- update documentation

* correct the part about fixed aspect
    * improve formatting
    * add snippet markers to source
    * replace inline code by @snippet
  - do not run calibration twice when using a imageList
  - make output consistent in itself (CamelCase vs no_camel_case) as well as with old camera calibrate sample
  - respect write extrinsic/ points flags
  - set the aspectRatio value when specified
  - fix writing of calibration settings. also update grammar.
  - fix intendation and remove some size_t -> int casts by using size_t
This commit is contained in:
Pavel Rojtberg 2015-03-25 16:11:53 +01:00
parent d2da7dc3e5
commit 7c5084e385
2 changed files with 159 additions and 341 deletions

View File

@ -30,7 +30,7 @@ y_{corrected} = y + [ p_1(r^2+ 2y^2)+ 2p_2xy]\f]
So we have five distortion parameters which in OpenCV are presented as one row matrix with 5
columns:
\f[Distortion_{coefficients}=(k_1 \hspace{10pt} k_2 \hspace{10pt} p_1 \hspace{10pt} p_2 \hspace{10pt} k_3)\f]
\f[distortion\_coefficients=(k_1 \hspace{10pt} k_2 \hspace{10pt} p_1 \hspace{10pt} p_2 \hspace{10pt} k_3)\f]
Now for the unit conversion we use the following formula:
@ -96,83 +96,30 @@ on how to do this you can find in the @ref tutorial_file_input_output_with_xml_y
Explanation
-----------
-# **Read the settings.**
@code{.cpp}
Settings s;
const string inputSettingsFile = argc > 1 ? argv[1] : "default.xml";
FileStorage fs(inputSettingsFile, FileStorage::READ); // Read the settings
if (!fs.isOpened())
{
cout << "Could not open the configuration file: \"" << inputSettingsFile << "\"" << endl;
return -1;
}
fs["Settings"] >> s;
fs.release(); // close Settings file
-# **Read the settings**
@snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp file_read
if (!s.goodInput)
{
cout << "Invalid input detected. Application stopping. " << endl;
return -1;
}
@endcode
For this I've used simple OpenCV class input operation. After reading the file I've an
additional post-processing function that checks validity of the input. Only if all inputs are
good then *goodInput* variable will be true.
-# **Get next input, if it fails or we have enough of them - calibrate**. After this we have a big
-# **Get next input, if it fails or we have enough of them - calibrate**
After this we have a big
loop where we do the following operations: get the next image from the image list, camera or
video file. If this fails or we have enough images then we run the calibration process. In case
of image we step out of the loop and otherwise the remaining frames will be undistorted (if the
option is set) via changing from *DETECTION* mode to the *CALIBRATED* one.
@code{.cpp}
for(int i = 0;;++i)
{
Mat view;
bool blinkOutput = false;
view = s.nextImage();
//----- If no more image, or got enough, then stop calibration and show result -------------
if( mode == CAPTURING && imagePoints.size() >= (unsigned)s.nrFrames )
{
if( runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints))
mode = CALIBRATED;
else
mode = DETECTION;
}
if(view.empty()) // If no more images then run calibration, save and stop loop.
{
if( imagePoints.size() > 0 )
runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints);
break;
imageSize = view.size(); // Format input image.
if( s.flipVertical ) flip( view, view, 0 );
}
@endcode
@snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp get_input
For some cameras we may need to flip the input image. Here we do this too.
-# **Find the pattern in the current input**. The formation of the equations I mentioned above aims
-# **Find the pattern in the current input**
The formation of the equations I mentioned above aims
to finding major patterns in the input: in case of the chessboard this are corners of the
squares and for the circles, well, the circles themselves. The position of these will form the
result which will be written into the *pointBuf* vector.
