mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
doc: add new tutorial motion deblur filter (#12215)
* doc: add new tutorial motion deblur filter * Update motion_deblur_filter.markdown a few minor changes
This commit is contained in:
parent
f36790d521
commit
7d3a1657c9
BIN
doc/tutorials/imgproc/motion_deblur_filter/images/black_car.jpg
Executable file
BIN
doc/tutorials/imgproc/motion_deblur_filter/images/black_car.jpg
Executable file
Binary file not shown.
After Width: | Height: | Size: 33 KiB |
BIN
doc/tutorials/imgproc/motion_deblur_filter/images/motion_original.jpg
Executable file
BIN
doc/tutorials/imgproc/motion_deblur_filter/images/motion_original.jpg
Executable file
Binary file not shown.
After Width: | Height: | Size: 51 KiB |
BIN
doc/tutorials/imgproc/motion_deblur_filter/images/motion_psf.png
Executable file
BIN
doc/tutorials/imgproc/motion_deblur_filter/images/motion_psf.png
Executable file
Binary file not shown.
After Width: | Height: | Size: 556 B |
BIN
doc/tutorials/imgproc/motion_deblur_filter/images/white_car.jpg
Executable file
BIN
doc/tutorials/imgproc/motion_deblur_filter/images/white_car.jpg
Executable file
Binary file not shown.
After Width: | Height: | Size: 20 KiB |
72
doc/tutorials/imgproc/motion_deblur_filter/motion_deblur_filter.markdown
Executable file
72
doc/tutorials/imgproc/motion_deblur_filter/motion_deblur_filter.markdown
Executable file
@ -0,0 +1,72 @@
|
||||
Motion Deblur Filter {#tutorial_motion_deblur_filter}
|
||||
==========================
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
In this tutorial you will learn:
|
||||
|
||||
- what the PSF of a motion blur image is
|
||||
- how to restore a motion blur image
|
||||
|
||||
Theory
|
||||
------
|
||||
|
||||
For the degradation image model theory and the Wiener filter theory you can refer to the tutorial @ref tutorial_out_of_focus_deblur_filter "Out-of-focus Deblur Filter".
|
||||
On this page only a linear motion blur distortion is considered. The motion blur image on this page is a real world image. The blur was caused by a moving subject.
|
||||
|
||||
### What is the PSF of a motion blur image?
|
||||
|
||||
The point spread function (PSF) of a linear motion blur distortion is a line segment. Such a PSF is specified by two parameters: \f$LEN\f$ is the length of the blur and \f$THETA\f$ is the angle of motion.
|
||||
|
||||
![Point spread function of a linear motion blur distortion](images/motion_psf.png)
|
||||
|
||||
### How to restore a blurred image?
|
||||
|
||||
On this page the Wiener filter is used as the restoration filter, for details you can refer to the tutorial @ref tutorial_out_of_focus_deblur_filter "Out-of-focus Deblur Filter".
|
||||
In order to synthesize the Wiener filter for a motion blur case, it needs to specify the signal-to-noise ratio (\f$SNR\f$), \f$LEN\f$ and \f$THETA\f$ of the PSF.
|
||||
|
||||
Source code
|
||||
-----------
|
||||
|
||||
You can find source code in the `samples/cpp/tutorial_code/ImgProc/motion_deblur_filter/motion_deblur_filter.cpp` of the OpenCV source code library.
|
||||
|
||||
@include cpp/tutorial_code/ImgProc/motion_deblur_filter/motion_deblur_filter.cpp
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
A motion blur image recovering algorithm consists of PSF generation, Wiener filter generation and filtering a blurred image in a frequency domain:
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/motion_deblur_filter/motion_deblur_filter.cpp main
|
||||
|
||||
A function calcPSF() forms a PSF according to input parameters \f$LEN\f$ and \f$THETA\f$ (in degrees):
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/motion_deblur_filter/motion_deblur_filter.cpp calcPSF
|
||||
|
||||
A function edgetaper() tapers the input image’s edges in order to reduce the ringing effect in a restored image:
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/motion_deblur_filter/motion_deblur_filter.cpp edgetaper
|
||||
|
||||
The functions calcWnrFilter(), fftshift() and filter2DFreq() realize an image filtration by a specified PSF in the frequency domain. The functions are copied from the tutorial
|
||||
@ref tutorial_out_of_focus_deblur_filter "Out-of-focus Deblur Filter".
|
||||
|
||||
Result
|
||||
------
|
||||
|
||||
Below you can see the real world image with motion blur distortion. The license plate is not readable on both cars. The red markers show the car’s license plate location.
|
||||
![Motion blur image. The license plates are not readable](images/motion_original.jpg)
|
||||
|
||||
|
||||
Below you can see the restoration result for the black car license plate. The result has been computed with \f$LEN\f$ = 125, \f$THETA\f$ = 0, \f$SNR\f$ = 700.
|
||||
![The restored image of the black car license plate](images/black_car.jpg)
|
||||
|
||||
Below you can see the restoration result for the white car license plate. The result has been computed with \f$LEN\f$ = 78, \f$THETA\f$ = 15, \f$SNR\f$ = 300.
