mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
allowing people to manually define how sharp a cascade classifier model should be trained
This commit is contained in:
parent
4e87deae28
commit
7e35f76d06
@ -135,7 +135,8 @@ bool CvCascadeClassifier::train( const string _cascadeDirName,
|
||||
const CvCascadeParams& _cascadeParams,
|
||||
const CvFeatureParams& _featureParams,
|
||||
const CvCascadeBoostParams& _stageParams,
|
||||
bool baseFormatSave )
|
||||
bool baseFormatSave,
|
||||
double acceptanceRatioBreakValue )
|
||||
{
|
||||
// Start recording clock ticks for training time output
|
||||
const clock_t begin_time = clock();
|
||||
@ -185,6 +186,7 @@ bool CvCascadeClassifier::train( const string _cascadeDirName,
|
||||
cout << "numStages: " << numStages << endl;
|
||||
cout << "precalcValBufSize[Mb] : " << _precalcValBufSize << endl;
|
||||
cout << "precalcIdxBufSize[Mb] : " << _precalcIdxBufSize << endl;
|
||||
cout << "acceptanceRatioBreakValue : " << acceptanceRatioBreakValue << endl;
|
||||
cascadeParams.printAttrs();
|
||||
stageParams->printAttrs();
|
||||
featureParams->printAttrs();
|
||||
@ -216,6 +218,11 @@ bool CvCascadeClassifier::train( const string _cascadeDirName,
|
||||
"Branch training terminated." << endl;
|
||||
break;
|
||||
}
|
||||
if( (tempLeafFARate <= acceptanceRatioBreakValue) && (acceptanceRatioBreakValue < 0) ){
|
||||
cout << "The required acceptanceRatio for the model has been reached to avoid overfitting of trainingdata. "
|
||||
"Branch training terminated." << endl;
|
||||
break;
|
||||
}
|
||||
|
||||
Ptr<CvCascadeBoost> tempStage = makePtr<CvCascadeBoost>();
|
||||
bool isStageTrained = tempStage->train( featureEvaluator,
|
||||
|
@ -94,7 +94,8 @@ public:
|
||||
const CvCascadeParams& _cascadeParams,
|
||||
const CvFeatureParams& _featureParams,
|
||||
const CvCascadeBoostParams& _stageParams,
|
||||
bool baseFormatSave = false );
|
||||
bool baseFormatSave = false,
|
||||
double acceptanceRatioBreakValue = -1.0 );
|
||||
private:
|
||||
int predict( int sampleIdx );
|
||||
void save( const std::string cascadeDirName, bool baseFormat = false );
|
||||
|
@ -15,6 +15,7 @@ int main( int argc, char* argv[] )
|
||||
int precalcValBufSize = 256,
|
||||
precalcIdxBufSize = 256;
|
||||
bool baseFormatSave = false;
|
||||
double acceptanceRatioBreakValue = -1.0;
|
||||
|
||||
CvCascadeParams cascadeParams;
|
||||
CvCascadeBoostParams stageParams;
|
||||
@ -36,6 +37,7 @@ int main( int argc, char* argv[] )
|
||||
cout << " [-precalcIdxBufSize <precalculated_idxs_buffer_size_in_Mb = " << precalcIdxBufSize << ">]" << endl;
|
||||
cout << " [-baseFormatSave]" << endl;
|
||||
cout << " [-numThreads <max_number_of_threads = " << numThreads << ">]" << endl;
|
||||
cout << " [-acceptanceRatioBreakValue <value> = " << acceptanceRatioBreakValue << ">]" << endl;
|
||||
cascadeParams.printDefaults();
|
||||
stageParams.printDefaults();
|
||||
for( int fi = 0; fi < fc; fi++ )
|
||||
@ -86,6 +88,10 @@ int main( int argc, char* argv[] )
|
||||
{
|
||||
numThreads = atoi(argv[++i]);
|
||||
}
|
||||
else if( !strcmp( argv[i], "-acceptanceRatioBreakValue" ) )
|
||||
{
|
||||
acceptanceRatioBreakValue = atof(argv[++i]);
|
||||
}
|
||||
else if ( cascadeParams.scanAttr( argv[i], argv[i+1] ) ) { i++; }
|
||||
else if ( stageParams.scanAttr( argv[i], argv[i+1] ) ) { i++; }
|
||||
else if ( !set )
|
||||
@ -112,6 +118,7 @@ int main( int argc, char* argv[] )
|
||||
cascadeParams,
|
||||
*featureParams[cascadeParams.featureType],
|
||||
stageParams,
|
||||
baseFormatSave );
|
||||
baseFormatSave,
|
||||
acceptanceRatioBreakValue );
|
||||
return 0;
|
||||
}
|
||||
|
@ -256,6 +256,12 @@ Command line arguments of opencv_traincascade application grouped by purposes:
|
||||
Maximum number of threads to use during training. Notice that the actual number of used
|
||||
threads may be lower, depending on your machine and compilation options.
|
||||
|
||||
- -acceptanceRatioBreakValue \<break_value\>
|
||||
|
||||
This argument is used to determine how precise your model should keep learning and when to stop.
|
||||
A good guideline is to train not further than 10e-5, to ensure the model does not overtrain on your training data.
|
||||
By default this value is set to -1 to disable this feature.
|
||||
|
||||
-# Cascade parameters:
|
||||
|
||||
- -stageType \<BOOST(default)\>
|
||||
|
Loading…
Reference in New Issue
Block a user