIN && r.end != INT_MAX) ? CvSlice(r.start, r.end) : CvSlice(0, CV_WHOLE_SEQ_END_INDEX); }
|
||||
operator cv::Range() const { return (start_index == 0 && end_index == CV_WHOLE_SEQ_END_INDEX ) ? cv::Range::all() : cv::Range(start_index, end_index); }
|
||||
|
@ -294,6 +294,9 @@ public:
|
||||
~AutoLock() { mutex->unlock(); }
|
||||
protected:
|
||||
Mutex* mutex;
|
||||
private:
|
||||
AutoLock(const AutoLock&);
|
||||
AutoLock& operator = (const AutoLock&);
|
||||
};
|
||||
|
||||
// The CommandLineParser class is designed for command line arguments parsing
|
||||
|
@ -437,7 +437,7 @@ public:
|
||||
GpuMat dclassified(1, 1, CV_32S);
|
||||
cudaSafeCall( cudaMemcpy(dclassified.ptr(), &classified, sizeof(int), cudaMemcpyHostToDevice) );
|
||||
|
||||
PyrLavel level(0, 1.0f, image.size(), NxM, minObjectSize);
|
||||
PyrLavel level(0, scaleFactor, image.size(), NxM, minObjectSize);
|
||||
|
||||
while (level.isFeasible(maxObjectSize))
|
||||
{
|
||||
|
@ -101,14 +101,10 @@ elseif(HAVE_QT)
|
||||
endif()
|
||||
include(${QT_USE_FILE})
|
||||
|
||||
if(QT_INCLUDE_DIR)
|
||||
ocv_include_directories(${QT_INCLUDE_DIR})
|
||||
endif()
|
||||
|
||||
QT4_ADD_RESOURCES(_RCC_OUTFILES src/window_QT.qrc)
|
||||
QT4_WRAP_CPP(_MOC_OUTFILES src/window_QT.h)
|
||||
|
||||
list(APPEND HIGHGUI_LIBRARIES ${QT_LIBRARIES} ${QT_QTTEST_LIBRARY})
|
||||
list(APPEND HIGHGUI_LIBRARIES ${QT_LIBRARIES})
|
||||
list(APPEND highgui_srcs src/window_QT.cpp ${_MOC_OUTFILES} ${_RCC_OUTFILES})
|
||||
ocv_check_flag_support(CXX -Wno-missing-declarations _have_flag)
|
||||
if(${_have_flag})
|
||||
|
@ -708,6 +708,8 @@ namespace cv
|
||||
}
|
||||
|
||||
//! applies non-separable 2D linear filter to the image
|
||||
// Note, at the moment this function only works when anchor point is in the kernel center
|
||||
// and kernel size supported is either 3x3 or 5x5; otherwise the function will fail to output valid result
|
||||
CV_EXPORTS void filter2D(const oclMat &src, oclMat &dst, int ddepth, const Mat &kernel,
|
||||
Point anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);
|
||||
|
||||
|
@ -62,7 +62,6 @@ PERFTEST(lut)
|
||||
|
||||
gen(src, size, size, all_type[j], 0, 256);
|
||||
gen(lut, 1, 256, CV_8UC1, 0, 1);
|
||||
dst = src;
|
||||
|
||||
LUT(src, lut, dst);
|
||||
|
||||
@ -233,8 +232,6 @@ PERFTEST(Mul)
|
||||
|
||||
gen(src1, size, size, all_type[j], 0, 256);
|
||||
gen(src2, size, size, all_type[j], 0, 256);
|
||||
dst = src1;
|
||||
dst.setTo(0);
|
||||
|
||||
multiply(src1, src2, dst);
|
||||
|
||||
@ -281,8 +278,6 @@ PERFTEST(Div)
|
||||
|
||||
gen(src1, size, size, all_type[j], 0, 256);
|
||||
gen(src2, size, size, all_type[j], 0, 256);
|
||||
dst = src1;
|
||||
dst.setTo(0);
|
||||
|
||||
divide(src1, src2, dst);
|
||||
|
||||
|
@ -291,9 +291,7 @@ PERFTEST(GaussianBlur)
|
||||
{
|
||||
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
|
||||
|
||||
gen(src, size, size, all_type[j], 0, 256);
|
||||
dst = src;
|
||||
dst.setTo(0);
|
||||
gen(src, size, size, all_type[j], 5, 16);
|
||||
|
||||
GaussianBlur(src, dst, Size(9, 9), 0);
|
||||
|
||||
@ -339,39 +337,38 @@ PERFTEST(filter2D)
|
||||
{
|
||||
gen(src, size, size, all_type[j], 0, 256);
|
||||
|
||||
for (int ksize = 3; ksize <= 15; ksize = 2*ksize+1)
|
||||
{
|
||||
SUBTEST << "ksize = " << ksize << "; " << size << 'x' << size << "; " << type_name[j] ;
|
||||
const int ksize = 3;
|
||||
|
||||
Mat kernel;
|
||||
gen(kernel, ksize, ksize, CV_32FC1, 0.0, 1.0);
|
||||
SUBTEST << "ksize = " << ksize << "; " << size << 'x' << size << "; " << type_name[j] ;
|
||||
|
||||
Mat dst, ocl_dst;
|
||||
dst.setTo(0);
|
||||
cv::filter2D(src, dst, -1, kernel);
|
||||
Mat kernel;
|
||||
gen(kernel, ksize, ksize, CV_32SC1, -3.0, 3.0);
|
||||
|
||||
CPU_ON;
|
||||
cv::filter2D(src, dst, -1, kernel);
|
||||
CPU_OFF;
|
||||
Mat dst, ocl_dst;
|
||||
|
||||
ocl::oclMat d_src(src), d_dst;
|
||||
cv::filter2D(src, dst, -1, kernel);
|
||||
|
||||
WARMUP_ON;
|
||||
ocl::filter2D(d_src, d_dst, -1, kernel);
|
||||
WARMUP_OFF;
|
||||
CPU_ON;
|
||||
cv::filter2D(src, dst, -1, kernel);
|
||||
CPU_OFF;
|
||||
|
||||
GPU_ON;
|
||||
ocl::filter2D(d_src, d_dst, -1, kernel);
|
||||
GPU_OFF;
|
||||
ocl::oclMat d_src(src), d_dst;
|
||||
|
||||
GPU_FULL_ON;
|
||||
d_src.upload(src);
|
||||
ocl::filter2D(d_src, d_dst, -1, kernel);
|
||||
d_dst.download(ocl_dst);
|
||||
GPU_FULL_OFF;
|
||||
WARMUP_ON;
|
||||
ocl::filter2D(d_src, d_dst, -1, kernel);
|
||||
WARMUP_OFF;
|
||||
|
||||
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1e-5);
|
||||
}
|
||||
GPU_ON;
|
||||
ocl::filter2D(d_src, d_dst, -1, kernel);
|
||||
GPU_OFF;
|
||||
|
||||
GPU_FULL_ON;
|
||||
d_src.upload(src);
|
||||
ocl::filter2D(d_src, d_dst, -1, kernel);
|
||||
d_dst.download(ocl_dst);
|
||||
GPU_FULL_OFF;
|
||||
|
||||
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1e-5);
|
||||
|
||||
}
|
||||
|
||||
|
@ -674,8 +674,8 @@ COOR do_meanShift(int x0, int y0, uchar *sptr, uchar *dptr, int sstep, cv::Size
|
||||
coor.y = static_cast<short>(y0);
|
||||
return coor;
|
||||
}
|
||||
void meanShiftFiltering_(const Mat &src_roi, Mat &dst_roi, int sp, int sr, cv::TermCriteria crit);
|
||||
void meanShiftFiltering_(const Mat &src_roi, Mat &dst_roi, int sp, int sr, cv::TermCriteria crit)
|
||||
|
||||
static void meanShiftFiltering_(const Mat &src_roi, Mat &dst_roi, int sp, int sr, cv::TermCriteria crit)
|
||||
{
|
||||
if( src_roi.empty() )
|
||||
CV_Error( Error::StsBadArg, "The input image is empty" );
|
||||
@ -683,6 +683,8 @@ void meanShiftFiltering_(const Mat &src_roi, Mat &dst_roi, int sp, int sr, cv::T
|
||||
if( src_roi.depth() != CV_8U || src_roi.channels() != 4 )
|
||||
CV_Error( Error::StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
|
||||
|
||||
dst_roi.create(src_roi.size(), src_roi.type());
|
||||
|
||||
CV_Assert( (src_roi.cols == dst_roi.cols) && (src_roi.rows == dst_roi.rows) );