@code{.cpp}
vector<Point2f> pointBuf;
bool found;
switch( s.calibrationPattern ) // Find feature points on the input format
{
case Settings::CHESSBOARD:
found = findChessboardCorners( view, s.boardSize, pointBuf,
CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_FAST_CHECK | CALIB_CB_NORMALIZE_IMAGE);
break;
case Settings::CIRCLES_GRID:
found = findCirclesGrid( view, s.boardSize, pointBuf );
break;
case Settings::ASYMMETRIC_CIRCLES_GRID:
found = findCirclesGrid( view, s.boardSize, pointBuf, CALIB_CB_ASYMMETRIC_GRID );
break;
}
@endcode
@snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp find_pattern
Depending on the type of the input pattern you use either the @ref cv::findChessboardCorners or
the @ref cv::findCirclesGrid function. For both of them you pass the current image and the size
of the board and you'll get the positions of the patterns. Furthermore, they return a boolean
@ -188,109 +135,27 @@ Explanation
*imagePoints* vector to collect all of the equations into a single container. Finally, for
visualization feedback purposes we will draw the found points on the input image using @ref
cv::findChessboardCorners function.
@code{.cpp}
if ( found) // If done with success,
{
// improve the found corners' coordinate accuracy for chessboard
if( s.calibrationPattern == Settings::CHESSBOARD)
{
Mat viewGray;
cvtColor(view, viewGray, COLOR_BGR2GRAY);
cornerSubPix( viewGray, pointBuf, Size(11,11),
Size(-1,-1), TermCriteria( TermCriteria::EPS+TermCriteria::MAX_ITER, 30, 0.1 ));
}
@snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp pattern_found
-# **Show state and result to the user, plus command line control of the application**
if( mode == CAPTURING && // For camera only take new samples after delay time
(!s.inputCapture.isOpened() || clock() - prevTimestamp > s.delay*1e-3*CLOCKS_PER_SEC) )
{
imagePoints.push_back(pointBuf);
prevTimestamp = clock();
blinkOutput = s.inputCapture.isOpened();
}
// Draw the corners.
drawChessboardCorners( view, s.boardSize, Mat(pointBuf), found );
}
@endcode
-# **Show state and result to the user, plus command line control of the application**. This part
shows text output on the image.
@code{.cpp}
//----------------------------- Output Text ------------------------------------------------
string msg = (mode == CAPTURING) ? "100/100" :
mode == CALIBRATED ? "Calibrated" : "Press 'g' to start";
int baseLine = 0;
Size textSize = getTextSize(msg, 1, 1, 1, &baseLine);
Point textOrigin(view.cols - 2*textSize.width - 10, view.rows - 2*baseLine - 10);
if( mode == CAPTURING )
{
if(s.showUndistorsed)
msg = format( "%d/%d Undist", (int)imagePoints.size(), s.nrFrames );
else
msg = format( "%d/%d", (int)imagePoints.size(), s.nrFrames );
}
putText( view, msg, textOrigin, 1, 1, mode == CALIBRATED ? GREEN : RED);
if( blinkOutput )
bitwise_not(view, view);
@endcode
This part shows text output on the image.
@snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp output_text
If we ran calibration and got camera's matrix with the distortion coefficients we may want to
correct the image using @ref cv::undistort function:
@code{.cpp}
//------------------------- Video capture output undistorted ------------------------------
if( mode == CALIBRATED && s.showUndistorsed )
{
Mat temp = view.clone();
undistort(temp, view, cameraMatrix, distCoeffs);
}
//------------------------------ Show image and check for input commands -------------------
imshow("Image View", view);
@endcode
Then we wait for an input key and if this is *u* we toggle the distortion removal, if it is *g*
we start again the detection process, and finally for the *ESC* key we quit the application:
@code{.cpp}
char key = waitKey(s.inputCapture.isOpened() ? 50 : s.delay);
if( key == ESC_KEY )
break;
@snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp output_undistorted
Then we show the image and wait for an input key and if this is *u* we toggle the distortion removal,
if it is *g* we start again the detection process, and finally for the *ESC* key we quit the application:
@snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp await_input
-# **Show the distortion removal for the images too**
if( key == 'u' && mode == CALIBRATED )
s.showUndistorsed = !s.showUndistorsed;
if( s.inputCapture.isOpened() && key == 'g' )
{
mode = CAPTURING;
imagePoints.clear();
}
@endcode
-# **Show the distortion removal for the images too**. When you work with an image list it is not
When you work with an image list it is not
possible to remove the distortion inside the loop. Therefore, you must do this after the loop.
