mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 13:47:32 +08:00
Merge pull request #3223 from vbystricky:oclopt_BgSubMOG2
This commit is contained in:
commit
7e8846b81e
@ -188,10 +188,11 @@ public:
|
||||
|
||||
int nchannels = CV_MAT_CN(frameType);
|
||||
CV_Assert( nchannels <= CV_CN_MAX );
|
||||
CV_Assert( nmixtures <= 255);
|
||||
|
||||
if (ocl::useOpenCL() && opencl_ON)
|
||||
{
|
||||
kernel_apply.create("mog2_kernel", ocl::video::bgfg_mog2_oclsrc, format("-D CN=%d -D NMIXTURES=%d", nchannels, nmixtures));
|
||||
create_ocl_apply_kernel();
|
||||
kernel_getBg.create("getBackgroundImage2_kernel", ocl::video::bgfg_mog2_oclsrc, format( "-D CN=%d -D NMIXTURES=%d", nchannels, nmixtures));
|
||||
|
||||
if (kernel_apply.empty() || kernel_getBg.empty())
|
||||
@ -213,7 +214,7 @@ public:
|
||||
u_mean.setTo(Scalar::all(0));
|
||||
|
||||
//make the array for keeping track of the used modes per pixel - all zeros at start
|
||||
u_bgmodelUsedModes.create(frameSize, CV_32FC1);
|
||||
u_bgmodelUsedModes.create(frameSize, CV_8UC1);
|
||||
u_bgmodelUsedModes.setTo(cv::Scalar::all(0));
|
||||
}
|
||||
else
|
||||
@ -259,7 +260,17 @@ public:
|
||||
virtual void setComplexityReductionThreshold(double ct) { fCT = (float)ct; }
|
||||
|
||||
virtual bool getDetectShadows() const { return bShadowDetection; }
|
||||
virtual void setDetectShadows(bool detectshadows) { bShadowDetection = detectshadows; }
|
||||
virtual void setDetectShadows(bool detectshadows)
|
||||
{
|
||||
if ((bShadowDetection && detectshadows) || (!bShadowDetection && !detectshadows))
|
||||
return;
|
||||
bShadowDetection = detectshadows;
|
||||
if (!kernel_apply.empty())
|
||||
{
|
||||
create_ocl_apply_kernel();
|
||||
CV_Assert( !kernel_apply.empty() );
|
||||
}
|
||||
}
|
||||
|
||||
virtual int getShadowValue() const { return nShadowDetection; }
|
||||
virtual void setShadowValue(int value) { nShadowDetection = (uchar)value; }
|
||||
@ -372,6 +383,7 @@ protected:
|
||||
|
||||
bool ocl_getBackgroundImage(OutputArray backgroundImage) const;
|
||||
bool ocl_apply(InputArray _image, OutputArray _fgmask, double learningRate=-1);
|
||||
void create_ocl_apply_kernel();
|
||||
};
|
||||
|
||||
struct GaussBGStatModel2Params
|
||||
@ -745,16 +757,11 @@ bool BackgroundSubtractorMOG2Impl::ocl_apply(InputArray _image, OutputArray _fgm
|
||||
learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./std::min( 2*nframes, history );
|
||||
CV_Assert(learningRate >= 0);
|
||||
|
||||
UMat fgmask(_image.size(), CV_32SC1);
|
||||
|
||||
fgmask.setTo(cv::Scalar::all(1));
|
||||
_fgmask.create(_image.size(), CV_8U);
|
||||
UMat fgmask = _fgmask.getUMat();
|
||||
|
||||
const double alpha1 = 1.0f - learningRate;
|
||||
|
||||
int detectShadows_flag = 0;
|
||||
if(bShadowDetection)
|
||||
detectShadows_flag = 1;
|
||||
|
||||
UMat frame = _image.getUMat();
|
||||
|
||||
float varMax = MAX(fVarMin, fVarMax);
|
||||
@ -762,16 +769,15 @@ bool BackgroundSubtractorMOG2Impl::ocl_apply(InputArray _image, OutputArray _fgm
|
||||
|
||||
int idxArg = 0;
|
||||
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::ReadOnly(frame));
|
||||
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::ReadWriteNoSize(u_bgmodelUsedModes));
|
||||
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::ReadWriteNoSize(u_weight));
|
||||
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::ReadWriteNoSize(u_mean));
|
||||
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::ReadWriteNoSize(u_variance));
|
||||
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_bgmodelUsedModes));
|
||||
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_weight));
|
||||
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_mean));
|
||||
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::PtrReadWrite(u_variance));
|
||||
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::WriteOnlyNoSize(fgmask));
|
||||
|
||||
idxArg = kernel_apply.set(idxArg, (float)learningRate); //alphaT