|
||||
CV_Assert( !(dst_roi.step & 0x3) );
|
||||
|
||||
@ -725,9 +727,6 @@ PERFTEST(meanShiftFiltering)
|
||||
SUBTEST << size << 'x' << size << "; 8UC3 vs 8UC4";
|
||||
|
||||
gen(src, size, size, CV_8UC4, Scalar::all(0), Scalar::all(256));
|
||||
//gen(dst, size, size, CV_8UC4, Scalar::all(0), Scalar::all(256));
|
||||
dst = src;
|
||||
dst.setTo(0);
|
||||
|
||||
cv::TermCriteria crit(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 5, 1);
|
||||
|
||||
@ -756,201 +755,21 @@ PERFTEST(meanShiftFiltering)
|
||||
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 0.0);
|
||||
}
|
||||
}
|
||||
///////////// meanShiftProc////////////////////////
|
||||
#if 0
|
||||
COOR do_meanShift(int x0, int y0, uchar *sptr, uchar *dptr, int sstep, cv::Size size, int sp, int sr, int maxIter, float eps, int *tab)
|
||||
{
|
||||
|
||||
int isr2 = sr * sr;
|
||||
int c0, c1, c2, c3;
|
||||
int iter;
|
||||
uchar *ptr = NULL;
|
||||
uchar *pstart = NULL;
|
||||
int revx = 0, revy = 0;
|
||||
c0 = sptr[0];
|
||||
c1 = sptr[1];
|
||||
c2 = sptr[2];
|
||||
c3 = sptr[3];
|
||||
|
||||
// iterate meanshift procedure
|
||||
for (iter = 0; iter < maxIter; iter++)
|
||||
{
|
||||
int count = 0;
|
||||
int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0;
|
||||
|
||||
//mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp)
|
||||
int minx = x0 - sp;
|
||||
int miny = y0 - sp;
|
||||
int maxx = x0 + sp;
|
||||
int maxy = y0 + sp;
|
||||
|
||||
//deal with the image boundary
|
||||
if (minx < 0)
|
||||
{
|
||||
minx = 0;
|
||||
}
|
||||
|
||||
if (miny < 0)
|
||||
{
|
||||
miny = 0;
|
||||
}
|
||||
|
||||
if (maxx >= size.width)
|
||||
{
|
||||
maxx = size.width - 1;
|
||||
}
|
||||
|
||||
if (maxy >= size.height)
|
||||
{
|
||||
maxy = size.height - 1;
|
||||
}
|
||||
|
||||
if (iter == 0)
|
||||
{
|
||||
pstart = sptr;
|
||||
}
|
||||
else
|
||||
{
|
||||
pstart = pstart + revy * sstep + (revx << 2); //point to the new position
|
||||
}
|
||||
|
||||
ptr = pstart;
|
||||
ptr = ptr + (miny - y0) * sstep + ((minx - x0) << 2); //point to the start in the row
|
||||
|
||||
for (int y = miny; y <= maxy; y++, ptr += sstep - ((maxx - minx + 1) << 2))
|
||||
{
|
||||
int rowCount = 0;
|
||||
int x = minx;
|
||||
#if CV_ENABLE_UNROLLED
|
||||
|
||||
for (; x + 4 <= maxx; x += 4, ptr += 16)
|
||||
{
|
||||
int t0, t1, t2;
|
||||
t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
|
||||
|
||||
if (tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
|
||||
{
|
||||
s0 += t0;
|
||||
s1 += t1;
|
||||
s2 += t2;
|
||||
sx += x;
|
||||
rowCount++;
|
||||
}
|
||||
|
||||
t0 = ptr[4], t1 = ptr[5], t2 = ptr[6];
|
||||
|
||||
if (tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
|
||||
{
|
||||
s0 += t0;
|
||||
s1 += t1;
|
||||
s2 += t2;
|
||||
sx += x + 1;
|
||||
rowCount++;
|
||||
}
|
||||
|
||||
t0 = ptr[8], t1 = ptr[9], t2 = ptr[10];
|
||||
|
||||
if (tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
|
||||
{
|
||||
s0 += t0;
|
||||
s1 += t1;
|
||||
s2 += t2;
|
||||
sx += x + 2;
|
||||
rowCount++;
|
||||
}
|
||||
|
||||
t0 = ptr[12], t1 = ptr[13], t2 = ptr[14];
|
||||
|
||||
if (tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
|
||||
{
|
||||
s0 += t0;
|
||||
s1 += t1;
|
||||
s2 += t2;
|
||||
sx += x + 3;
|
||||
rowCount++;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
for (; x <= maxx; x++, ptr += 4)
|
||||
{
|
||||
int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
|
||||
|
||||
if (tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
|
||||
{
|
||||
s0 += t0;
|
||||
s1 += t1;
|
||||
s2 += t2;
|
||||
sx += x;
|
||||
rowCount++;
|
||||
}
|
||||
}
|
||||
|
||||
if (rowCount == 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
count += rowCount;
|
||||
sy += y * rowCount;
|
||||
}
|
||||
|
||||
if (count == 0)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
int x1 = sx / count;
|
||||
int y1 = sy / count;
|
||||
s0 = s0 / count;
|
||||
s1 = s1 / count;
|
||||
s2 = s2 / count;
|
||||
|
||||
bool stopFlag = (x0 == x1 && y0 == y1) || (abs(x1 - x0) + abs(y1 - y0) +
|
||||
tab[s0 - c0 + 255] + tab[s1 - c1 + 255] + tab[s2 - c2 + 255] <= eps);
|
||||
|
||||
//revise the pointer corresponding to the new (y0,x0)
|
||||
revx = x1 - x0;
|
||||
revy = y1 - y0;
|
||||
|
||||
x0 = x1;
|
||||
y0 = y1;
|
||||
c0 = s0;
|
||||
c1 = s1;
|
||||
c2 = s2;
|
||||
|
||||
if (stopFlag)
|
||||
{
|
||||
break;
|
||||
}
|
||||
} //for iter
|
||||
|
||||
dptr[0] = (uchar)c0;
|
||||
dptr[1] = (uchar)c1;
|
||||
dptr[2] = (uchar)c2;
|
||||
dptr[3] = (uchar)c3;
|
||||
|
||||
COOR coor;
|
||||
coor.x = static_cast<short>(x0);
|
||||
coor.y = static_cast<short>(y0);
|
||||
return coor;
|
||||
}
|
||||
#endif
|
||||
|
||||
void meanShiftProc_(const Mat &src_roi, Mat &dst_roi, Mat &dstCoor_roi, int sp, int sr, cv::TermCriteria crit)
|
||||
{
|
||||
|
||||
if (src_roi.empty())
|
||||
{
|
||||
CV_Error(Error::StsBadArg, "The input image is empty");
|
||||
}
|
||||
|
||||
if (src_roi.depth() != CV_8U || src_roi.channels() != 4)
|
||||
{
|
||||
CV_Error(Error::StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported");
|
||||
}
|
||||
|
||||
dst_roi.create(src_roi.size(), src_roi.type());
|
||||
dstCoor_roi.create(src_roi.size(), CV_16SC2);
|
||||
|
||||
CV_Assert((src_roi.cols == dst_roi.cols) && (src_roi.rows == dst_roi.rows) &&
|
||||
(src_roi.cols == dstCoor_roi.cols) && (src_roi.rows == dstCoor_roi.rows));
|
||||
CV_Assert(!(dstCoor_roi.step & 0x3));
|
||||
@ -1008,8 +827,6 @@ PERFTEST(meanShiftProc)
|
||||
SUBTEST << size << 'x' << size << "; 8UC4 and CV_16SC2 ";
|
||||
|
||||
gen(src, size, size, CV_8UC4, Scalar::all(0), Scalar::all(256));
|
||||
gen(dst[0], size, size, CV_8UC4, Scalar::all(0), Scalar::all(256));
|
||||
gen(dst[1], size, size, CV_16SC2, Scalar::all(0), Scalar::all(256));
|
||||
|
||||
meanShiftProc_(src, dst[0], dst[1], 5, 6, crit);
|