|
||||
![The restored image of the white car license plate](images/white_car.jpg)
|
||||
|
||||
The values of \f$SNR\f$, \f$LEN\f$ and \f$THETA\f$ were selected manually to give the best possible visual result. The \f$THETA\f$ parameter coincides with the car’s moving direction, and the
|
||||
\f$LEN\f$ parameter depends on the car’s moving speed.
|
||||
The result is not perfect, but at least it gives us a hint of the image’s content. With some effort, the car license plate is now readable.
|
||||
|
||||
@note The parameters \f$LEN\f$ and \f$THETA\f$ are the most important. You should adjust \f$LEN\f$ and \f$THETA\f$ first, then \f$SNR\f$.
|
||||
|
||||
You can also find a quick video demonstration of a license plate recovering method
|
||||
[YouTube](https://youtu.be/xSrE0hdhb4o).
|
||||
@youtube{xSrE0hdhb4o}
|
@ -320,3 +320,13 @@ In this section you will learn about the image processing (manipulation) functio
|
||||
*Author:* Karpushin Vladislav
|
||||
|
||||
You will learn how to recover an out-of-focus image by Wiener filter.
|
||||
|
||||
- @subpage tutorial_motion_deblur_filter
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Karpushin Vladislav
|
||||
|
||||
You will learn how to recover an image with motion blur distortion using a Wiener filter.
|
||||
|
184
samples/cpp/tutorial_code/ImgProc/motion_deblur_filter/motion_deblur_filter.cpp
Executable file
184
samples/cpp/tutorial_code/ImgProc/motion_deblur_filter/motion_deblur_filter.cpp
Executable file
@ -0,0 +1,184 @@
|
||||
/**
|
||||
* @brief You will learn how to recover an image with motion blur distortion using a Wiener filter
|
||||
* @author Karpushin Vladislav, karpushin@ngs.ru, https://github.com/VladKarpushin
|
||||
*/
|
||||
#include <iostream>
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
void help();
|
||||
void calcPSF(Mat& outputImg, Size filterSize, int len, double theta);
|
||||
void fftshift(const Mat& inputImg, Mat& outputImg);
|
||||
void filter2DFreq(const Mat& inputImg, Mat& outputImg, const Mat& H);
|
||||
void calcWnrFilter(const Mat& input_h_PSF, Mat& output_G, double nsr);
|
||||
void edgetaper(const Mat& inputImg, Mat& outputImg, double gamma = 5.0, double beta = 0.2);
|
||||
|
||||
const String keys =
|
||||
"{help h usage ? | | print this message }"
|
||||
"{image |input.png | input image name }"
|
||||
"{LEN |125 | length of a motion }"
|
||||
"{THETA |0 | angle of a motion in degrees }"
|
||||
"{SNR |700 | signal to noise ratio }"
|
||||
;
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
help();
|
||||
CommandLineParser parser(argc, argv, keys);
|
||||
if (parser.has("help"))
|
||||
{
|
||||
parser.printMessage();
|
||||
return 0;
|
||||
}
|
||||
|
||||
int LEN = parser.get<int>("LEN");
|
||||
double THETA = parser.get<double>("THETA");
|
||||
int snr = parser.get<int>("SNR");
|
||||
string strInFileName = parser.get<String>("image");
|
||||
|
||||
if (!parser.check())
|
||||
{
|
||||
parser.printErrors();
|
||||
return 0;
|
||||
}
|
||||
|
||||
Mat imgIn;
|
||||
imgIn = imread(strInFileName, IMREAD_GRAYSCALE);
|
||||
if (imgIn.empty()) //check whether the image is loaded or not
|
||||
{
|
||||
cout << "ERROR : Image cannot be loaded..!!" << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
Mat imgOut;
|
||||
|
||||
//! [main]
|
||||
// it needs to process even image only
|
||||
Rect roi = Rect(0, 0, imgIn.cols & -2, imgIn.rows & -2);
|
||||
|
||||
//Hw calculation (start)
|
||||
Mat Hw, h;
|
||||
calcPSF(h, roi.size(), LEN, THETA);
|
||||
calcWnrFilter(h, Hw, 1.0 / double(snr));
|
||||
//Hw calculation (stop)
|
||||
|
||||
imgIn.convertTo(imgIn, CV_32F);
|
||||
edgetaper(imgIn, imgIn);
|
||||
|
||||
// filtering (start)
|
||||