Taking advantage of this now I'll expand the @ref cv::undistort function, which is in fact first
calls @ref cv::initUndistortRectifyMap to find transformation matrices and then performs
transformation using @ref cv::remap function. Because, after successful calibration map
calculation needs to be done only once, by using this expanded form you may speed up your
application:
@code{.cpp}
if( s.inputType == Settings::IMAGE_LIST && s.showUndistorsed )
{
Mat view, rview, map1, map2;
initUndistortRectifyMap(cameraMatrix, distCoeffs, Mat(),
getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, 1, imageSize, 0),
imageSize, CV_16SC2, map1, map2);
for(int i = 0; i < (int)s.imageList.size(); i++ )
{
view = imread(s.imageList[i], 1);
if(view.empty())
continue;
remap(view, rview, map1, map2, INTER_LINEAR);
imshow("Image View", rview);
char c = waitKey();
if( c == ESC_KEY || c == 'q' || c == 'Q' )
break;
}
}
@endcode
@snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp show_results
The calibration and save
------------------------
@ -304,24 +169,7 @@ Therefore in the first function we just split up these two processes. Because we
of the calibration variables we'll create these variables here and pass on both of them to the
calibration and saving function. Again, I'll not show the saving part as that has little in common
with the calibration. Explore the source file in order to find out how and what:
@code{.cpp}
bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs,vector<vector<Point2f> > imagePoints )
{
vector<Mat> rvecs, tvecs;
vector<float> reprojErrs;
double totalAvgErr = 0;
bool ok = runCalibration(s,imageSize, cameraMatrix, distCoeffs, imagePoints, rvecs, tvecs,
reprojErrs, totalAvgErr);
cout << (ok ? "Calibration succeeded" : "Calibration failed")
<< ". avg re projection error = " << totalAvgErr ;
if( ok ) // save only if the calibration was done with success
saveCameraParams( s, imageSize, cameraMatrix, distCoeffs, rvecs ,tvecs, reprojErrs,
imagePoints, totalAvgErr);
return ok;
}
@endcode
@snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp run_and_save
We do the calibration with the help of the @ref cv::calibrateCamera function. It has the following
parameters:
@ -331,29 +179,7 @@ parameters:
present. Because, we use a single pattern for all the input images we can calculate this just
once and multiply it for all the other input views. We calculate the corner points with the
*calcBoardCornerPositions* function as:
@code{.cpp}
void calcBoardCornerPositions(Size boardSize, float squareSize, vector<Point3f>& corners,
Settings::Pattern patternType /*= Settings::CHESSBOARD*/)
{
corners.clear();
switch(patternType)
{
case Settings::CHESSBOARD:
case Settings::CIRCLES_GRID:
for( int i = 0; i < boardSize.height; ++i )
for( int j = 0; j < boardSize.width; ++j )
corners.push_back(Point3f(float( j*squareSize ), float( i*squareSize ), 0));
break;
case Settings::ASYMMETRIC_CIRCLES_GRID:
for( int i = 0; i < boardSize.height; i++ )
for( int j = 0; j < boardSize.width; j++ )
corners.push_back(Point3f(float((2*j + i % 2)*squareSize), float(i*squareSize), 0));
break;
}
}
@endcode
@snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp board_corners
And then multiply it as:
@code{.cpp}
vector<vector<Point3f> > objectPoints(1);
@ -365,12 +191,8 @@ parameters:
circle pattern). We have already collected this from @ref cv::findChessboardCorners or @ref
cv::findCirclesGrid function. We just need to pass it on.
- The size of the image acquired from the camera, video file or the images.
- The camera matrix. If we used the fixed aspect ratio option we need to set the \f$f_x\f$ to zero:
@code{.cpp}
cameraMatrix = Mat::eye(3, 3, CV_64F);
if( s.flag & CALIB_FIX_ASPECT_RATIO )
cameraMatrix.at<double>(0,0) = 1.0;
@endcode
- The camera matrix. If we used the fixed aspect ratio option we need to set \f$f_x\f$:
@snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp fixed_aspect
- The distortion coefficient matrix. Initialize with zero.