||||
|
||||
|
@ -48,8 +48,8 @@
|
||||
///////////// PyrLKOpticalFlow ////////////////////////
|
||||
PERFTEST(PyrLKOpticalFlow)
|
||||
{
|
||||
std::string images1[] = {"rubberwhale1.png", "aloeL.jpg"};
|
||||
std::string images2[] = {"rubberwhale2.png", "aloeR.jpg"};
|
||||
std::string images1[] = {"rubberwhale1.png", "basketball1.png"};
|
||||
std::string images2[] = {"rubberwhale2.png", "basketball2.png"};
|
||||
|
||||
for (size_t i = 0; i < sizeof(images1) / sizeof(std::string); i++)
|
||||
{
|
||||
|
@ -645,7 +645,11 @@ static void GPUFilter2D(const oclMat &src, oclMat &dst, oclMat &mat_kernel,
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.wholecols));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.wholerows));
|
||||
|
||||
openCLExecuteKernel(clCxt, &filtering_laplacian, kernelName, globalThreads, localThreads, args, cn, depth);
|
||||
const int buffer_size = 100;
|
||||
char opt_buffer [buffer_size] = "";
|
||||
sprintf(opt_buffer, "-DANCHOR=%d -DANX=%d -DANY=%d", ksize.width, anchor.x, anchor.y);
|
||||
|
||||
openCLExecuteKernel(clCxt, &filtering_laplacian, kernelName, globalThreads, localThreads, args, cn, depth, opt_buffer);
|
||||
}
|
||||
Ptr<BaseFilter_GPU> cv::ocl::getLinearFilter_GPU(int srcType, int dstType, const Mat &kernel, const Size &ksize,
|
||||
Point anchor, int borderType)
|
||||
@ -656,7 +660,7 @@ Ptr<BaseFilter_GPU> cv::ocl::getLinearFilter_GPU(int srcType, int dstType, const
|
||||
|
||||
oclMat gpu_krnl;
|
||||
int nDivisor;
|
||||
normalizeKernel(kernel, gpu_krnl, CV_32S, &nDivisor, true);
|
||||
normalizeKernel(kernel, gpu_krnl, CV_32S, &nDivisor, false);
|
||||
normalizeAnchor(anchor, ksize);
|
||||
|
||||
return Ptr<BaseFilter_GPU>(new LinearFilter_GPU(ksize, anchor, gpu_krnl, GPUFilter2D_callers[CV_MAT_CN(srcType)],
|
||||
@ -1172,7 +1176,7 @@ void linearRowFilter_gpu(const oclMat &src, const oclMat &dst, oclMat mat_kernel
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&ridusy));
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&mat_kernel.data));
|
||||
|
||||
openCLExecuteKernel2(clCxt, &filter_sep_row, kernelName, globalThreads, localThreads, args, channels, src.depth(), compile_option, CLFLUSH);
|
||||
openCLExecuteKernel(clCxt, &filter_sep_row, kernelName, globalThreads, localThreads, args, channels, src.depth(), compile_option);
|
||||
}
|
||||
|
||||
Ptr<BaseRowFilter_GPU> cv::ocl::getLinearRowFilter_GPU(int srcType, int /*bufType*/, const Mat &rowKernel, int anchor, int bordertype)
|
||||
|
@ -257,7 +257,8 @@ void cv::ocl::GoodFeaturesToTrackDetector_OCL::operator ()(const oclMat& image,
|
||||
|
||||
if (minDistance < 1)
|
||||
{
|
||||
corners = tmpCorners_(Rect(0, 0, maxCorners > 0 ? std::min(maxCorners, total) : total, 1));
|
||||
Rect roi_range(0, 0, maxCorners > 0 ? std::min(maxCorners, total) : total, 1);
|
||||
tmpCorners_(roi_range).copyTo(corners);
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -337,6 +337,10 @@ namespace cv
|
||||
oclinfo.push_back(ocltmpinfo);
|
||||
}
|
||||
}
|
||||
if(devcienums > 0)
|
||||
{
|
||||
setDevice(oclinfo[0]);
|
||||
}
|
||||
return devcienums;
|
||||
}
|
||||
|
||||
|
@ -82,9 +82,9 @@
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/////////////////////////////Macro for define elements number per thread/////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#define ANCHOR 3
|
||||
#define ANX 1
|
||||
#define ANY 1
|
||||
//#define ANCHOR 3
|
||||
//#define ANX 1
|
||||
//#define ANY 1
|
||||
|
||||
#define ROWS_PER_GROUP 4
|
||||
#define ROWS_PER_GROUP_BITS 2
|
||||
@ -185,7 +185,7 @@ __kernel void filter2D_C1_D0(__global uchar *src, int src_step, int src_offset_x
|
||||
|
||||
for(int i = 0; i < ANCHOR; i++)
|
||||
{
|
||||
#pragma unroll 3
|
||||
#pragma unroll
|
||||
for(int j = 0; j < ANCHOR; j++)
|
||||
{
|
||||
if(dst_rows_index < dst_rows_end)
|
||||
@ -295,7 +295,7 @@ __kernel void filter2D_C1_D5(__global float *src, int src_step, int src_offset_x
|
||||
|
||||
for(int i = 0; i < ANCHOR; i++)
|
||||
{
|
||||
#pragma unroll 3
|
||||
#pragma unroll
|
||||
for(int j = 0; j < ANCHOR; j++)
|
||||
{
|
||||
if(dst_rows_index < dst_rows_end)
|
||||
@ -410,7 +410,7 @@ __kernel void filter2D_C4_D0(__global uchar4 *src, int src_step, int src_offset_
|
||||
|
||||
for(int i = 0; i < ANCHOR; i++)
|
||||
{
|
||||
#pragma unroll 3
|
||||
#pragma unroll
|
||||
for(int j = 0; j < ANCHOR; j++)
|
||||
{
|
||||
if(dst_rows_index < dst_rows_end)
|
||||
|
@ -130,28 +130,29 @@ __kernel void calcHarris(__global const float *Dx,__global const float *Dy, __gl
|
||||
data[2][i] = dy_data[i] * dy_data[i];
|
||||
}
|
||||
#else
|
||||
for(int i=0; i < ksY+1; i++)
|
||||
{
|
||||
int clamped_col = min(dst_cols, col);
|
||||
for(int i=0; i < ksY+1; i++)
|
||||
{
|
||||
int dx_selected_row;
|
||||
int dx_selected_col;
|
||||
dx_selected_row = ADDR_H(dx_startY+i, 0, dx_whole_rows);
|
||||
dx_selected_row = ADDR_B(dx_startY+i, dx_whole_rows, dx_selected_row);
|
||||
dx_selected_col = ADDR_L(dx_startX+col, 0, dx_whole_cols);
|
||||
dx_selected_col = ADDR_R(dx_startX+col, dx_whole_cols, dx_selected_col);
|
||||
dx_selected_col = ADDR_L(dx_startX+clamped_col, 0, dx_whole_cols);
|
||||
dx_selected_col = ADDR_R(dx_startX+clamped_col, dx_whole_cols, dx_selected_col);
|
||||
dx_data[i] = Dx[dx_selected_row * (dx_step>>2) + dx_selected_col];
|
||||
|
||||
int dy_selected_row;
|
||||
int dy_selected_col;
|
||||
dy_selected_row = ADDR_H(dy_startY+i, 0, dy_whole_rows);
|
||||
dy_selected_row = ADDR_B(dy_startY+i, dy_whole_rows, dy_selected_row);
|
||||
dy_selected_col = ADDR_L(dy_startX+col, 0, dy_whole_cols);
|
||||
dy_selected_col = ADDR_R(dy_startX+col, dy_whole_cols, dy_selected_col);
|
||||
dy_selected_col = ADDR_L(dy_startX+clamped_col, 0, dy_whole_cols);
|
||||
dy_selected_col = ADDR_R(dy_startX+clamped_col, dy_whole_cols, dy_selected_col);
|
||||