filter2DFreq(imgIn(roi), imgOut, Hw);
|
||||
// filtering (stop)
|
||||
//! [main]
|
||||
|
||||
imgOut.convertTo(imgOut, CV_8U);
|
||||
normalize(imgOut, imgOut, 0, 255, NORM_MINMAX);
|
||||
imwrite("result.jpg", imgOut);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void help()
|
||||
{
|
||||
cout << "2018-08-14" << endl;
|
||||
cout << "Motion_deblur_v2" << endl;
|
||||
cout << "You will learn how to recover an image with motion blur distortion using a Wiener filter" << endl;
|
||||
}
|
||||
|
||||
//! [calcPSF]
|
||||
void calcPSF(Mat& outputImg, Size filterSize, int len, double theta)
|
||||
{
|
||||
Mat h(filterSize, CV_32F, Scalar(0));
|
||||
Point point(filterSize.width / 2, filterSize.height / 2);
|
||||
ellipse(h, point, Size(0, cvRound(float(len) / 2.0)), 90.0 - theta, 0, 360, Scalar(255), FILLED);
|
||||
Scalar summa = sum(h);
|
||||
outputImg = h / summa[0];
|
||||
}
|
||||
//! [calcPSF]
|
||||
|
||||
//! [fftshift]
|
||||
void fftshift(const Mat& inputImg, Mat& outputImg)
|
||||
{
|
||||
outputImg = inputImg.clone();
|
||||
int cx = outputImg.cols / 2;
|
||||
int cy = outputImg.rows / 2;
|
||||
Mat q0(outputImg, Rect(0, 0, cx, cy));
|
||||
Mat q1(outputImg, Rect(cx, 0, cx, cy));
|
||||
Mat q2(outputImg, Rect(0, cy, cx, cy));
|
||||
Mat q3(outputImg, Rect(cx, cy, cx, cy));
|
||||
Mat tmp;
|
||||
q0.copyTo(tmp);
|
||||
q3.copyTo(q0);
|
||||
tmp.copyTo(q3);
|
||||
q1.copyTo(tmp);
|
||||
q2.copyTo(q1);
|
||||
tmp.copyTo(q2);
|
||||
}
|
||||
//! [fftshift]
|
||||
|
||||
//! [filter2DFreq]
|
||||
void filter2DFreq(const Mat& inputImg, Mat& outputImg, const Mat& H)
|
||||
{
|
||||
Mat planes[2] = { Mat_<float>(inputImg.clone()), Mat::zeros(inputImg.size(), CV_32F) };
|
||||
Mat complexI;
|
||||
merge(planes, 2, complexI);
|
||||
dft(complexI, complexI, DFT_SCALE);
|
||||
|
||||
Mat planesH[2] = { Mat_<float>(H.clone()), Mat::zeros(H.size(), CV_32F) };
|
||||
Mat complexH;
|
||||
merge(planesH, 2, complexH);
|
||||
Mat complexIH;
|
||||
mulSpectrums(complexI, complexH, complexIH, 0);
|
||||
|
||||
idft(complexIH, complexIH);
|
||||
split(complexIH, planes);
|
||||
outputImg = planes[0];
|
||||
}
|
||||
//! [filter2DFreq]
|
||||
|
||||
//! [calcWnrFilter]
|
||||
void calcWnrFilter(const Mat& input_h_PSF, Mat& output_G, double nsr)
|
||||
{
|
||||
Mat h_PSF_shifted;
|
||||
fftshift(input_h_PSF, h_PSF_shifted);
|
||||
Mat planes[2] = { Mat_<float>(h_PSF_shifted.clone()), Mat::zeros(h_PSF_shifted.size(), CV_32F) };
|
||||
Mat complexI;
|
||||
merge(planes, 2, complexI);
|
||||
dft(complexI, complexI);
|
||||
split(complexI, planes);
|
||||
Mat denom;
|
||||
pow(abs(planes[0]), 2, denom);
|
||||
denom += nsr;
|
||||
divide(planes[0], denom, output_G);
|
||||
}
|
||||
//! [calcWnrFilter]
|
||||
|
||||
//! [edgetaper]
|
||||
void edgetaper(const Mat& inputImg, Mat& outputImg, double gamma, double beta)
|
||||
{
|
||||
int Nx = inputImg.cols;
|
||||
int Ny = inputImg.rows;
|
||||
Mat w1(1, Nx, CV_32F, Scalar(0));
|
||||
Mat w2(Ny, 1, CV_32F, Scalar(0));
|
||||
|
||||
float* p1 = w1.ptr<float>(0);
|
||||
float* p2 = w2.ptr<float>(0);
|
||||
float dx = float(2.0 * CV_PI / Nx);
|
||||
float x = float(-CV_PI);
|
||||
for (int i = 0; i < Nx; i++)
|
||||
{
|
||||
p1[i] = float(0.5 * (tanh((x + gamma / 2) / beta) - tanh((x - gamma / 2) / beta)));
|
||||
x += dx;
|
||||
}
|
||||
float dy = float(2.0 * CV_PI / Ny);
|
||||
float y = float(-CV_PI);
|
||||
for (int i = 0; i < Ny; i++)
|
||||
{
|
||||
p2[i] = float(0.5 * (tanh((y + gamma / 2) / beta) - tanh((y - gamma / 2) / beta)));
|
||||
y += dy;
|
||||
}
|
||||
Mat w = w2 * w1;
|
||||
multiply(inputImg, w, outputImg);
|
||||
}
|
||||
//! [edgetaper]
|
Loading…
Reference in New Issue
Block a user