|
||||
idxArg = kernel_apply.set(idxArg, (float)alpha1);
|
||||
idxArg = kernel_apply.set(idxArg, (float)(-learningRate*fCT)); //prune
|
||||
idxArg = kernel_apply.set(idxArg, detectShadows_flag);
|
||||
|
||||
idxArg = kernel_apply.set(idxArg, (float)varThreshold); //c_Tb
|
||||
idxArg = kernel_apply.set(idxArg, backgroundRatio); //c_TB
|
||||
@ -780,18 +786,11 @@ bool BackgroundSubtractorMOG2Impl::ocl_apply(InputArray _image, OutputArray _fgm
|
||||
idxArg = kernel_apply.set(idxArg, varMax);
|
||||
idxArg = kernel_apply.set(idxArg, fVarInit);
|
||||
idxArg = kernel_apply.set(idxArg, fTau);
|
||||
kernel_apply.set(idxArg, nShadowDetection);
|
||||
if (bShadowDetection)
|
||||
kernel_apply.set(idxArg, nShadowDetection);
|
||||
|
||||
size_t globalsize[] = {frame.cols, frame.rows, 1};
|
||||
|
||||
if (!(kernel_apply.run(2, globalsize, NULL, true)))
|
||||
return false;
|
||||
|
||||
_fgmask.create(_image.size(),CV_8U);
|
||||
UMat temp = _fgmask.getUMat();
|
||||
fgmask.convertTo(temp, CV_8U);
|
||||
|
||||
return true;
|
||||
return kernel_apply.run(2, globalsize, NULL, true);
|
||||
}
|
||||
|
||||
bool BackgroundSubtractorMOG2Impl::ocl_getBackgroundImage(OutputArray _backgroundImage) const
|
||||
@ -802,10 +801,10 @@ bool BackgroundSubtractorMOG2Impl::ocl_getBackgroundImage(OutputArray _backgroun
|
||||
UMat dst = _backgroundImage.getUMat();
|
||||
|
||||
int idxArg = 0;
|
||||
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::ReadOnly(u_bgmodelUsedModes));
|
||||
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::ReadOnlyNoSize(u_weight));
|
||||
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::ReadOnlyNoSize(u_mean));
|
||||
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::WriteOnlyNoSize(dst));
|
||||
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::PtrReadOnly(u_bgmodelUsedModes));
|
||||
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::PtrReadOnly(u_weight));
|
||||
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::PtrReadOnly(u_mean));
|
||||
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::WriteOnly(dst));
|
||||
kernel_getBg.set(idxArg, backgroundRatio);
|
||||
|
||||
size_t globalsize[2] = {u_bgmodelUsedModes.cols, u_bgmodelUsedModes.rows};
|
||||
@ -815,6 +814,13 @@ bool BackgroundSubtractorMOG2Impl::ocl_getBackgroundImage(OutputArray _backgroun
|
||||
|
||||
#endif
|
||||
|
||||
void BackgroundSubtractorMOG2Impl::create_ocl_apply_kernel()
|
||||
{
|
||||
int nchannels = CV_MAT_CN(frameType);
|
||||
String opts = format("-D CN=%d -D NMIXTURES=%d%s", nchannels, nmixtures, bShadowDetection ? " -D SHADOW_DETECT" : "");
|
||||
kernel_apply.create("mog2_kernel", ocl::video::bgfg_mog2_oclsrc, opts);
|
||||
}
|
||||
|
||||
void BackgroundSubtractorMOG2Impl::apply(InputArray _image, OutputArray _fgmask, double learningRate)
|
||||
{
|
||||
bool needToInitialize = nframes == 0 || learningRate >= 1 || _image.size() != frameSize || _image.type() != frameType;
|
||||
|
@ -7,11 +7,6 @@
|
||||
#define frameToMean(a, b) (b) = *(a);
|
||||
#define meanToFrame(a, b) *b = convert_uchar_sat(a);
|
||||
|
||||
inline float sqr(float val)
|
||||
{
|
||||
return val * val;
|
||||
}
|
||||
|
||||
inline float sum(float val)
|
||||
{
|
||||
return val;
|
||||
@ -34,63 +29,45 @@ inline float sum(float val)
|
||||
b.z = a[2]; \
|
||||
b.w = 0.0f;
|
||||
|
||||
inline float sqr(const float4 val)
|
||||
{
|
||||
return val.x * val.x + val.y * val.y + val.z * val.z;
|
||||
}
|
||||
|
||||
inline float sum(const float4 val)
|
||||
{
|
||||
return (val.x + val.y + val.z);
|
||||
}
|
||||
|
||||
inline void swap4(__global float4* ptr, int x, int y, int k, int rows, int ptr_step)
|
||||
{
|
||||
float4 val = ptr[(k * rows + y) * ptr_step + x];
|
||||
ptr[(k * rows + y) * ptr_step + x] = ptr[((k + 1) * rows + y) * ptr_step + x];
|
||||
ptr[((k + 1) * rows + y) * ptr_step + x] = val;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
