added tests for some detectors; made features2d object create functions as static classes methods; fixed OpponentColorDescriptorExtractor, BriefDescriptorExtractor (on rgb); renamed DynamicDetector

This commit is contained in:
Maria Dimashova 2010-11-25 15:59:37 +00:00
parent 9ad7a1c927
commit 7e5c11a920
13 changed files with 400 additions and 322 deletions

View File

@ -1250,11 +1250,14 @@ public:
*/
void detect( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, const vector<Mat>& masks=vector<Mat>() ) const;
// Read detector object from a file node
// Read detector object from a file node.
virtual void read( const FileNode& );
// Read detector object from a file node
// Read detector object from a file node.
virtual void write( FileStorage& ) const;
// Create feature detector by detector name.
static Ptr<FeatureDetector> create( const string& detectorType );
protected:
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const = 0;
/*
@ -1416,7 +1419,7 @@ public:
* gridRows Grid rows count.
* gridCols Grid column count.
*/
GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector, int maxTotalKeypoints,
GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector, int maxTotalKeypoints=1000,
int gridRows=4, int gridCols=4 );
// TODO implement read/write
@ -1448,19 +1451,15 @@ protected:
int levels;
};
/*
* Dynamic Feature Detectors
*/
/** \brief A feature detector parameter adjuster, this is used by the DynamicDetector
/** \brief A feature detector parameter adjuster, this is used by the DynamicAdaptedFeatureDetector
* and is a wrapper for FeatureDetector that allow them to be adjusted after a detection
*/
class CV_EXPORTS AdjusterAdapter: public FeatureDetector {
public:
class CV_EXPORTS AdjusterAdapter: public FeatureDetector
{
public:
/** pure virtual interface
*/
virtual ~AdjusterAdapter() {
}
virtual ~AdjusterAdapter() {}
/** too few features were detected so, adjust the detector params accordingly
* \param min the minimum number of desired features
* \param n_detected the number previously detected
@ -1475,6 +1474,8 @@ public:
* \return false if the parameters can't be adjusted any more
*/
virtual bool good() const = 0;
static Ptr<AdjusterAdapter> create( const string& detectorType );
};
/** \brief an adaptively adjusting detector that iteratively detects until the desired number
* of features are detected.
@ -1485,24 +1486,24 @@ public:
* sample usage:
//will create a detector that attempts to find 100 - 110 FAST Keypoints, and will at most run
//FAST feature detection 10 times until that number of keypoints are found
Ptr<FeatureDetector> detector(new DynamicDetector (100, 110, 10,new FastAdjuster(20,true)));
Ptr<FeatureDetector> detector(new DynamicAdaptedFeatureDetector(new FastAdjuster(20,true),100, 110, 10));
*/
class CV_EXPORTS DynamicDetector: public FeatureDetector {
class CV_EXPORTS DynamicAdaptedFeatureDetector: public FeatureDetector
{
public:
/** \param min_features the minimum desired features
/** \param adjaster an AdjusterAdapter that will do the detection and parameter adjustment
* \param max_features the maximum desired number of features
* \param max_iters the maximum number of times to try to adjust the feature detector params
* for the FastAdjuster this can be high, but with Star or Surf this can get time consuming
* \param a an AdjusterAdapter that will do the detection and parameter adjustment
* \param min_features the minimum desired features
*/
DynamicDetector(int min_features, int max_features, int max_iters,
const Ptr<AdjusterAdapter>& a);
DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjaster, int min_features=400, int max_features=500, int max_iters=5 );
protected:
virtual void detectImpl(const cv::Mat& image,
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask =
cv::Mat()) const;
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
private:
int escape_iters_;
int min_features_, max_features_;
@ -1512,7 +1513,8 @@ private:
/**\brief an adjust for the FAST detector. This will basically decrement or increment the
* threshhold by 1
*/
class CV_EXPORTS FastAdjuster: public AdjusterAdapter {
class CV_EXPORTS FastAdjuster: public AdjusterAdapter
{
public:
/**\param init_thresh the initial threshhold to start with, default = 20
* \param nonmax whether to use non max or not for fast feature detection
@ -1521,50 +1523,50 @@ public:
virtual void tooFew(int min, int n_detected);
virtual void tooMany(int max, int n_detected);
virtual bool good() const;
protected:
virtual void detectImpl(const cv::Mat& image,
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask =
cv::Mat()) const;
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
int thresh_;
bool nonmax_;
};
/** An adjuster for StarFeatureDetector, this one adjusts the responseThreshold for now
* TODO find a faster way to converge the parameters for Star - use CvStarDetectorParams
*/
struct CV_EXPORTS StarAdjuster: public AdjusterAdapter {
class CV_EXPORTS StarAdjuster: public AdjusterAdapter
{
public:
StarAdjuster(double initial_thresh = 30.0);
virtual void tooFew(int min, int n_detected);
virtual void tooMany(int max, int n_detected);
virtual bool good() const;
protected:
virtual void detectImpl(const cv::Mat& image,
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask =
cv::Mat()) const;
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
double thresh_;
CvStarDetectorParams params_; //todo use these instead of thresh_
};
struct CV_EXPORTS SurfAdjuster: public AdjusterAdapter {
SurfAdjuster();
class CV_EXPORTS SurfAdjuster: public AdjusterAdapter
{
public:
SurfAdjuster();
virtual void tooFew(int min, int n_detected);
virtual void tooMany(int max, int n_detected);
virtual bool good() const;
protected:
virtual void detectImpl(const cv::Mat& image,
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask =
cv::Mat()) const;
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
double thresh_;
};
CV_EXPORTS Mat windowedMatchingMask( const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2,
float maxDeltaX, float maxDeltaY );
CV_EXPORTS Ptr<FeatureDetector> createFeatureDetector( const string& detectorType );
/****************************************************************************************\
* DescriptorExtractor *
\****************************************************************************************/
@ -1606,6 +1608,8 @@ public:
virtual int descriptorSize() const = 0;
virtual int descriptorType() const = 0;
static Ptr<DescriptorExtractor> create( const string& descriptorExtractorType );
protected:
virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const = 0;
@ -1771,8 +1775,6 @@ protected:
PixelTestFn test_fn_;
};
CV_EXPORTS Ptr<DescriptorExtractor> createDescriptorExtractor( const string& descriptorExtractorType );
/****************************************************************************************\
* Distance *
\****************************************************************************************/
@ -1981,6 +1983,7 @@ public:
// but with empty train data.
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
static Ptr<DescriptorMatcher> create( const string& descriptorMatcherType );
protected:
/*
* Class to work with descriptors from several images as with one merged matrix.
@ -2265,9 +2268,6 @@ protected:
int addedDescCount;
};
CV_EXPORTS Ptr<DescriptorMatcher> createDescriptorMatcher( const string& descriptorMatcherType );
/****************************************************************************************\
* GenericDescriptorMatcher *
\****************************************************************************************/
@ -2372,6 +2372,9 @@ public:
// but with empty train data.
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
static Ptr<GenericDescriptorMatcher> create( const string& genericDescritptorMatcherType,
const string &paramsFilename=string() );
protected:
// In fact the matching is implemented only by the following two methods. These methods suppose
// that the class object has been trained already. Public match methods call these methods
@ -2557,9 +2560,6 @@ protected:
int prevTrainCount;
};
CV_EXPORTS Ptr<GenericDescriptorMatcher> createGenericDescriptorMatcher( const string& genericDescritptorMatcherType,
const string &paramsFilename = string () );
/****************************************************************************************\
* VectorDescriptorMatcher *
\****************************************************************************************/