@code{.cpp}
distCoeffs = Mat::zeros(8, 1, CV_64F);
@ -393,33 +215,7 @@ double rms = calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix,
calculate the absolute norm between what we got with our transformation and the corner/circle
finding algorithm. To find the average error we calculate the arithmetical mean of the errors
calculated for all the calibration images.
@code{.cpp}
double computeReprojectionErrors( const vector<vector<Point3f> >& objectPoints,
const vector<vector<Point2f> >& imagePoints,
const vector<Mat>& rvecs, const vector<Mat>& tvecs,
const Mat& cameraMatrix , const Mat& distCoeffs,
vector<float>& perViewErrors)
{
vector<Point2f> imagePoints2;
int i, totalPoints = 0;
double totalErr = 0, err;
perViewErrors.resize(objectPoints.size());
for( i = 0; i < (int)objectPoints.size(); ++i )
{
projectPoints( Mat(objectPoints[i]), rvecs[i], tvecs[i], cameraMatrix, // project
distCoeffs, imagePoints2);
err = norm(Mat(imagePoints[i]), Mat(imagePoints2), NORM_L2); // difference
int n = (int)objectPoints[i].size();
perViewErrors[i] = (float) std::sqrt(err*err/n); // save for this view
totalErr += err*err; // sum it up
totalPoints += n;
}
return std::sqrt(totalErr/totalPoints); // calculate the arithmetical mean
}
@endcode
@snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp compute_errors
Results
-------
@ -461,20 +257,20 @@ the input. Here's, how a detected pattern should look:
In both cases in the specified output XML/YAML file you'll find the camera and distortion
coefficients matrices:
@code{.xml}
<Camera_Matrix type_id="opencv-matrix">
<camera_matrix type_id="opencv-matrix">
<rows>3</rows>
<cols>3</cols>
<dt>d</dt>
<data>
6.5746697944293521e+002 0. 3.1950000000000000e+002 0.
6.5746697944293521e+002 2.3950000000000000e+002 0. 0. 1.</data></Camera_Matrix>
<Distortion_Coefficients type_id="opencv-matrix">
6.5746697944293521e+002 2.3950000000000000e+002 0. 0. 1.</data></camera_matrix>
<distortion_coefficients type_id="opencv-matrix">
<rows>5</rows>
<cols>1</cols>
<dt>d</dt>
<data>
-4.1802327176423804e-001 5.0715244063187526e-001 0. 0.
-5.7843597214487474e-001</data></Distortion_Coefficients>
-5.7843597214487474e-001</data></distortion_coefficients>
@endcode
Add these values as constants to your program, call the @ref cv::initUndistortRectifyMap and the
@ref cv::remap function to remove distortion and enjoy distortion free inputs for cheap and low

View File

@ -34,7 +34,8 @@ public:
void write(FileStorage& fs) const //Write serialization for this class
{
fs << "{" << "BoardSize_Width" << boardSize.width
fs << "{"
<< "BoardSize_Width" << boardSize.width
<< "BoardSize_Height" << boardSize.height
<< "Square_Size" << squareSize
<< "Calibrate_Pattern" << patternToUse
@ -43,8 +44,8 @@ public:
<< "Calibrate_AssumeZeroTangentialDistortion" << calibZeroTangentDist
<< "Calibrate_FixPrincipalPointAtTheCenter" << calibFixPrincipalPoint
<< "Write_DetectedFeaturePoints" << bwritePoints
<< "Write_extrinsicParameters" << bwriteExtrinsics
<< "Write_DetectedFeaturePoints" << writePoints
<< "Write_extrinsicParameters" << writeExtrinsics
<< "Write_outputFileName" << outputFileName
<< "Show_UndistortedImage" << showUndistorsed
@ -62,8 +63,8 @@ public:
node["Square_Size"] >> squareSize;
node["Calibrate_NrOfFrameToUse"] >> nrFrames;
node["Calibrate_FixAspectRatio"] >> aspectRatio;
node["Write_DetectedFeaturePoints"] >> bwritePoints;
node["Write_extrinsicParameters"] >> bwriteExtrinsics;
node["Write_DetectedFeaturePoints"] >> writePoints;
node["Write_extrinsicParameters"] >> writeExtrinsics;
node["Write_outputFileName"] >> outputFileName;
node["Calibrate_AssumeZeroTangentialDistortion"] >> calibZeroTangentDist;
node["Calibrate_FixPrincipalPointAtTheCenter"] >> calibFixPrincipalPoint;
@ -71,9 +72,9 @@ public:
node["Show_UndistortedImage"] >> showUndistorsed;
node["Input"] >> input;
node["Input_Delay"] >> delay;
interprate();
validate();
}
void interprate()
void validate()
{
goodInput = true;