dy_data[i] = Dy[dy_selected_row * (dy_step>>2) + dy_selected_col];
|
||||
|
||||
data[0][i] = dx_data[i] * dx_data[i];
|
||||
data[1][i] = dx_data[i] * dy_data[i];
|
||||
data[2][i] = dy_data[i] * dy_data[i];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
float sum0 = 0.0, sum1 = 0.0, sum2 = 0.0;
|
||||
for(int i=1; i < ksY; i++)
|
||||
|
@ -130,28 +130,30 @@ __kernel void calcMinEigenVal(__global const float *Dx,__global const float *Dy,
|
||||
data[2][i] = dy_data[i] * dy_data[i];
|
||||
}
|
||||
#else
|
||||
for(int i=0; i < ksY+1; i++)
|
||||
{
|
||||
int clamped_col = min(dst_cols, col);
|
||||
|
||||
for(int i=0; i < ksY+1; i++)
|
||||
{
|
||||
int dx_selected_row;
|
||||
int dx_selected_col;
|
||||
dx_selected_row = ADDR_H(dx_startY+i, 0, dx_whole_rows);
|
||||
dx_selected_row = ADDR_B(dx_startY+i, dx_whole_rows, dx_selected_row);
|
||||
dx_selected_col = ADDR_L(dx_startX+col, 0, dx_whole_cols);
|
||||
dx_selected_col = ADDR_R(dx_startX+col, dx_whole_cols, dx_selected_col);
|
||||
dx_selected_col = ADDR_L(dx_startX+clamped_col, 0, dx_whole_cols);
|
||||
dx_selected_col = ADDR_R(dx_startX+clamped_col, dx_whole_cols, dx_selected_col);
|
||||
dx_data[i] = Dx[dx_selected_row * (dx_step>>2) + dx_selected_col];
|
||||
|
||||
int dy_selected_row;
|
||||
int dy_selected_col;
|
||||
dy_selected_row = ADDR_H(dy_startY+i, 0, dy_whole_rows);
|
||||
dy_selected_row = ADDR_B(dy_startY+i, dy_whole_rows, dy_selected_row);
|
||||
dy_selected_col = ADDR_L(dy_startX+col, 0, dy_whole_cols);
|
||||
dy_selected_col = ADDR_R(dy_startX+col, dy_whole_cols, dy_selected_col);
|
||||
dy_selected_col = ADDR_L(dy_startX+clamped_col, 0, dy_whole_cols);
|
||||
dy_selected_col = ADDR_R(dy_startX+clamped_col, dy_whole_cols, dy_selected_col);
|
||||
dy_data[i] = Dy[dy_selected_row * (dy_step>>2) + dy_selected_col];
|
||||
|
||||
data[0][i] = dx_data[i] * dx_data[i];
|
||||
data[1][i] = dx_data[i] * dy_data[i];
|
||||
data[2][i] = dy_data[i] * dy_data[i];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
float sum0 = 0.0, sum1 = 0.0, sum2 = 0.0;
|
||||
for(int i=1; i < ksY; i++)
|
||||
|
@ -389,8 +389,8 @@ __kernel void pyrUp_C4_D0(__global uchar4* src,__global uchar4* dst,
|
||||
|
||||
float4 sum = (float4)(0,0,0,0);
|
||||
|
||||
const int evenFlag = (int)((tidx & 1) == 0);
|
||||
const int oddFlag = (int)((tidx & 1) != 0);
|
||||
const float4 evenFlag = (float4)((tidx & 1) == 0);
|
||||
const float4 oddFlag = (float4)((tidx & 1) != 0);
|
||||
const bool eveny = ((tidy & 1) == 0);
|
||||
|
||||
float4 co1 = (float4)(0.375f, 0.375f, 0.375f, 0.375f);
|
||||
@ -455,6 +455,7 @@ __kernel void pyrUp_C4_D0(__global uchar4* src,__global uchar4* dst,
|
||||
dst[x + y * dstStep] = convert_uchar4_sat_rte(4.0f * sum);
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
////////////////////////// CV_16UC4 //////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
@ -492,8 +493,8 @@ __kernel void pyrUp_C4_D2(__global ushort4* src,__global ushort4* dst,
|
||||
|
||||
float4 sum = (float4)(0,0,0,0);
|
||||
|
||||
const int evenFlag = (int)((get_local_id(0) & 1) == 0);
|
||||
const int oddFlag = (int)((get_local_id(0) & 1) != 0);
|
||||
const float4 evenFlag = (float4)((get_local_id(0) & 1) == 0);
|
||||
const float4 oddFlag = (float4)((get_local_id(0) & 1) != 0);
|
||||
const bool eveny = ((get_local_id(1) & 1) == 0);
|
||||
const int tidx = get_local_id(0);
|
||||
|
||||
@ -604,8 +605,8 @@ __kernel void pyrUp_C4_D5(__global float4* src,__global float4* dst,
|
||||
|
||||
float4 sum = (float4)(0,0,0,0);
|
||||
|
||||
const int evenFlag = (int)((tidx & 1) == 0);
|
||||
const int oddFlag = (int)((tidx & 1) != 0);
|
||||
const float4 evenFlag = (float4)((tidx & 1) == 0);
|
||||
const float4 oddFlag = (float4)((tidx & 1) != 0);
|
||||
const bool eveny = ((tidy & 1) == 0);
|
||||
|
||||
float4 co1 = (float4)(0.375f, 0.375f, 0.375f, 0.375f);
|
||||
@ -669,4 +670,4 @@ __kernel void pyrUp_C4_D5(__global float4* src,__global float4* dst,
|
||||
{
|
||||
dst[x + y * dstStep] = 4.0f * sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -508,7 +508,7 @@ static void lkSparse_run(oclMat &I, oclMat &J,
|
||||
int wave_size = queryDeviceInfo<WAVEFRONT_SIZE, int>(kernel);
|
||||
openCLSafeCall(clReleaseKernel(kernel));
|
||||
|
||||
static char opt[16] = {0};
|
||||
static char opt[32] = {0};
|
||||
sprintf(opt, " -D WAVE_SIZE=%d", wave_size);
|
||||
|
||||
openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), opt, CLFLUSH);
|
||||
|
@ -215,9 +215,9 @@ public class FdActivity extends Activity implements CvCameraViewListener2 {
|
||||
else if (item == mItemFace20)
|
||||
setMinFaceSize(0.2f);
|
||||
else if (item == mItemType) {
|
||||
mDetectorType = (mDetectorType + 1) % mDetectorName.length;
|
||||
item.setTitle(mDetectorName[mDetectorType]);
|
||||
setDetectorType(mDetectorType);
|
||||
int tmpDetectorType = (mDetectorType + 1) % mDetectorName.length;
|
||||
item.setTitle(mDetectorName[tmpDetectorType]);
|
||||
setDetectorType(tmpDetectorType);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
@ -19,12 +19,21 @@ using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
|
||||
#if !defined(HAVE_CUDA)
|
||||
#if !defined(HAVE_CUDA) || defined(__arm__)
|
||||
|
||||
int main( int, const char** )
|
||||
{
|
||||
cout << "Please compile the library with CUDA support" << endl;
|
||||
return -1;
|
||||
#if !defined(HAVE_CUDA)
|
||||
std::cout << "CUDA support is required (CMake key 'WITH_CUDA' must be true)." << std::endl;
|
||||
#endif
|
||||
|
||||
#if defined(__arm__)
|
||||
std::cout << "Unsupported for ARM CUDA library." << std::endl;
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
|
||||
|
@ -23,7 +23,7 @@
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if !defined(HAVE_CUDA) || !defined(HAVE_TBB)
|
||||
#if !defined(HAVE_CUDA) || !defined(HAVE_TBB) || defined(__arm__)
|
||||
|
||||
int main()