View File

@ -92,15 +92,17 @@ void pixelTests64(const Mat& sum, const std::vector<KeyPoint>& keypoints, Mat& d
namespace cv
{
HammingLUT::ResultType HammingLUT::operator()( const unsigned char* a, const unsigned char* b, int size ) const
{
ResultType result = 0;
for (int i = 0; i < size; i++)
{
result += byteBitsLookUp(a[i] ^ b[i]);
}
return result;
}
{
ResultType result = 0;
for (int i = 0; i < size; i++)
{
result += byteBitsLookUp(a[i] ^ b[i]);
}
return result;
}
Hamming::ResultType Hamming::operator()(const unsigned char* a, const unsigned char* b, int size) const
{
#if __GNUC__
@ -116,6 +118,7 @@ Hamming::ResultType Hamming::operator()(const unsigned char* a, const unsigned c
return HammingLUT()(a,b,size);
#endif
}
BriefDescriptorExtractor::BriefDescriptorExtractor(int bytes) :
bytes_(bytes), test_fn_(NULL)
{
@ -150,12 +153,15 @@ void BriefDescriptorExtractor::computeImpl(const Mat& image, std::vector<KeyPoin
// Construct integral image for fast smoothing (box filter)
Mat sum;
Mat grayImage = image;
if( image.type() != CV_8U ) cvtColor( image, grayImage, CV_BGR2GRAY );
///TODO allow the user to pass in a precomputed integral image
//if(image.type() == CV_32S)
// sum = image;
//else
integral(image, sum, CV_32S);
integral( grayImage, sum, CV_32S);
//Remove keypoints very close to the border
removeBorderKeypoints(keypoints, image.size(), PATCH_SIZE/2 + KERNEL_SIZE/2);

View File

@ -109,6 +109,31 @@ void DescriptorExtractor::removeBorderKeypoints( vector<KeyPoint>& keypoints,
}
}
Ptr<DescriptorExtractor> DescriptorExtractor::create(const string& descriptorExtractorType)
{
DescriptorExtractor* de = 0;
int pos = 0;
if (!descriptorExtractorType.compare("SIFT"))
{
de = new SiftDescriptorExtractor();
}
else if (!descriptorExtractorType.compare("SURF"))
{
de = new SurfDescriptorExtractor();
}
else if (!descriptorExtractorType.compare("BRIEF"))
{
de = new BriefDescriptorExtractor();
}
else if ( (pos=descriptorExtractorType.find("Opponent")) == 0)
{
pos += string("Opponent").size();
de = new OpponentColorDescriptorExtractor( DescriptorExtractor::create(descriptorExtractorType.substr(pos)) );
}
return de;
}
/****************************************************************************************\
* SiftDescriptorExtractor *
\****************************************************************************************/
@ -231,7 +256,9 @@ int SurfDescriptorExtractor::descriptorType() const
\****************************************************************************************/
OpponentColorDescriptorExtractor::OpponentColorDescriptorExtractor( const Ptr<DescriptorExtractor>& _descriptorExtractor ) :
descriptorExtractor(_descriptorExtractor)
{}
{
CV_Assert( !descriptorExtractor.empty() );
}
void convertBGRImageToOpponentColorSpace( const Mat& bgrImage, vector<Mat>& opponentChannels )
{
@ -305,7 +332,7 @@ void OpponentColorDescriptorExtractor::computeImpl( const Mat& bgrImage, vector<
// Compute descriptors three times, once for each Opponent channel
// and concatenate into a single color surf descriptor
int descriptorSize = descriptorExtractor->descriptorSize();
descriptors.create( static_cast<int>(keypoints.size()), 3*descriptorSize, CV_32FC1 );
descriptors.create( static_cast<int>(keypoints.size()), 3*descriptorSize, descriptorExtractor->descriptorType() );
for( int i = 0; i < 3/*channel count*/; i++ )
{
CV_Assert( opponentChannels[i].type() == CV_8UC1 );
@ -333,34 +360,5 @@ int OpponentColorDescriptorExtractor::descriptorType() const
{
return descriptorExtractor->descriptorType();
}
/****************************************************************************************\
* Factory function for descriptor extractor creating *
\****************************************************************************************/
Ptr<DescriptorExtractor> createDescriptorExtractor(const string& descriptorExtractorType)
{
DescriptorExtractor* de = 0;
if (!descriptorExtractorType.compare("SIFT"))
{
de = new SiftDescriptorExtractor();
}
else if (!descriptorExtractorType.compare("SURF"))
{
de = new SurfDescriptorExtractor();
}
else if (!descriptorExtractorType.compare("OpponentSIFT"))
{
de = new OpponentColorDescriptorExtractor(new SiftDescriptorExtractor);
}
else if (!descriptorExtractorType.compare("OpponentSURF"))
{
de = new OpponentColorDescriptorExtractor(new SurfDescriptorExtractor);
}
else if (!descriptorExtractorType.compare("BRIEF"))
{
de = new BriefDescriptorExtractor();
}
return de;
}
}