if (boardSize.width <= 0 || boardSize.height <= 0)
@ -121,7 +122,7 @@ public:
}
if (inputType == INVALID)
{
cerr << " Inexistent input: " << input;
cerr << " Input does not exist: " << input;
goodInput = false;
}
@ -137,7 +138,7 @@ public:
if (!patternToUse.compare("ASYMMETRIC_CIRCLES_GRID")) calibrationPattern = ASYMMETRIC_CIRCLES_GRID;
if (calibrationPattern == NOT_EXISTING)
{
cerr << " Inexistent camera calibration mode: " << patternToUse << endl;
cerr << " Camera calibration mode does not exist: " << patternToUse << endl;
goodInput = false;
}
atImageList = 0;
@ -152,7 +153,7 @@ public:
inputCapture >> view0;
view0.copyTo(result);
}
else if( atImageList < (int)imageList.size() )
else if( atImageList < imageList.size() )
result = imread(imageList[atImageList++], IMREAD_COLOR);
return result;
@ -174,25 +175,23 @@ public:
}
public:
Size boardSize; // The size of the board -> Number of items by width and height
Pattern calibrationPattern;// One of the Chessboard, circles, or asymmetric circle pattern
Pattern calibrationPattern; // One of the Chessboard, circles, or asymmetric circle pattern
float squareSize; // The size of a square in your defined unit (point, millimeter,etc).
int nrFrames; // The number of frames to use from the input for calibration
float aspectRatio; // The aspect ratio
int delay; // In case of a video input
bool bwritePoints; // Write detected feature points
bool bwriteExtrinsics; // Write extrinsic parameters
bool writePoints; // Write detected feature points
bool writeExtrinsics; // Write extrinsic parameters
bool calibZeroTangentDist; // Assume zero tangential distortion
bool calibFixPrincipalPoint;// Fix the principal point at the center
bool calibFixPrincipalPoint; // Fix the principal point at the center
bool flipVertical; // Flip the captured images around the horizontal axis
string outputFileName; // The name of the file where to write
bool showUndistorsed; // Show undistorted images after calibration
string input; // The input ->
int cameraID;
vector<string> imageList;
int atImageList;
size_t atImageList;
VideoCapture inputCapture;
InputType inputType;
bool goodInput;
@ -204,7 +203,7 @@ private:
};
static void read(const FileNode& node, Settings& x, const Settings& default_value = Settings())
static inline void read(const FileNode& node, Settings& x, const Settings& default_value = Settings())
{
if(node.empty())
x = default_value;
@ -212,6 +211,11 @@ static void read(const FileNode& node, Settings& x, const Settings& default_valu
x.read(node);
}
static inline void write(FileStorage& fs, const String&, const Settings& s )
{
s.write(fs);
}
enum { DETECTION = 0, CAPTURING = 1, CALIBRATED = 2 };
bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs,
@ -220,6 +224,8 @@ bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat&
int main(int argc, char* argv[])
{
help();
//! [file_read]
Settings s;
const string inputSettingsFile = argc > 1 ? argv[1] : "default.xml";
FileStorage fs(inputSettingsFile, FileStorage::READ); // Read the settings
@ -230,6 +236,10 @@ int main(int argc, char* argv[])
}
fs["Settings"] >> s;
fs.release(); // close Settings file
//! [file_read]
//FileStorage fout("settings.yml", FileStorage::WRITE); // write config as YAML
//fout << "Settings" << s;
if (!s.goodInput)
{
@ -245,7 +255,8 @@ int main(int argc, char* argv[])
const Scalar RED(0,0,255), GREEN(0,255,0);
const char ESC_KEY = 27;
for(int i = 0;;++i)
//! [get_input]
for(;;)
{
Mat view;
bool blinkOutput = false;
@ -253,24 +264,26 @@ int main(int argc, char* argv[])
view = s.nextImage();
//----- If no more image, or got enough, then stop calibration and show result -------------
if( mode == CAPTURING && imagePoints.size() >= (unsigned)s.nrFrames )
if( mode == CAPTURING && imagePoints.size() >= (size_t)s.nrFrames )
{
if( runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints))
mode = CALIBRATED;
else
mode = DETECTION;
}
if(view.empty()) // If no more images then run calibration, save and stop loop.