|
||||
{
|
||||
@ -35,6 +35,10 @@ int main()
|
||||
std::cout << "TBB support is required (CMake key 'WITH_TBB' must be true).\n";
|
||||
#endif
|
||||
|
||||
#if defined(__arm__)
|
||||
std::cout << "Unsupported for ARM CUDA library." << std::endl;
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -25,7 +25,7 @@
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if !defined(HAVE_CUDA) || !defined(HAVE_TBB)
|
||||
#if !defined(HAVE_CUDA) || !defined(HAVE_TBB) || defined(__arm__)
|
||||
|
||||
int main()
|
||||
{
|
||||
@ -37,6 +37,10 @@ int main()
|
||||
std::cout << "TBB support is required (CMake key 'WITH_TBB' must be true).\n";
|
||||
#endif
|
||||
|
||||
#if defined(__arm__)
|
||||
std::cout << "Unsupported for ARM CUDA library." << std::endl;
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -30,6 +30,7 @@ static double getTime(){
|
||||
|
||||
static void download(const oclMat& d_mat, vector<Point2f>& vec)
|
||||
{
|
||||
vec.clear();
|
||||
vec.resize(d_mat.cols);
|
||||
Mat mat(1, d_mat.cols, CV_32FC2, (void*)&vec[0]);
|
||||
d_mat.download(mat);
|
||||
@ -37,6 +38,7 @@ static void download(const oclMat& d_mat, vector<Point2f>& vec)
|
||||
|
||||
static void download(const oclMat& d_mat, vector<uchar>& vec)
|
||||
{
|
||||
vec.clear();
|
||||
vec.resize(d_mat.cols);
|
||||
Mat mat(1, d_mat.cols, CV_8UC1, (void*)&vec[0]);
|
||||
d_mat.download(mat);
|
||||
@ -118,14 +120,15 @@ int main(int argc, const char* argv[])
|
||||
bool useCPU = cmd.has("s");
|
||||
bool useCamera = cmd.has("c");
|
||||
int inputName = cmd.get<int>("c");
|
||||
oclMat d_nextPts, d_status;
|
||||
|
||||
oclMat d_nextPts, d_status;
|
||||
GoodFeaturesToTrackDetector_OCL d_features(points);
|
||||
Mat frame0 = imread(fname0, cv::IMREAD_GRAYSCALE);
|
||||
Mat frame1 = imread(fname1, cv::IMREAD_GRAYSCALE);
|
||||
PyrLKOpticalFlow d_pyrLK;
|
||||
vector<cv::Point2f> pts;
|
||||
vector<cv::Point2f> nextPts;
|
||||
vector<unsigned char> status;
|
||||
vector<cv::Point2f> pts(points);
|
||||
vector<cv::Point2f> nextPts(points);
|
||||
vector<unsigned char> status(points);
|
||||
vector<float> err;
|
||||
|
||||
if (frame0.empty() || frame1.empty())
|
||||
@ -196,29 +199,24 @@ int main(int argc, const char* argv[])
|
||||
ptr1 = frame0Gray;
|
||||
}
|
||||
|
||||
pts.clear();
|
||||
|
||||
cv::goodFeaturesToTrack(ptr0, pts, points, 0.01, 0.0);
|
||||
|
||||
if (pts.size() == 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
if (useCPU)
|
||||
{
|
||||
cv::calcOpticalFlowPyrLK(ptr0, ptr1, pts, nextPts, status, err);
|
||||
pts.clear();
|
||||
goodFeaturesToTrack(ptr0, pts, points, 0.01, 0.0);
|
||||
if(pts.size() == 0)
|
||||
continue;
|
||||
calcOpticalFlowPyrLK(ptr0, ptr1, pts, nextPts, status, err);
|
||||
}
|
||||
else
|
||||
{
|
||||
oclMat d_prevPts(1, points, CV_32FC2, (void*)&pts[0]);
|
||||
|
||||
d_pyrLK.sparse(oclMat(ptr0), oclMat(ptr1), d_prevPts, d_nextPts, d_status);
|
||||
|
||||
download(d_prevPts, pts);
|
||||
oclMat d_img(ptr0), d_prevPts;
|
||||
d_features(d_img, d_prevPts);
|
||||
if(!d_prevPts.rows || !d_prevPts.cols)
|
||||
continue;
|
||||
d_pyrLK.sparse(d_img, oclMat(ptr1), d_prevPts, d_nextPts, d_status);
|
||||
d_features.downloadPoints(d_prevPts,pts);
|
||||
download(d_nextPts, nextPts);
|
||||
download(d_status, status);
|
||||
|
||||
}
|
||||
if (i%2 == 1)
|
||||
frame1.copyTo(frameCopy);
|
||||
@ -243,21 +241,19 @@ nocamera:
|
||||
for(int i = 0; i <= LOOP_NUM;i ++)
|
||||
{
|
||||
cout << "loop" << i << endl;
|
||||
if (i > 0) workBegin();
|
||||
|
||||
cv::goodFeaturesToTrack(frame0, pts, points, 0.01, minDist);
|
||||
if (i > 0) workBegin();
|
||||
|
||||
if (useCPU)
|
||||
{
|
||||
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err);
|
||||
goodFeaturesToTrack(frame0, pts, points, 0.01, minDist);
|
||||
calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err);
|
||||
}
|
||||
else
|
||||
{
|
||||
oclMat d_prevPts(1, points, CV_32FC2, (void*)&pts[0]);
|
||||
|
||||
d_pyrLK.sparse(oclMat(frame0), oclMat(frame1), d_prevPts, d_nextPts, d_status);
|
||||
|
||||
download(d_prevPts, pts);
|
||||
oclMat d_img(frame0), d_prevPts;
|
||||
d_features(d_img, d_prevPts);
|
||||
d_pyrLK.sparse(d_img, oclMat(frame1), d_prevPts, d_nextPts, d_status);
|
||||
d_features.downloadPoints(d_prevPts, pts);
|
||||
download(d_nextPts, nextPts);
|
||||
download(d_status, status);
|
||||
}
|
||||
|
@ -46,156 +46,102 @@
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/features2d/features2d.hpp"
|
||||
#include "opencv2/core/utility.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/ocl/ocl.hpp"
|
||||
#include "opencv2/nonfree/nonfree.hpp"
|
||||
#include "opencv2/nonfree/ocl.hpp"
|
||||
#include "opencv2/calib3d/calib3d.hpp"
|
||||
#include "opencv2/nonfree/nonfree.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::ocl;
|
||||
|
||||
//#define USE_CPU_DESCRIPTOR // use cpu descriptor extractor until ocl descriptor extractor is fixed
|
||||
//#define USE_CPU_BFMATCHER
|
||||
const int LOOP_NUM = 10;
|
||||
const int GOOD_PTS_MAX = 50;
|
||||
const float GOOD_PORTION = 0.15f;
|
||||
|
||||
namespace
|
||||
{
|
||||
void help();
|
||||
|
||||
void help()
|
||||
{
|
||||
cout << "\nThis program demonstrates using SURF_OCL features detector and descriptor extractor" << endl;
|
||||
cout << "\nUsage:\n\tsurf_matcher --left <image1> --right <image2>" << endl;
|
||||
std::cout << "\nThis program demonstrates using SURF_OCL features detector and descriptor extractor" << std::endl;
|
||||
std::cout << "\nUsage:\n\tsurf_matcher --left <image1> --right <image2> [-c]" << std::endl;
|
||||
std::cout << "\nExample:\n\tsurf_matcher --left box.png --right box_in_scene.png" << std::endl;
|
||||
}
|
||||
|
||||
int64 work_begin = 0;
|
||||
int64 work_end = 0;
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
// This program demonstrates the usage of SURF_OCL.