View File

@ -97,6 +97,60 @@ void FeatureDetector::read( const FileNode& )
void FeatureDetector::write( FileStorage& ) const
{}
Ptr<FeatureDetector> FeatureDetector::create( const string& detectorType )
{
FeatureDetector* fd = 0;
int pos = 0;
if( !detectorType.compare( "FAST" ) )
{
fd = new FastFeatureDetector();
}
else if( !detectorType.compare( "STAR" ) )
{
fd = new StarFeatureDetector();
}
else if( !detectorType.compare( "SIFT" ) )
{
fd = new SiftFeatureDetector();
}
else if( !detectorType.compare( "SURF" ) )
{
fd = new SurfFeatureDetector();
}
else if( !detectorType.compare( "MSER" ) )
{
fd = new MserFeatureDetector();
}
else if( !detectorType.compare( "GFTT" ) )
{
fd = new GoodFeaturesToTrackDetector();
}
else if( !detectorType.compare( "HARRIS" ) )
{
GoodFeaturesToTrackDetector::Params params;
params.useHarrisDetector = true;
fd = new GoodFeaturesToTrackDetector(params);
}
else if( (pos=detectorType.find("Grid")) == 0 )
{
pos += string("Grid").size();
fd = new GridAdaptedFeatureDetector( FeatureDetector::create(detectorType.substr(pos)) );
}
else if( (pos=detectorType.find("Pyramid")) == 0 )
{
pos += string("Pyramid").size();
fd = new PyramidAdaptedFeatureDetector( FeatureDetector::create(detectorType.substr(pos)) );
}
else if( (pos=detectorType.find("Dynamic")) == 0 )
{
pos += string("Dynamic").size();
fd = new DynamicAdaptedFeatureDetector( AdjusterAdapter::create(detectorType.substr(pos)) );
}
return fd;
}
/*
* FastFeatureDetector
*/
@ -519,53 +573,4 @@ void PyramidAdaptedFeatureDetector::detectImpl( const Mat& image, vector<KeyPoin
}
}
Ptr<FeatureDetector> createFeatureDetector( const string& detectorType )
{
FeatureDetector* fd = 0;
if( !detectorType.compare( "FAST" ) )
{
fd = new FastFeatureDetector();
}
else if( !detectorType.compare( "DynamicFAST" ) )
{
fd = new DynamicDetector(400,500,5,new FastAdjuster());
}
else if( !detectorType.compare( "STAR" ) )
{
fd = new StarFeatureDetector();
}
else if( !detectorType.compare( "DynamicSTAR" ) )
{
fd = new DynamicDetector(400,500,5,new StarAdjuster());
}
else if( !detectorType.compare( "SIFT" ) )
{
fd = new SiftFeatureDetector(SIFT::DetectorParams::GET_DEFAULT_THRESHOLD(),
SIFT::DetectorParams::GET_DEFAULT_EDGE_THRESHOLD());
}
else if( !detectorType.compare( "SURF" ) )
{
fd = new SurfFeatureDetector();
}
else if( !detectorType.compare( "DynamicSURF" ) )
{
fd =new DynamicDetector(400,500,5,new SurfAdjuster());
}
else if( !detectorType.compare( "MSER" ) )
{
fd = new MserFeatureDetector();
}
else if( !detectorType.compare( "GFTT" ) )
{
fd = new GoodFeaturesToTrackDetector();
}
else if( !detectorType.compare( "HARRIS" ) )
{
GoodFeaturesToTrackDetector::Params params;
params.useHarrisDetector = true;
fd = new GoodFeaturesToTrackDetector(params);
}
return fd;
}
}

View File

@ -41,14 +41,16 @@
//M*/
#include "precomp.hpp"
namespace cv {
DynamicDetector::DynamicDetector(int min_features,
int max_features, int max_iters, const Ptr<AdjusterAdapter>& a) :
escape_iters_(max_iters), min_features_(min_features), max_features_(
max_features), adjuster_(a) {
}
void DynamicDetector::detectImpl(const cv::Mat& image, std::vector<
cv::KeyPoint>& keypoints, const cv::Mat& mask) const {
namespace cv
{
DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector(const Ptr<AdjusterAdapter>& a,
int min_features, int max_features, int max_iters ) :
escape_iters_(max_iters), min_features_(min_features), max_features_(max_features), adjuster_(a)
{}
void DynamicAdaptedFeatureDetector::detectImpl(const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask) const
{
//for oscillation testing
bool down = false;
bool up = false;
@ -62,88 +64,131 @@ void DynamicDetector::detectImpl(const cv::Mat& image, std::vector<
//break if the desired number hasn't been reached.
int iter_count = escape_iters_;
do {
do
{
keypoints.clear();
//the adjuster takes care of calling the detector with updated parameters
adjuster.detect(image, keypoints,mask);
if (int(keypoints.size()) < min_features_) {
if (int(keypoints.size()) < min_features_)
{
down = true;
adjuster.tooFew(min_features_, keypoints.size());
} else if (int(keypoints.size()) > max_features_) {
}
else if (int(keypoints.size()) > max_features_)
{
up = true;
adjuster.tooMany(max_features_, keypoints.size());
} else
}
else
thresh_good = true;
} while (--iter_count >= 0 && !(down && up) && !thresh_good
&& adjuster.good());
}
while (--iter_count >= 0 && !(down && up) && !thresh_good && adjuster.good());
}
FastAdjuster::FastAdjuster(int init_thresh, bool nonmax) :
thresh_(init_thresh), nonmax_(nonmax) {
}
void FastAdjuster::detectImpl(const cv::Mat& image,
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask) const {
thresh_(init_thresh), nonmax_(nonmax)
{}
void FastAdjuster::detectImpl(const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask) const
{
FastFeatureDetector(thresh_, nonmax_).detect(image, keypoints, mask);
}
void FastAdjuster::tooFew(int min, int n_detected) {
void FastAdjuster::tooFew(int min, int n_detected)
{
//fast is easy to adjust
thresh_--;
}
void FastAdjuster::tooMany(int max, int n_detected) {
void FastAdjuster::tooMany(int max, int n_detected)
{
//fast is easy to adjust
thresh_++;
}
//return whether or not the threshhold is beyond
//a useful point
bool FastAdjuster::good() const {
bool FastAdjuster::good() const
{
return (thresh_ > 1) && (thresh_ < 200);
}
StarAdjuster::StarAdjuster(double initial_thresh) :
thresh_(initial_thresh) {
}
void StarAdjuster::detectImpl(const cv::Mat& image,
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask) const {
thresh_(initial_thresh)
{}
void StarAdjuster::detectImpl(const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask) const
{
StarFeatureDetector detector_tmp(16, thresh_, 10, 8, 3);
detector_tmp.detect(image, keypoints, mask);
}
void StarAdjuster::tooFew(int min, int n_detected) {
void StarAdjuster::tooFew(int min, int n_detected)
{
thresh_ *= 0.9;
if (thresh_ < 1.1)
thresh_ = 1.1;
}
void StarAdjuster::tooMany(int max, int n_detected) {
void StarAdjuster::tooMany(int max, int n_detected)
{
thresh_ *= 1.1;
}
bool StarAdjuster::good() const {
bool StarAdjuster::good() const
{
return (thresh_ > 2) && (thresh_ < 200);
}
SurfAdjuster::SurfAdjuster() :
thresh_(400.0) {
}
void SurfAdjuster::detectImpl(const cv::Mat& image,
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask) const {
thresh_(400.0)
{}
void SurfAdjuster::detectImpl(const Mat& image, vector<KeyPoint>& keypoints, const cv::Mat& mask) const
{
SurfFeatureDetector detector_tmp(thresh_);
detector_tmp.detect(image, keypoints, mask);
}
void SurfAdjuster::tooFew(int min, int n_detected) {
void SurfAdjuster::tooFew(int min, int n_detected)
{
thresh_ *= 0.9;
if (thresh_ < 1.1)
thresh_ = 1.1;
}
void SurfAdjuster::tooMany(int max, int n_detected) {
void SurfAdjuster::tooMany(int max, int n_detected)
{
thresh_ *= 1.1;
}
//return whether or not the threshhold is beyond
//a useful point
bool SurfAdjuster::good() const {
bool SurfAdjuster::good() const
{
return (thresh_ > 2) && (thresh_ < 1000);
}
Ptr<AdjusterAdapter> AdjusterAdapter::create( const string& detectorType )
{
Ptr<AdjusterAdapter> adapter;
if( !detectorType.compare( "FAST" ) )
{
adapter = new FastAdjuster();
}
else if( !detectorType.compare( "STAR" ) )
{
adapter = new StarAdjuster();
}
else if( !detectorType.compare( "SURF" ) )
{
adapter = new SurfAdjuster();
}
return adapter;
}
}