if(view.empty()) // If there are no more images stop the loop
{
if( imagePoints.size() > 0 )
// if calibration threshold was not reached yet, calibrate now
if( mode != CALIBRATED && !imagePoints.empty() )
runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints);
break;
}
//! [get_input]
imageSize = view.size(); // Format input image.
if( s.flipVertical ) flip( view, view, 0 );
//! [find_pattern]
vector<Point2f> pointBuf;
bool found;
@ -290,7 +303,8 @@ int main(int argc, char* argv[])
found = false;
break;
}
//! [find_pattern]
//! [pattern_found]
if ( found) // If done with success,
{
// improve the found corners' coordinate accuracy for chessboard
@ -313,8 +327,9 @@ int main(int argc, char* argv[])
// Draw the corners.
drawChessboardCorners( view, s.boardSize, Mat(pointBuf), found );
}
//! [pattern_found]
//----------------------------- Output Text ------------------------------------------------
//! [output_text]
string msg = (mode == CAPTURING) ? "100/100" :
mode == CALIBRATED ? "Calibrated" : "Press 'g' to start";
int baseLine = 0;
@ -333,15 +348,17 @@ int main(int argc, char* argv[])
if( blinkOutput )
bitwise_not(view, view);
//! [output_text]
//------------------------- Video capture output undistorted ------------------------------
//! [output_undistorted]
if( mode == CALIBRATED && s.showUndistorsed )
{
Mat temp = view.clone();
undistort(temp, view, cameraMatrix, distCoeffs);
}
//! [output_undistorted]
//------------------------------ Show image and check for input commands -------------------
//! [await_input]
imshow("Image View", view);
char key = (char)waitKey(s.inputCapture.isOpened() ? 50 : s.delay);
@ -356,9 +373,11 @@ int main(int argc, char* argv[])
mode = CAPTURING;
imagePoints.clear();
}
//! [await_input]
}
// -----------------------Show the undistorted image for the image list ------------------------
//! [show_results]
if( s.inputType == Settings::IMAGE_LIST && s.showUndistorsed )
{
Mat view, rview, map1, map2;
@ -366,7 +385,7 @@ int main(int argc, char* argv[])
getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, 1, imageSize, 0),
imageSize, CV_16SC2, map1, map2);
for(int i = 0; i < (int)s.imageList.size(); i++ )
for(size_t i = 0; i < s.imageList.size(); i++ )
{
view = imread(s.imageList[i], 1);
if(view.empty())
@ -378,11 +397,12 @@ int main(int argc, char* argv[])
break;
}
}
//! [show_results]
return 0;
}
//! [compute_errors]
static double computeReprojectionErrors( const vector<vector<Point3f> >& objectPoints,
const vector<vector<Point2f> >& imagePoints,
const vector<Mat>& rvecs, const vector<Mat>& tvecs,
@ -390,17 +410,16 @@ static double computeReprojectionErrors( const vector<vector<Point3f> >& objectP
vector<float>& perViewErrors)
{
vector<Point2f> imagePoints2;
int i, totalPoints = 0;
size_t totalPoints = 0;
double totalErr = 0, err;
perViewErrors.resize(objectPoints.size());
for( i = 0; i < (int)objectPoints.size(); ++i )
for(size_t i = 0; i < objectPoints.size(); ++i )
{
projectPoints( Mat(objectPoints[i]), rvecs[i], tvecs[i], cameraMatrix,
distCoeffs, imagePoints2);
err = norm(Mat(imagePoints[i]), Mat(imagePoints2), NORM_L2);