|
||||
// use cpu findHomography interface to calculate the transformation matrix
|
||||
int main(int argc, char* argv[])
|
||||
void workBegin()
|
||||
{
|
||||
if (argc != 5 && argc != 1)
|
||||
work_begin = getTickCount();
|
||||
}
|
||||
void workEnd()
|
||||
{
|
||||
work_end = getTickCount() - work_begin;
|
||||
}
|
||||
double getTime(){
|
||||
return work_end /((double)getTickFrequency() * 1000.);
|
||||
}
|
||||
|
||||
template<class KPDetector>
|
||||
struct SURFDetector
|
||||
{
|
||||
KPDetector surf;
|
||||
SURFDetector(double hessian = 800.0)
|
||||
:surf(hessian)
|
||||
{
|
||||
help();
|
||||
return -1;
|
||||
}
|
||||
vector<cv::ocl::Info> info;
|
||||
if(!cv::ocl::getDevice(info))
|
||||
template<class T>
|
||||
void operator()(const T& in, const T& mask, std::vector<cv::KeyPoint>& pts, T& descriptors, bool useProvided = false)
|
||||
{
|
||||
cout << "Error: Did not find a valid OpenCL device!" << endl;
|
||||
return -1;
|
||||
surf(in, mask, pts, descriptors, useProvided);
|
||||
}
|
||||
Mat cpu_img1, cpu_img2, cpu_img1_grey, cpu_img2_grey;
|
||||
oclMat img1, img2;
|
||||
if(argc != 5)
|
||||
};
|
||||
|
||||
template<class KPMatcher>
|
||||
struct SURFMatcher
|
||||
{
|
||||
KPMatcher matcher;
|
||||
template<class T>
|
||||
void match(const T& in1, const T& in2, std::vector<cv::DMatch>& matches)
|
||||
{
|
||||
cpu_img1 = imread("o.png");
|
||||
cvtColor(cpu_img1, cpu_img1_grey, COLOR_BGR2GRAY);
|
||||
img1 = cpu_img1_grey;
|
||||
CV_Assert(!img1.empty());
|
||||
|
||||
cpu_img2 = imread("r2.png");
|
||||
cvtColor(cpu_img2, cpu_img2_grey, COLOR_BGR2GRAY);
|
||||
img2 = cpu_img2_grey;
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i = 1; i < argc; ++i)
|
||||
{
|
||||
if (string(argv[i]) == "--left")
|
||||
{
|
||||
cpu_img1 = imread(argv[++i]);
|
||||
cvtColor(cpu_img1, cpu_img1_grey, COLOR_BGR2GRAY);
|
||||
img1 = cpu_img1_grey;
|
||||
CV_Assert(!img1.empty());
|
||||
}
|
||||
else if (string(argv[i]) == "--right")
|
||||
{
|
||||
cpu_img2 = imread(argv[++i]);
|
||||
cvtColor(cpu_img2, cpu_img2_grey, COLOR_BGR2GRAY);
|
||||
img2 = cpu_img2_grey;
|
||||
}
|
||||
else if (string(argv[i]) == "--help")
|
||||
{
|
||||
help();
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
matcher.match(in1, in2, matches);
|
||||
}
|
||||
};
|
||||
|
||||
SURF_OCL surf;
|
||||
//surf.hessianThreshold = 400.f;
|
||||
//surf.extended = false;
|
||||
|
||||
// detecting keypoints & computing descriptors
|
||||
oclMat keypoints1GPU, keypoints2GPU;
|
||||
oclMat descriptors1GPU, descriptors2GPU;
|
||||
|
||||
// downloading results
|
||||
vector<KeyPoint> keypoints1, keypoints2;
|
||||
vector<DMatch> matches;
|
||||
|
||||
|
||||
#ifndef USE_CPU_DESCRIPTOR
|
||||
surf(img1, oclMat(), keypoints1GPU, descriptors1GPU);
|
||||
surf(img2, oclMat(), keypoints2GPU, descriptors2GPU);
|
||||
|
||||
surf.downloadKeypoints(keypoints1GPU, keypoints1);
|
||||
surf.downloadKeypoints(keypoints2GPU, keypoints2);
|
||||
|
||||
|
||||
#ifdef USE_CPU_BFMATCHER
|
||||
//BFMatcher
|
||||
BFMatcher matcher(cv::NORM_L2);
|
||||
matcher.match(Mat(descriptors1GPU), Mat(descriptors2GPU), matches);
|
||||
#else
|
||||
BruteForceMatcher_OCL_base matcher(BruteForceMatcher_OCL_base::L2Dist);
|
||||
matcher.match(descriptors1GPU, descriptors2GPU, matches);
|
||||
#endif
|
||||
|
||||
#else
|
||||
surf(img1, oclMat(), keypoints1GPU);
|
||||
surf(img2, oclMat(), keypoints2GPU);
|
||||
surf.downloadKeypoints(keypoints1GPU, keypoints1);
|
||||
surf.downloadKeypoints(keypoints2GPU, keypoints2);
|
||||
|
||||
// use SURF_OCL to detect keypoints and use SURF to extract descriptors
|
||||
SURF surf_cpu;
|
||||
Mat descriptors1, descriptors2;
|
||||
surf_cpu(cpu_img1, Mat(), keypoints1, descriptors1, true);
|
||||
surf_cpu(cpu_img2, Mat(), keypoints2, descriptors2, true);
|
||||
matcher.match(descriptors1, descriptors2, matches);
|
||||
#endif
|
||||
cout << "OCL: FOUND " << keypoints1GPU.cols << " keypoints on first image" << endl;
|
||||
cout << "OCL: FOUND " << keypoints2GPU.cols << " keypoints on second image" << endl;
|
||||
|
||||
double max_dist = 0; double min_dist = 100;
|
||||
//-- Quick calculation of max and min distances between keypoints
|
||||
for( size_t i = 0; i < keypoints1.size(); i++ )