View File

@ -322,7 +322,39 @@ bool DescriptorMatcher::isMaskedOut( const vector<Mat>& masks, int queryIdx )
return !masks.empty() && outCount == masks.size() ;
}
/*
* Factory function for DescriptorMatcher creating
*/
Ptr<DescriptorMatcher> DescriptorMatcher::create( const string& descriptorMatcherType )
{
DescriptorMatcher* dm = 0;
if( !descriptorMatcherType.compare( "FlannBased" ) )
{
dm = new FlannBasedMatcher();
}
else if( !descriptorMatcherType.compare( "BruteForce" ) ) // L2
{
dm = new BruteForceMatcher<L2<float> >();
}
else if( !descriptorMatcherType.compare( "BruteForce-L1" ) )
{
dm = new BruteForceMatcher<L1<float> >();
}
else if( !descriptorMatcherType.compare("BruteForce-Hamming") )
{
dm = new BruteForceMatcher<Hamming>();
}
else if( !descriptorMatcherType.compare( "BruteForce-HammingLUT") )
{
dm = new BruteForceMatcher<HammingLUT>();
}
return dm;
}
/*
* BruteForce L2 specialization
*/
template<>
void BruteForceMatcher<L2<float> >::knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int knn,
const vector<Mat>& masks, bool compactResult )
@ -585,36 +617,6 @@ void FlannBasedMatcher::radiusMatchImpl( const Mat& queryDescriptors, vector<vec
convertToDMatches( mergedDescriptors, indices, dists, matches );
}
/*
* Factory function for DescriptorMatcher creating
*/
Ptr<DescriptorMatcher> createDescriptorMatcher( const string& descriptorMatcherType )
{
DescriptorMatcher* dm = 0;
if( !descriptorMatcherType.compare( "FlannBased" ) )
{
dm = new FlannBasedMatcher();
}
else if( !descriptorMatcherType.compare( "BruteForce" ) ) // L2
{
dm = new BruteForceMatcher<L2<float> >();
}
else if( !descriptorMatcherType.compare( "BruteForce-L1" ) )
{
dm = new BruteForceMatcher<L1<float> >();
}
else if( !descriptorMatcherType.compare("BruteForce-Hamming") )
{
dm = new BruteForceMatcher<Hamming>();
}
else if( !descriptorMatcherType.compare( "BruteForce-HammingLUT") )
{
dm = new BruteForceMatcher<HammingLUT>();
}
return dm;
}
/****************************************************************************************\
* GenericDescriptorMatcher *
\****************************************************************************************/
@ -847,6 +849,34 @@ void GenericDescriptorMatcher::read( const FileNode& )
void GenericDescriptorMatcher::write( FileStorage& ) const
{}
/*
* Factory function for GenericDescriptorMatch creating
*/
Ptr<GenericDescriptorMatcher> GenericDescriptorMatcher::create( const string& genericDescritptorMatcherType,
const string &paramsFilename )
{
Ptr<GenericDescriptorMatcher> descriptorMatcher;
if( ! genericDescritptorMatcherType.compare("ONEWAY") )
{
descriptorMatcher = new OneWayDescriptorMatcher();
}
else if( ! genericDescritptorMatcherType.compare("FERN") )
{
descriptorMatcher = new FernDescriptorMatcher();
}
if( !paramsFilename.empty() && !descriptorMatcher.empty() )
{
FileStorage fs = FileStorage( paramsFilename, FileStorage::READ );
if( fs.isOpened() )
{
descriptorMatcher->read( fs.root() );
fs.release();
}
}
return descriptorMatcher;
}
/****************************************************************************************\
* OneWayDescriptorMatcher *
\****************************************************************************************/
@ -1238,32 +1268,4 @@ Ptr<GenericDescriptorMatcher> VectorDescriptorMatcher::clone( bool emptyTrainDat
return new VectorDescriptorMatcher( extractor, matcher->clone(emptyTrainData) );
}
/*
* Factory function for GenericDescriptorMatch creating
*/
Ptr<GenericDescriptorMatcher> createGenericDescriptorMatcher( const string& genericDescritptorMatcherType,
const string &paramsFilename )
{
Ptr<GenericDescriptorMatcher> descriptorMatcher;
if( ! genericDescritptorMatcherType.compare("ONEWAY") )
{
descriptorMatcher = new OneWayDescriptorMatcher();
}
else if( ! genericDescritptorMatcherType.compare("FERN") )
{
descriptorMatcher = new FernDescriptorMatcher();
}
if( !paramsFilename.empty() && !descriptorMatcher.empty() )
{
FileStorage fs = FileStorage( paramsFilename, FileStorage::READ );
if( fs.isOpened() )
{
descriptorMatcher->read( fs.root() );
fs.release();
}
}
return descriptorMatcher;
}
}