projectPoints(objectPoints[i], rvecs[i], tvecs[i], cameraMatrix, distCoeffs, imagePoints2);
err = norm(imagePoints[i], imagePoints2, NORM_L2);
int n = (int)objectPoints[i].size();
size_t n = objectPoints[i].size();
perViewErrors[i] = (float) std::sqrt(err*err/n);
totalErr += err*err;
totalPoints += n;
@ -408,7 +427,8 @@ static double computeReprojectionErrors( const vector<vector<Point3f> >& objectP
return std::sqrt(totalErr/totalPoints);
}
//! [compute_errors]
//! [board_corners]
static void calcBoardCornerPositions(Size boardSize, float squareSize, vector<Point3f>& corners,
Settings::Pattern patternType /*= Settings::CHESSBOARD*/)
{
@ -420,28 +440,28 @@ static void calcBoardCornerPositions(Size boardSize, float squareSize, vector<Po
case Settings::CIRCLES_GRID:
for( int i = 0; i < boardSize.height; ++i )
for( int j = 0; j < boardSize.width; ++j )
corners.push_back(Point3f(float( j*squareSize ), float( i*squareSize ), 0));
corners.push_back(Point3f(j*squareSize, i*squareSize, 0));
break;
case Settings::ASYMMETRIC_CIRCLES_GRID:
for( int i = 0; i < boardSize.height; i++ )
for( int j = 0; j < boardSize.width; j++ )
corners.push_back(Point3f(float((2*j + i % 2)*squareSize), float(i*squareSize), 0));
corners.push_back(Point3f((2*j + i % 2)*squareSize, i*squareSize, 0));
break;
default:
break;
}
}
//! [board_corners]
static bool runCalibration( Settings& s, Size& imageSize, Mat& cameraMatrix, Mat& distCoeffs,
vector<vector<Point2f> > imagePoints, vector<Mat>& rvecs, vector<Mat>& tvecs,
vector<float>& reprojErrs, double& totalAvgErr)
{
//! [fixed_aspect]
cameraMatrix = Mat::eye(3, 3, CV_64F);
if( s.flag & CALIB_FIX_ASPECT_RATIO )
cameraMatrix.at<double>(0,0) = 1.0;
cameraMatrix.at<double>(0,0) = s.aspectRatio;
//! [fixed_aspect]
distCoeffs = Mat::zeros(8, 1, CV_64F);
vector<vector<Point3f> > objectPoints(1);
@ -475,49 +495,48 @@ static void saveCameraParams( Settings& s, Size& imageSize, Mat& cameraMatrix, M
time( &tm );
struct tm *t2 = localtime( &tm );
char buf[1024];
strftime( buf, sizeof(buf)-1, "%c", t2 );
strftime( buf, sizeof(buf), "%c", t2 );
fs << "calibration_Time" << buf;
fs << "calibration_time" << buf;
if( !rvecs.empty() || !reprojErrs.empty() )
fs << "nrOfFrames" << (int)std::max(rvecs.size(), reprojErrs.size());
fs << "image_Width" << imageSize.width;
fs << "image_Height" << imageSize.height;
fs << "board_Width" << s.boardSize.width;
fs << "board_Height" << s.boardSize.height;
fs << "square_Size" << s.squareSize;
fs << "nr_of_frames" << (int)std::max(rvecs.size(), reprojErrs.size());
fs << "image_width" << imageSize.width;
fs << "image_height" << imageSize.height;
fs << "board_width" << s.boardSize.width;
fs << "board_height" << s.boardSize.height;
fs << "square_size" << s.squareSize;
if( s.flag & CALIB_FIX_ASPECT_RATIO )
fs << "FixAspectRatio" << s.aspectRatio;
fs << "fix_aspect_ratio" << s.aspectRatio;
if( s.flag )
if (s.flag)
{
sprintf( buf, "flags: %s%s%s%s",
sprintf(buf, "flags: %s%s%s%s",
s.flag & CALIB_USE_INTRINSIC_GUESS ? " +use_intrinsic_guess" : "",
s.flag & CALIB_FIX_ASPECT_RATIO ? " +fix_aspectRatio" : "",
s.flag & CALIB_FIX_ASPECT_RATIO ? " +fix_aspect_ratio" : "",