|
||||
{
|
||||
double dist = matches[i].distance;
|
||||
if( dist < min_dist ) min_dist = dist;
|
||||
if( dist > max_dist ) max_dist = dist;
|
||||
}
|
||||
|
||||
printf("-- Max dist : %f \n", max_dist );
|
||||
printf("-- Min dist : %f \n", min_dist );
|
||||
|
||||
//-- Draw only "good" matches (i.e. whose distance is less than 2.5*min_dist )
|
||||
Mat drawGoodMatches(
|
||||
const Mat& cpu_img1,
|
||||
const Mat& cpu_img2,
|
||||
const std::vector<KeyPoint>& keypoints1,
|
||||
const std::vector<KeyPoint>& keypoints2,
|
||||
std::vector<DMatch>& matches,
|
||||
std::vector<Point2f>& scene_corners_
|
||||
)
|
||||
{
|
||||
//-- Sort matches and preserve top 10% matches
|
||||
std::sort(matches.begin(), matches.end());
|
||||
std::vector< DMatch > good_matches;
|
||||
double minDist = matches.front().distance,
|
||||
maxDist = matches.back().distance;
|
||||
|
||||
for( size_t i = 0; i < keypoints1.size(); i++ )
|
||||
const int ptsPairs = std::min(GOOD_PTS_MAX, (int)(matches.size() * GOOD_PORTION));
|
||||
for( int i = 0; i < ptsPairs; i++ )
|
||||
{
|
||||
if( matches[i].distance < 3*min_dist )
|
||||
{
|
||||
good_matches.push_back( matches[i]);
|
||||
}
|
||||
good_matches.push_back( matches[i] );
|
||||
}
|
||||
std::cout << "\nMax distance: " << maxDist << std::endl;
|
||||
std::cout << "Min distance: " << minDist << std::endl;
|
||||
|
||||
std::cout << "Calculating homography using " << ptsPairs << " point pairs." << std::endl;
|
||||
|
||||
// drawing the results
|
||||
Mat img_matches;
|
||||
drawMatches( cpu_img1, keypoints1, cpu_img2, keypoints2,
|
||||
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
|
||||
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
|
||||
std::vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
|
||||
|
||||
//-- Localize the object
|
||||
std::vector<Point2f> obj;
|
||||
@ -207,26 +153,238 @@ int main(int argc, char* argv[])
|
||||
obj.push_back( keypoints1[ good_matches[i].queryIdx ].pt );
|
||||
scene.push_back( keypoints2[ good_matches[i].trainIdx ].pt );
|
||||
}
|
||||
Mat H = findHomography( obj, scene, RANSAC );
|
||||
|
||||
//-- Get the corners from the image_1 ( the object to be "detected" )
|
||||
std::vector<Point2f> obj_corners(4);
|
||||
obj_corners[0] = Point(0,0); obj_corners[1] = Point( cpu_img1.cols, 0 );
|
||||
obj_corners[2] = Point( cpu_img1.cols, cpu_img1.rows ); obj_corners[3] = Point( 0, cpu_img1.rows );
|
||||
std::vector<Point2f> scene_corners(4);
|
||||
|
||||
Mat H = findHomography( obj, scene, RANSAC );
|
||||
perspectiveTransform( obj_corners, scene_corners, H);
|
||||
|
||||
scene_corners_ = scene_corners;
|
||||
|
||||
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
|
||||
line( img_matches, scene_corners[0] + Point2f( (float)cpu_img1.cols, 0), scene_corners[1] + Point2f( (float)cpu_img1.cols, 0), Scalar( 0, 255, 0), 4 );
|
||||
line( img_matches, scene_corners[1] + Point2f( (float)cpu_img1.cols, 0), scene_corners[2] + Point2f( (float)cpu_img1.cols, 0), Scalar( 0, 255, 0), 4 );
|
||||
line( img_matches, scene_corners[2] + Point2f( (float)cpu_img1.cols, 0), scene_corners[3] + Point2f( (float)cpu_img1.cols, 0), Scalar( 0, 255, 0), 4 );
|
||||
line( img_matches, scene_corners[3] + Point2f( (float)cpu_img1.cols, 0), scene_corners[0] + Point2f( (float)cpu_img1.cols, 0), Scalar( 0, 255, 0), 4 );
|
||||
line( img_matches,
|
||||
scene_corners[0] + Point2f( (float)cpu_img1.cols, 0), scene_corners[1] + Point2f( (float)cpu_img1.cols, 0),
|
||||
Scalar( 0, 255, 0), 2, LINE_AA );
|
||||
line( img_matches,
|
||||
scene_corners[1] + Point2f( (float)cpu_img1.cols, 0), scene_corners[2] + Point2f( (float)cpu_img1.cols, 0),
|
||||
Scalar( 0, 255, 0), 2, LINE_AA );
|
||||
line( img_matches,
|
||||
scene_corners[2] + Point2f( (float)cpu_img1.cols, 0), scene_corners[3] + Point2f( (float)cpu_img1.cols, 0),
|
||||
Scalar( 0, 255, 0), 2, LINE_AA );
|
||||
line( img_matches,
|
||||
scene_corners[3] + Point2f( (float)cpu_img1.cols, 0), scene_corners[0] + Point2f( (float)cpu_img1.cols, 0),
|
||||
Scalar( 0, 255, 0), 2, LINE_AA );
|
||||
return img_matches;
|
||||
}
|
||||
|
||||
}
|
||||
////////////////////////////////////////////////////
|
||||
// This program demonstrates the usage of SURF_OCL.