View File

@ -2552,8 +2552,8 @@ int main(int argc, char** argv)
}
// Create detector, descriptor, matcher.
Ptr<FeatureDetector> featureDetector = createFeatureDetector( ddmParams.detectorType );
Ptr<DescriptorExtractor> descExtractor = createDescriptorExtractor( ddmParams.descriptorType );
Ptr<FeatureDetector> featureDetector = FeatureDetector::create( ddmParams.detectorType );
Ptr<DescriptorExtractor> descExtractor = DescriptorExtractor::create( ddmParams.descriptorType );
Ptr<BOWImgDescriptorExtractor> bowExtractor;
if( featureDetector.empty() || descExtractor.empty() )
{
@ -2561,7 +2561,7 @@ int main(int argc, char** argv)
return -1;
}
{
Ptr<DescriptorMatcher> descMatcher = createDescriptorMatcher( ddmParams.matcherType );
Ptr<DescriptorMatcher> descMatcher = DescriptorMatcher::create( ddmParams.matcherType );
if( featureDetector.empty() || descExtractor.empty() || descMatcher.empty() )
{
cout << "descMatcher was not created" << endl;

View File

@ -651,8 +651,8 @@ int main(int argc, char** argv)
Size calibratedImageSize;
readCameraMatrix(intrinsicsFilename, cameraMatrix, distCoeffs, calibratedImageSize);
Ptr<FeatureDetector> detector = createFeatureDetector(detectorName);
Ptr<DescriptorExtractor> descriptorExtractor = createDescriptorExtractor(descriptorExtractorName);
Ptr<FeatureDetector> detector = FeatureDetector::create(detectorName);
Ptr<DescriptorExtractor> descriptorExtractor = DescriptorExtractor::create(descriptorExtractorName);
string modelIndexFilename = format("%s_segm/frame_index.yml", modelName);
if(!readModelViews( modelIndexFilename, modelBox, imageList, roiList, poseList))

View File

@ -223,9 +223,9 @@ int main(int argc, char** argv)
ransacReprojThreshold = atof(argv[7]);
cout << "< Creating detector, descriptor extractor and descriptor matcher ..." << endl;
Ptr<FeatureDetector> detector = createFeatureDetector( argv[1] );
Ptr<DescriptorExtractor> descriptorExtractor = createDescriptorExtractor( argv[2] );
Ptr<DescriptorMatcher> descriptorMatcher = createDescriptorMatcher( argv[3] );
Ptr<FeatureDetector> detector = FeatureDetector::create( argv[1] );
Ptr<DescriptorExtractor> descriptorExtractor = DescriptorExtractor::create( argv[2] );
Ptr<DescriptorMatcher> descriptorMatcher = DescriptorMatcher::create( argv[3] );
int mactherFilterType = getMatcherFilterType( argv[4] );
bool eval = !isWarpPerspective ? false : (atoi(argv[6]) == 0 ? false : true);
cout << ">" << endl;

View File

@ -29,7 +29,7 @@ int main(int argc, char** argv)
std::string alg_name = std::string(argv[3]);
std::string params_filename = std::string(argv[4]);
Ptr<GenericDescriptorMatcher> descriptorMatcher = createGenericDescriptorMatcher(alg_name, params_filename);
Ptr<GenericDescriptorMatcher> descriptorMatcher = GenericDescriptorMatcher::create(alg_name, params_filename);
if( descriptorMatcher == 0 )
{
printf ("Cannot create descriptor\n");

View File

@ -62,9 +62,9 @@ bool createDetectorDescriptorMatcher( const string& detectorType, const string&
Ptr<DescriptorMatcher>& descriptorMatcher )
{
cout << "< Creating feature detector, descriptor extractor and descriptor matcher ..." << endl;
featureDetector = createFeatureDetector( detectorType );
descriptorExtractor = createDescriptorExtractor( descriptorType );
descriptorMatcher = createDescriptorMatcher( matcherType );
featureDetector = FeatureDetector::create( detectorType );
descriptorExtractor = DescriptorExtractor::create( descriptorType );
descriptorMatcher = DescriptorMatcher::create( matcherType );
cout << ">" << endl;
bool isCreated = !( featureDetector.empty() || descriptorExtractor.empty() || descriptorMatcher.empty() );

View File

@ -686,8 +686,8 @@ inline void readKeypoints( FileStorage& fs, vector<KeyPoint>& keypoints, int img
void DetectorQualityTest::readAlgorithm ()
{
defaultDetector = createFeatureDetector( algName );
specificDetector = createFeatureDetector( algName );
defaultDetector = FeatureDetector::create( algName );
specificDetector = FeatureDetector::create( algName );
if( defaultDetector == 0 )
{
ts->printf(CvTS::LOG, "Algorithm can not be read\n");
@ -960,13 +960,13 @@ void DescriptorQualityTest::writePlotData( int di ) const
void DescriptorQualityTest::readAlgorithm( )
{
defaultDescMatcher = createGenericDescriptorMatcher( algName );
specificDescMatcher = createGenericDescriptorMatcher( algName );
defaultDescMatcher = GenericDescriptorMatcher::create( algName );
specificDescMatcher = GenericDescriptorMatcher::create( algName );
if( defaultDescMatcher == 0 )
{
Ptr<DescriptorExtractor> extractor = createDescriptorExtractor( algName );
Ptr<DescriptorMatcher> matcher = createDescriptorMatcher( matcherName );
Ptr<DescriptorExtractor> extractor = DescriptorExtractor::create( algName );
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create( matcherName );
defaultDescMatcher = new VectorDescriptorMatch( extractor, matcher );
specificDescMatcher = new VectorDescriptorMatch( extractor, matcher );