s.flag & CALIB_FIX_PRINCIPAL_POINT ? " +fix_principal_point" : "",
s.flag & CALIB_ZERO_TANGENT_DIST ? " +zero_tangent_dist" : "" );
//cvWriteComment( *fs, buf, 0 );
s.flag & CALIB_ZERO_TANGENT_DIST ? " +zero_tangent_dist" : "");
cvWriteComment(*fs, buf, 0);
}
fs << "flagValue" << s.flag;
fs << "flags" << s.flag;
fs << "Camera_Matrix" << cameraMatrix;
fs << "Distortion_Coefficients" << distCoeffs;
fs << "camera_matrix" << cameraMatrix;
fs << "distortion_coefficients" << distCoeffs;
fs << "Avg_Reprojection_Error" << totalAvgErr;
if( !reprojErrs.empty() )
fs << "Per_View_Reprojection_Errors" << Mat(reprojErrs);
fs << "avg_reprojection_error" << totalAvgErr;
if (s.writeExtrinsics && !reprojErrs.empty())
fs << "per_view_reprojection_errors" << Mat(reprojErrs);
if( !rvecs.empty() && !tvecs.empty() )
if(s.writeExtrinsics && !rvecs.empty() && !tvecs.empty() )
{
CV_Assert(rvecs[0].type() == tvecs[0].type());
Mat bigmat((int)rvecs.size(), 6, rvecs[0].type());
for( int i = 0; i < (int)rvecs.size(); i++ )
for( size_t i = 0; i < rvecs.size(); i++ )
{
Mat r = bigmat(Range(i, i+1), Range(0,3));
Mat t = bigmat(Range(i, i+1), Range(3,6));
Mat r = bigmat(Range(int(i), int(i+1)), Range(0,3));
Mat t = bigmat(Range(int(i), int(i+1)), Range(3,6));
CV_Assert(rvecs[i].rows == 3 && rvecs[i].cols == 1);
CV_Assert(tvecs[i].rows == 3 && tvecs[i].cols == 1);
@ -526,35 +545,38 @@ static void saveCameraParams( Settings& s, Size& imageSize, Mat& cameraMatrix, M
t = tvecs[i].t();
}
//cvWriteComment( *fs, "a set of 6-tuples (rotation vector + translation vector) for each view", 0 );
fs << "Extrinsic_Parameters" << bigmat;
fs << "extrinsic_parameters" << bigmat;
}
if( !imagePoints.empty() )
if(s.writePoints && !imagePoints.empty() )
{
Mat imagePtMat((int)imagePoints.size(), (int)imagePoints[0].size(), CV_32FC2);
for( int i = 0; i < (int)imagePoints.size(); i++ )
for( size_t i = 0; i < imagePoints.size(); i++ )
{
Mat r = imagePtMat.row(i).reshape(2, imagePtMat.cols);
Mat r = imagePtMat.row(int(i)).reshape(2, imagePtMat.cols);
Mat imgpti(imagePoints[i]);
imgpti.copyTo(r);
}
fs << "Image_points" << imagePtMat;
fs << "image_points" << imagePtMat;
}
}
bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs,vector<vector<Point2f> > imagePoints )
//! [run_and_save]
bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs,
vector<vector<Point2f> > imagePoints)
{
vector<Mat> rvecs, tvecs;
vector<float> reprojErrs;
double totalAvgErr = 0;
bool ok = runCalibration(s,imageSize, cameraMatrix, distCoeffs, imagePoints, rvecs, tvecs,
reprojErrs, totalAvgErr);
bool ok = runCalibration(s, imageSize, cameraMatrix, distCoeffs, imagePoints, rvecs, tvecs, reprojErrs,
totalAvgErr);
cout << (ok ? "Calibration succeeded" : "Calibration failed")
<< ". avg re projection error = " << totalAvgErr ;
<< ". avg re projection error = " << totalAvgErr << endl;
if( ok )
saveCameraParams( s, imageSize, cameraMatrix, distCoeffs, rvecs ,tvecs, reprojErrs,
imagePoints, totalAvgErr);
if (ok)
saveCameraParams(s, imageSize, cameraMatrix, distCoeffs, rvecs, tvecs, reprojErrs, imagePoints,
totalAvgErr);
return ok;
}
//! [run_and_save]