|
||||
// use cpu findHomography interface to calculate the transformation matrix
|
||||
int main(int argc, char* argv[])
|
||||
{
|
||||
std::vector<cv::ocl::Info> info;
|
||||
if(cv::ocl::getDevice(info) == 0)
|
||||
{
|
||||
std::cout << "Error: Did not find a valid OpenCL device!" << std::endl;
|
||||
return -1;
|
||||
}
|
||||
ocl::setDevice(info[0]);
|
||||
|
||||
Mat cpu_img1, cpu_img2, cpu_img1_grey, cpu_img2_grey;
|
||||
oclMat img1, img2;
|
||||
bool useCPU = false;
|
||||
bool useGPU = false;
|
||||
bool useALL = false;
|
||||
|
||||
for (int i = 1; i < argc; ++i)
|
||||
{
|
||||
if (String(argv[i]) == "--left")
|
||||
{
|
||||
cpu_img1 = imread(argv[++i]);
|
||||
CV_Assert(!cpu_img1.empty());
|
||||
cvtColor(cpu_img1, cpu_img1_grey, COLOR_BGR2GRAY);
|
||||
img1 = cpu_img1_grey;
|
||||
}
|
||||
else if (String(argv[i]) == "--right")
|
||||
{
|
||||
cpu_img2 = imread(argv[++i]);
|
||||
CV_Assert(!cpu_img2.empty());
|
||||
cvtColor(cpu_img2, cpu_img2_grey, COLOR_BGR2GRAY);
|
||||
img2 = cpu_img2_grey;
|
||||
}
|
||||
else if (String(argv[i]) == "-c")
|
||||
{
|
||||
useCPU = true;
|
||||
useGPU = false;
|
||||
useALL = false;
|
||||
}else if(String(argv[i]) == "-g")
|
||||
{
|
||||
useGPU = true;
|
||||
useCPU = false;
|
||||
useALL = false;
|
||||
}else if(String(argv[i]) == "-a")
|
||||
{
|
||||
useALL = true;
|
||||
useCPU = false;
|
||||
useGPU = false;
|
||||
}
|
||||
else if (String(argv[i]) == "--help")
|
||||
{
|
||||
help();
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
if(!useCPU)
|
||||
{
|
||||
std::cout
|
||||
<< "Device name:"
|
||||
<< info[0].DeviceName[0]
|
||||
<< std::endl;
|
||||
}
|
||||
double surf_time = 0.;
|
||||
|
||||
//declare input/output
|
||||
std::vector<KeyPoint> keypoints1, keypoints2;
|
||||
std::vector<DMatch> matches;
|
||||
|
||||
std::vector<KeyPoint> gpu_keypoints1;
|
||||
std::vector<KeyPoint> gpu_keypoints2;
|
||||
std::vector<DMatch> gpu_matches;
|
||||
|
||||
Mat descriptors1CPU, descriptors2CPU;
|
||||
|
||||
oclMat keypoints1GPU, keypoints2GPU;
|
||||
oclMat descriptors1GPU, descriptors2GPU;
|
||||
|
||||
//instantiate detectors/matchers
|
||||
SURFDetector<SURF> cpp_surf;
|
||||
SURFDetector<SURF_OCL> ocl_surf;
|
||||
|
||||
SURFMatcher<BFMatcher> cpp_matcher;
|
||||
SURFMatcher<BFMatcher_OCL> ocl_matcher;
|
||||
|
||||
//-- start of timing section
|
||||
if (useCPU)
|
||||
{
|
||||
for (int i = 0; i <= LOOP_NUM; i++)
|
||||
{
|
||||
if(i == 1) workBegin();
|
||||
cpp_surf(cpu_img1_grey, Mat(), keypoints1, descriptors1CPU);
|
||||
cpp_surf(cpu_img2_grey, Mat(), keypoints2, descriptors2CPU);
|
||||
cpp_matcher.match(descriptors1CPU, descriptors2CPU, matches);
|
||||
}
|
||||
workEnd();
|
||||
std::cout << "CPP: FOUND " << keypoints1.size() << " keypoints on first image" << std::endl;
|
||||
std::cout << "CPP: FOUND " << keypoints2.size() << " keypoints on second image" << std::endl;
|
||||
|
||||
surf_time = getTime();
|
||||
std::cout << "SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl<<"\n";
|
||||
}
|
||||
else if(useGPU)
|
||||
{
|
||||
for (int i = 0; i <= LOOP_NUM; i++)
|
||||
{
|
||||
if(i == 1) workBegin();
|
||||
ocl_surf(img1, oclMat(), keypoints1, descriptors1GPU);
|
||||
ocl_surf(img2, oclMat(), keypoints2, descriptors2GPU);
|
||||
ocl_matcher.match(descriptors1GPU, descriptors2GPU, matches);
|
||||
}
|
||||
workEnd();
|
||||
std::cout << "OCL: FOUND " << keypoints1.size() << " keypoints on first image" << std::endl;
|
||||
std::cout << "OCL: FOUND " << keypoints2.size() << " keypoints on second image" << std::endl;
|
||||
|
||||
surf_time = getTime();
|
||||
std::cout << "SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl<<"\n";
|
||||
}else
|
||||
{
|
||||
//cpu runs
|
||||
for (int i = 0; i <= LOOP_NUM; i++)
|
||||
{
|
||||
if(i == 1) workBegin();
|
||||
cpp_surf(cpu_img1_grey, Mat(), keypoints1, descriptors1CPU);
|
||||
cpp_surf(cpu_img2_grey, Mat(), keypoints2, descriptors2CPU);
|
||||
cpp_matcher.match(descriptors1CPU, descriptors2CPU, matches);
|
||||
}
|
||||
workEnd();
|
||||
std::cout << "\nCPP: FOUND " << keypoints1.size() << " keypoints on first image" << std::endl;
|
||||
std::cout << "CPP: FOUND " << keypoints2.size() << " keypoints on second image" << std::endl;
|
||||
|
||||
surf_time = getTime();
|
||||
std::cout << "(CPP)SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl;
|
||||
|
||||
//gpu runs
|
||||
for (int i = 0; i <= LOOP_NUM; i++)
|
||||
{
|
||||
if(i == 1) workBegin();
|
||||
ocl_surf(img1, oclMat(), gpu_keypoints1, descriptors1GPU);
|
||||
ocl_surf(img2, oclMat(), gpu_keypoints2, descriptors2GPU);
|
||||
ocl_matcher.match(descriptors1GPU, descriptors2GPU, gpu_matches);
|
||||
}
|
||||
workEnd();
|
||||
std::cout << "\nOCL: FOUND " << keypoints1.size() << " keypoints on first image" << std::endl;
|
||||
std::cout << "OCL: FOUND " << keypoints2.size() << " keypoints on second image" << std::endl;
|
||||
|
||||
surf_time = getTime();
|
||||
std::cout << "(OCL)SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl<<"\n";
|
||||
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
std::vector<Point2f> cpu_corner;
|
||||
Mat img_matches = drawGoodMatches(cpu_img1, cpu_img2, keypoints1, keypoints2, matches, cpu_corner);
|
||||
|
||||
std::vector<Point2f> gpu_corner;
|
||||
Mat ocl_img_matches;
|
||||
if(useALL || (!useCPU&&!useGPU))
|
||||
{
|
||||
ocl_img_matches = drawGoodMatches(cpu_img1, cpu_img2, gpu_keypoints1, gpu_keypoints2, gpu_matches, gpu_corner);
|
||||
|
||||
//check accuracy
|
||||
std::cout<<"\nCheck accuracy:\n";
|
||||
|
||||
if(cpu_corner.size()!=gpu_corner.size())
|
||||
std::cout<<"Failed\n";
|
||||
else
|
||||
{
|
||||
bool result = false;
|
||||
for(size_t i = 0; i < cpu_corner.size(); i++)
|
||||
{
|
||||
if((std::abs(cpu_corner[i].x - gpu_corner[i].x) > 10)
|
||||
||(std::abs(cpu_corner[i].y - gpu_corner[i].y) > 10))
|
||||
{
|
||||
std::cout<<"Failed\n";
|
||||
result = false;
|
||||
break;
|
||||
}
|
||||
result = true;
|
||||
}
|
||||
if(result)
|
||||
std::cout<<"Passed\n";
|
||||
}
|
||||
}
|
||||
|
||||
//-- Show detected matches
|
||||
namedWindow("ocl surf matches", 0);
|
||||
imshow("ocl surf matches", img_matches);
|
||||
waitKey(0);
|
||||
if (useCPU)
|
||||
{
|
||||
namedWindow("cpu surf matches", 0);
|
||||
imshow("cpu surf matches", img_matches);
|
||||
}
|
||||
else if(useGPU)
|
||||
{
|
||||
namedWindow("ocl surf matches", 0);
|
||||
imshow("ocl surf matches", img_matches);
|
||||
}else
|
||||
{
|
||||
namedWindow("cpu surf matches", 0);
|
||||
imshow("cpu surf matches", img_matches);
|
||||
|
||||
namedWindow("ocl surf matches", 0);
|
||||
imshow("ocl surf matches", ocl_img_matches);
|
||||
}
|
||||
waitKey(0);
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user