View File

@ -73,6 +73,7 @@ protected:
void CV_FeatureDetectorTest::emptyDataTest()
{
// One image.
Mat image;
vector<KeyPoint> keypoints;
try
@ -81,14 +82,28 @@ void CV_FeatureDetectorTest::emptyDataTest()
}
catch(...)
{
ts->printf( CvTS::LOG, "emptyDataTest: Detect() on empty image must not generate exception\n" );
ts->printf( CvTS::LOG, "detect() on empty image must not generate exception (1)\n" );
ts->set_failed_test_info( CvTS::FAIL_INVALID_OUTPUT );
return;
}
if( !keypoints.empty() )
{
ts->printf( CvTS::LOG, "emptyDataTest: Detect() on empty image must return empty keypoints vector\n" );
ts->printf( CvTS::LOG, "detect() on empty image must return empty keypoints vector (1)\n" );
ts->set_failed_test_info( CvTS::FAIL_INVALID_OUTPUT );
return;
}
// Several images.
vector<Mat> images;
vector<vector<KeyPoint> > keypointCollection;
try
{
fdetector->detect( images, keypointCollection );
}
catch(...)
{
ts->printf( CvTS::LOG, "detect() on empty image vector must not generate exception (2)\n" );
ts->set_failed_test_info( CvTS::FAIL_INVALID_OUTPUT );
return;
}
@ -120,7 +135,7 @@ void CV_FeatureDetectorTest::compareKeypointSets( const vector<KeyPoint>& validK
{
ts->printf( CvTS::LOG, "Bad keypoints count ratio (validCount = %d, calcCount = %d)!\n",
validKeypoints.size(), calcKeypoints.size() );
ts->set_failed_test_info( CvTS::FAIL_BAD_ACCURACY );
ts->set_failed_test_info( CvTS::FAIL_INVALID_OUTPUT );
return;
}
@ -146,7 +161,7 @@ void CV_FeatureDetectorTest::compareKeypointSets( const vector<KeyPoint>& validK
if( !isSimilarKeypoints( validKeypoints[v], calcKeypoints[nearestIdx] ) )
badPointCount++;
}
ts->printf( CvTS::LOG, "regressionTest: badPointCount = %d; validPointCount = %d; calcPointCount = %d\n",
ts->printf( CvTS::LOG, "badPointCount = %d; validPointCount = %d; calcPointCount = %d\n",
badPointCount, validKeypoints.size(), calcKeypoints.size() );
if( badPointCount > 0.9 * commonPointCount )
{
@ -164,7 +179,7 @@ void CV_FeatureDetectorTest::regressionTest()
string resFilename = string(ts->get_data_path()) + DETECTOR_DIR + "/" + string(name) + ".xml.gz";
// Read the test image.
Mat image = imread( imgFilename, 0 );
Mat image = imread( imgFilename );
if( image.empty() )
{
ts->printf( CvTS::LOG, "image %s can not be read \n", imgFilename.c_str() );
@ -241,8 +256,9 @@ static void writeMatInBin( const Mat& mat, const string& filename )
fwrite( (void*)&mat.rows, sizeof(int), 1, f );
fwrite( (void*)&mat.cols, sizeof(int), 1, f );
fwrite( (void*)&type, sizeof(int), 1, f );
fwrite( (void*)&mat.step, sizeof(int), 1, f );
fwrite( (void*)mat.data, 1, mat.step*mat.rows, f );
int dataSize = mat.step * mat.rows * mat.channels();
fwrite( (void*)&dataSize, sizeof(int), 1, f );
fwrite( (void*)mat.data, 1, dataSize, f );
fclose(f);
}
}
@ -252,14 +268,14 @@ static Mat readMatFromBin( const string& filename )
FILE* f = fopen( filename.c_str(), "rb" );
if( f )
{
int rows, cols, type, step;
int rows, cols, type, dataSize;
fread( (void*)&rows, sizeof(int), 1, f );
fread( (void*)&cols, sizeof(int), 1, f );
fread( (void*)&type, sizeof(int), 1, f );
fread( (void*)&step, sizeof(int), 1, f );
fread( (void*)&dataSize, sizeof(int), 1, f );
uchar* data = (uchar*)cvAlloc(step*rows);
fread( (void*)data, 1, step*rows, f );
uchar* data = (uchar*)cvAlloc(dataSize);
fread( (void*)data, 1, dataSize, f );
fclose(f);
return Mat( rows, cols, type, data );
@ -300,7 +316,7 @@ protected:
if( dist > maxDistDif)
{
stringstream ss;
ss << "Discance between valid and computed " << y << "-descriptors > " << maxDistDif << endl;
ss << "Discance between valid and computed " << y << "-descriptors " << dist << ">" << maxDistDif << endl;
ts->printf(CvTS::LOG, ss.str().c_str() );
ts->set_failed_test_info( CvTS::FAIL_BAD_ACCURACY );
return;
@ -309,13 +325,15 @@ protected:
maxDist = dist;
}
stringstream ss;
ss << "regressionTest: Max discance between valid and computed descriptors " << maxDist << endl;
ss << "Max distance between valid and computed descriptors " << maxDist << endl;
ts->printf(CvTS::LOG, ss.str().c_str() );
}
void emptyDataTest()
{
assert( !dextractor.empty() );
// One image.
Mat image;
vector<KeyPoint> keypoints;
Mat descriptors;
@ -326,7 +344,7 @@ protected:
}
catch(...)
{
ts->printf( CvTS::LOG, "emptyDataTest: compute() on empty image and empty keypoints must not generate exception\n");
ts->printf( CvTS::LOG, "compute() on empty image and empty keypoints must not generate exception (1)\n");
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
}
@ -337,7 +355,21 @@ protected:
}
catch(...)
{
ts->printf( CvTS::LOG, "emptyDataTest: compute() on nonempty image and empty keypoints must not generate exception\n");
ts->printf( CvTS::LOG, "compute() on nonempty image and empty keypoints must not generate exception (1)\n");
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
}
// Several images.
vector<Mat> images;
vector<vector<KeyPoint> > keypointsCollection;
vector<Mat> descriptorsCollection;
try
{
dextractor->compute( images, keypointsCollection, descriptorsCollection );
}
catch(...)
{
ts->printf( CvTS::LOG, "compute() on empty images and empty keypoints collection must not generate exception (2)\n");
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
}
}
@ -348,7 +380,8 @@ protected:
// Read the test image.
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
Mat img = imread( imgFilename, 0 );
Mat img = imread( imgFilename );
if( img.empty() )
{
ts->printf( CvTS::LOG, "image %s can not be read\n", imgFilename.c_str() );
@ -366,7 +399,7 @@ protected:
double t = (double)getTickCount();
dextractor->compute( img, keypoints, calcDescriptors );
t = getTickCount() - t;
ts->printf(CvTS::LOG, "\nregressionTest: Average time of computiting one descriptor = %g ms (previous time = %g ms)\n", t/((double)cvGetTickFrequency()*1000.)/calcDescriptors.rows, prevTime );
ts->printf(CvTS::LOG, "\nAverage time of computiting one descriptor = %g ms (previous time = %g ms)\n", t/((double)cvGetTickFrequency()*1000.)/calcDescriptors.rows, prevTime );
if( calcDescriptors.rows != (int)keypoints.size() )
{
@ -486,13 +519,20 @@ protected:
virtual void run( int );
void generateData( Mat& query, Mat& train );
int testMatch( const Mat& query, const Mat& train );
int testKnnMatch( const Mat& query, const Mat& train );
int testRadiusMatch( const Mat& query, const Mat& train );
void emptyDataTest();
void matchTest( const Mat& query, const Mat& train );
void knnMatchTest( const Mat& query, const Mat& train );
void radiusMatchTest( const Mat& query, const Mat& train );
Ptr<DescriptorMatcher> dmatcher;
};
void CV_DescriptorMatcherTest::emptyDataTest()
{
assert( !dmatcher.empty() );
}
void CV_DescriptorMatcherTest::generateData( Mat& query, Mat& train )
{
RNG& rng = theRNG();
@ -525,21 +565,19 @@ void CV_DescriptorMatcherTest::generateData( Mat& query, Mat& train )
}
}
int CV_DescriptorMatcherTest::testMatch( const Mat& query, const Mat& train )
void CV_DescriptorMatcherTest::matchTest( const Mat& query, const Mat& train )
{
dmatcher->clear();
// test const version of match()
int res = CvTS::OK;
{
vector<DMatch> matches;
dmatcher->match( query, train, matches );
int curRes = CvTS::OK;
if( (int)matches.size() != queryDescCount )
{
curRes = CvTS::FAIL_INVALID_OUTPUT;
ts->printf(CvTS::LOG, "Incorrect matches count while test match() function (1)\n");
ts->set_failed_test_info( CvTS::FAIL_INVALID_OUTPUT );
}
else
{
@ -552,12 +590,11 @@ int CV_DescriptorMatcherTest::testMatch( const Mat& query, const Mat& train )
}
if( (float)badCount > (float)queryDescCount*badPart )
{
curRes = CvTS::FAIL_INVALID_OUTPUT;
ts->printf( CvTS::LOG, "%f - too large bad matches part while test match() function (1)\n",
(float)badCount/(float)queryDescCount );
ts->set_failed_test_info( CvTS::FAIL_INVALID_OUTPUT );
}
}
res = curRes != CvTS::OK ? curRes : res;
}
// test version of match() with add()
@ -577,11 +614,10 @@ int CV_DescriptorMatcherTest::testMatch( const Mat& query, const Mat& train )
dmatcher->match( query, matches, masks );
int curRes = CvTS::OK;
if( (int)matches.size() != queryDescCount )
{
curRes = CvTS::FAIL_INVALID_OUTPUT;
ts->printf(CvTS::LOG, "Incorrect matches count while test match() function (2)\n");
ts->set_failed_test_info( CvTS::FAIL_INVALID_OUTPUT );
}
else
{
@ -607,30 +643,27 @@ int CV_DescriptorMatcherTest::testMatch( const Mat& query, const Mat& train )
{
ts->printf( CvTS::LOG, "%f - too large bad matches part while test match() function (2)\n",
(float)badCount/(float)queryDescCount );
ts->set_failed_test_info( CvTS::FAIL_BAD_ACCURACY );
}
}
res = curRes != CvTS::OK ? curRes : res;
}
return res;
}
int CV_DescriptorMatcherTest::testKnnMatch( const Mat& query, const Mat& train )
void CV_DescriptorMatcherTest::knnMatchTest( const Mat& query, const Mat& train )
{
dmatcher->clear();
// test const version of knnMatch()
int res = CvTS::OK;
{
const int knn = 3;
vector<vector<DMatch> > matches;
dmatcher->knnMatch( query, train, matches, knn );
int curRes = CvTS::OK;
if( (int)matches.size() != queryDescCount )
{
curRes = CvTS::FAIL_INVALID_OUTPUT;
ts->printf(CvTS::LOG, "Incorrect matches count while test knnMatch() function (1)\n");
ts->set_failed_test_info( CvTS::FAIL_INVALID_OUTPUT );
}
else
{
@ -653,12 +686,11 @@ int CV_DescriptorMatcherTest::testKnnMatch( const Mat& query, const Mat& train )
}
if( (float)badCount > (float)queryDescCount*badPart )
{
curRes = CvTS::FAIL_INVALID_OUTPUT;
ts->printf( CvTS::LOG, "%f - too large bad matches part while test knnMatch() function (1)\n",
(float)badCount/(float)queryDescCount );
ts->set_failed_test_info( CvTS::FAIL_INVALID_OUTPUT );
}
}
res = curRes != CvTS::OK ? curRes : res;
}
// test version of knnMatch() with add()
@ -679,11 +711,10 @@ int CV_DescriptorMatcherTest::testKnnMatch( const Mat& query, const Mat& train )
dmatcher->knnMatch( query, matches, knn, masks );
int curRes = CvTS::OK;
if( (int)matches.size() != queryDescCount )
{
curRes = CvTS::FAIL_INVALID_OUTPUT;
ts->printf(CvTS::LOG, "Incorrect matches count while test knnMatch() function (2)\n");
ts->set_failed_test_info( CvTS::FAIL_INVALID_OUTPUT );
}
else
{
@ -721,28 +752,25 @@ int CV_DescriptorMatcherTest::testKnnMatch( const Mat& query, const Mat& train )
{
ts->printf( CvTS::LOG, "%f - too large bad matches part while test knnMatch() function (2)\n",
(float)badCount/(float)queryDescCount );
ts->set_failed_test_info( CvTS::FAIL_BAD_ACCURACY );
}
}
res = curRes != CvTS::OK ? curRes : res;
}
return res;
}
int CV_DescriptorMatcherTest::testRadiusMatch( const Mat& query, const Mat& train )
void CV_DescriptorMatcherTest::radiusMatchTest( const Mat& query, const Mat& train )
{
dmatcher->clear();
// test const version of match()
int res = CvTS::OK;
{
const float radius = 1.f/countFactor;
vector<vector<DMatch> > matches;
dmatcher->radiusMatch( query, train, matches, radius );
int curRes = CvTS::OK;
if( (int)matches.size() != queryDescCount )
{
curRes = CvTS::FAIL_INVALID_OUTPUT;
ts->printf(CvTS::LOG, "Incorrect matches count while test radiusMatch() function (1)\n");
ts->set_failed_test_info( CvTS::FAIL_INVALID_OUTPUT );
}
else
{
@ -760,12 +788,11 @@ int CV_DescriptorMatcherTest::testRadiusMatch( const Mat& query, const Mat& trai
}
if( (float)badCount > (float)queryDescCount*badPart )
{
curRes = CvTS::FAIL_INVALID_OUTPUT;
ts->printf( CvTS::LOG, "%f - too large bad matches part while test radiusMatch() function (1)\n",
(float)badCount/(float)queryDescCount );
ts->set_failed_test_info( CvTS::FAIL_INVALID_OUTPUT );
}
}
res = curRes != CvTS::OK ? curRes : res;
}
// test version of match() with add()
@ -790,10 +817,9 @@ int CV_DescriptorMatcherTest::testRadiusMatch( const Mat& query, const Mat& trai
int curRes = CvTS::OK;
if( (int)matches.size() != queryDescCount )
{
curRes = CvTS::FAIL_INVALID_OUTPUT;
ts->printf(CvTS::LOG, "Incorrect matches count while test radiusMatch() function (1)\n");
ts->set_failed_test_info( CvTS::FAIL_INVALID_OUTPUT );
}
res = curRes != CvTS::OK ? curRes : res;
int badCount = 0;
int shift = dmatcher->isMaskSupported() ? 1 : 0;
@ -831,10 +857,9 @@ int CV_DescriptorMatcherTest::testRadiusMatch( const Mat& query, const Mat& trai
curRes = CvTS::FAIL_INVALID_OUTPUT;
ts->printf( CvTS::LOG, "%f - too large bad matches part while test radiusMatch() function (2)\n",
(float)badCount/(float)queryDescCount );
ts->set_failed_test_info( CvTS::FAIL_BAD_ACCURACY );
}
res = curRes != CvTS::OK ? curRes : res;
}
return res;
}
void CV_DescriptorMatcherTest::run( int )
@ -842,18 +867,11 @@ void CV_DescriptorMatcherTest::run( int )
Mat query, train;
generateData( query, train );
int res = CvTS::OK, curRes;
matchTest( query, train );
curRes = testMatch( query, train );
res = curRes != CvTS::OK ? curRes : res;
knnMatchTest( query, train );
curRes = testKnnMatch( query, train );
res = curRes != CvTS::OK ? curRes : res;
curRes = testRadiusMatch( query, train );
res = curRes != CvTS::OK ? curRes : res;
ts->set_failed_test_info( res );
radiusMatchTest( query, train );
}
/****************************************************************************************\
@ -862,31 +880,33 @@ void CV_DescriptorMatcherTest::run( int )
/*
* Detectors
* "detector-fast, detector-gftt, detector-harris, detector-mser, detector-sift, detector-star, detector-surf"
* "detector-fast, detector-gftt, detector-harris, detector-mser, detector-sift, detector-star, detector-surf, detector-grid-fast, detector-pyramid-fast"
*/
CV_FeatureDetectorTest fastTest( "detector-fast", createFeatureDetector("FAST") );
CV_FeatureDetectorTest gfttTest( "detector-gftt", createFeatureDetector("GFTT") );
CV_FeatureDetectorTest harrisTest( "detector-harris", createFeatureDetector("HARRIS") );
CV_FeatureDetectorTest mserTest( "detector-mser", createFeatureDetector("MSER") );
CV_FeatureDetectorTest siftTest( "detector-sift", createFeatureDetector("SIFT") );
CV_FeatureDetectorTest starTest( "detector-star", createFeatureDetector("STAR") );
CV_FeatureDetectorTest surfTest( "detector-surf", createFeatureDetector("SURF") );
CV_FeatureDetectorTest fastTest( "detector-fast", FeatureDetector::create("FAST") );
CV_FeatureDetectorTest gfttTest( "detector-gftt", FeatureDetector::create("GFTT") );
CV_FeatureDetectorTest harrisTest( "detector-harris", FeatureDetector::create("HARRIS") );
CV_FeatureDetectorTest mserTest( "detector-mser", FeatureDetector::create("MSER") );
CV_FeatureDetectorTest siftTest( "detector-sift", FeatureDetector::create("SIFT") );
CV_FeatureDetectorTest starTest( "detector-star", FeatureDetector::create("STAR") );
CV_FeatureDetectorTest surfTest( "detector-surf", FeatureDetector::create("SURF") );
CV_FeatureDetectorTest gridFastfTest( "detector-grid-fast", FeatureDetector::create("GridFAST") );
CV_FeatureDetectorTest pyramidFastTest( "detector-pyramid-fast", FeatureDetector::create("PyramidFAST") );
/*
* Descriptors
* "descriptor-sift, descriptor-surf, descriptor-calonder-uchar, descriptor-calonder-float, descriptor-brief"
* "descriptor-sift, descriptor-surf, descriptor-calonder-uchar, descriptor-calonder-float, descriptor-brief, descriptor-opponent-sift, descriptor-opponent-surf"
*/
CV_DescriptorExtractorTest<L2<float> > siftDescriptorTest( "descriptor-sift", 0.03f,
createDescriptorExtractor("SIFT"), 8.06652f );
DescriptorExtractor::create("SIFT"), 8.06652f );
CV_DescriptorExtractorTest<L2<float> > surfDescriptorTest( "descriptor-surf", 0.035f,
createDescriptorExtractor("SURF"), 0.147372f );
DescriptorExtractor::create("SURF"), 0.147372f );
CV_DescriptorExtractorTest<Hamming> briefDescriptorTest( "descriptor-brief", 1,
createDescriptorExtractor("BRIEF"), 0.00527548 );
DescriptorExtractor::create("BRIEF"), 0.00527548 );
//CV_DescriptorExtractorTest oppSiftDescriptorTest( "descriptor-opponent-sift", 0.008f,
// createDescriptorExtractor("OpponentSIFT"), 8.06652f );
//CV_DescriptorExtractorTest oppurfDescriptorTest( "descriptor-opponent-surf", 0.02f,
// createDescriptorExtractor("OpponentSURF"), 0.147372f );
CV_DescriptorExtractorTest<L2<float> > oppSiftDescriptorTest( "descriptor-opponent-sift", 0.008f,
DescriptorExtractor::create("OpponentSIFT"), 8.06652f );
CV_DescriptorExtractorTest<L2<float> > oppurfDescriptorTest( "descriptor-opponent-surf", 0.02f,
DescriptorExtractor::create("OpponentSURF"), 0.147372f );
#if CV_SSE2
CV_CalonderDescriptorExtractorTest<uchar, L2<uchar> > ucharCalonderTest( "descriptor-calonder-uchar",
@ -899,8 +919,10 @@ CV_CalonderDescriptorExtractorTest<float, L2<float> > floatCalonderTest( "descri
/*
* Matchers
* "descriptor-matcher-brute-force, descriptor-matcher-flann-based"
*/
CV_DescriptorMatcherTest bruteForceMatcherTest( "descriptor-matcher-brute-force",
new BruteForceMatcher<L2<float> >, 0.01f );
CV_DescriptorMatcherTest flannBasedMatcherTest( "descriptor-matcher-flann-based",
new FlannBasedMatcher, 0.04f );