inline void swap(__global float* ptr, int x, int y, int k, int rows, int ptr_step)
|
||||
{
|
||||
float val = ptr[(k * rows + y) * ptr_step + x];
|
||||
ptr[(k * rows + y) * ptr_step + x] = ptr[((k + 1) * rows + y) * ptr_step + x];
|
||||
ptr[((k + 1) * rows + y) * ptr_step + x] = val;
|
||||
}
|
||||
|
||||
__kernel void mog2_kernel(__global const uchar* frame, int frame_step, int frame_offset, int frame_row, int frame_col, //uchar || uchar3
|
||||
__global uchar* modesUsed, int modesUsed_step, int modesUsed_offset, //int
|
||||
__global uchar* weight, int weight_step, int weight_offset, //float
|
||||
__global uchar* mean, int mean_step, int mean_offset, //T_MEAN=float || float4
|
||||
__global uchar* variance, int var_step, int var_offset, //float
|
||||
__global uchar* fgmask, int fgmask_step, int fgmask_offset, //int
|
||||
__kernel void mog2_kernel(__global const uchar* frame, int frame_step, int frame_offset, int frame_row, int frame_col, //uchar || uchar3
|
||||
__global uchar* modesUsed, //uchar
|
||||
__global uchar* weight, //float
|
||||
__global uchar* mean, //T_MEAN=float || float4
|
||||
__global uchar* variance, //float
|
||||
__global uchar* fgmask, int fgmask_step, int fgmask_offset, //uchar
|
||||
float alphaT, float alpha1, float prune,
|
||||
int detectShadows_flag,
|
||||
float c_Tb, float c_TB, float c_Tg, float c_varMin, //constants
|
||||
float c_varMax, float c_varInit, float c_tau, uchar c_shadowVal)
|
||||
float c_Tb, float c_TB, float c_Tg, float c_varMin, //constants
|
||||
float c_varMax, float c_varInit, float c_tau
|
||||
#ifdef SHADOW_DETECT
|
||||
, uchar c_shadowVal
|
||||
#endif
|
||||
)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
weight_step/= sizeof(float);
|
||||
var_step /= sizeof(float);
|
||||
mean_step /= (sizeof(float)*cnMode);
|
||||
|
||||
if( x < frame_col && y < frame_row)
|
||||
{
|
||||
__global const uchar* _frame = (frame + mad24( y, frame_step, x*CN + frame_offset));
|
||||
__global const uchar* _frame = (frame + mad24(y, frame_step, mad24(x, CN, frame_offset)));
|
||||
T_MEAN pix;
|
||||
frameToMean(_frame, pix);
|
||||
|
||||
bool background = false; // true - the pixel classified as background
|
||||
uchar foreground = 255; // 0 - the pixel classified as background
|
||||
|
||||
bool fitsPDF = false; //if it remains zero a new GMM mode will be added
|
||||
|
||||
__global int* _modesUsed = (__global int*)(modesUsed + mad24( y, modesUsed_step, x*(int)(sizeof(int))));
|
||||
int nmodes = _modesUsed[0];
|
||||
int nNewModes = nmodes; //current number of modes in GMM
|
||||
int pt_idx = mad24(y, frame_col, x);
|
||||
int idx_step = frame_row * frame_col;
|
||||
|
||||
__global uchar* _modesUsed = modesUsed + pt_idx;
|
||||
uchar nmodes = _modesUsed[0];
|
||||
|
||||
float totalWeight = 0.0f;
|
||||
|
||||
@ -98,114 +75,130 @@ __kernel void mog2_kernel(__global const uchar* frame, int frame_step, int frame
|
||||
__global float* _variance = (__global float*)(variance);
|
||||
__global T_MEAN* _mean = (__global T_MEAN*)(mean);
|
||||
|
||||
for (int mode = 0; mode < nmodes; ++mode)
|
||||
uchar mode = 0;
|
||||
for (; mode < nmodes; ++mode)
|
||||
{
|
||||
int mode_idx = mad24(mode, idx_step, pt_idx);
|
||||
float c_weight = mad(alpha1, _weight[mode_idx], prune);
|
||||
|
||||
float c_weight = alpha1 * _weight[(mode * frame_row + y) * weight_step + x] + prune;
|
||||
int swap_count = 0;
|
||||
if (!fitsPDF)
|
||||
float c_var = _variance[mode_idx];
|
||||
|
||||
T_MEAN c_mean = _mean[mode_idx];
|
||||
|
||||
T_MEAN diff = c_mean - pix;
|
||||
float dist2 = dot(diff, diff);
|
||||
|
||||
if (totalWeight < c_TB && dist2 < c_Tb * c_var)
|
||||
foreground = 0;
|
||||
|
||||
if (dist2 < c_Tg * c_var)
|
||||
{
|
||||
float c_var = _variance[(mode * frame_row + y) * var_step + x];
|
||||
fitsPDF = true;
|
||||
c_weight += alphaT;
|
||||
|
||||
T_MEAN c_mean = _mean[(mode * frame_row + y) * mean_step + x];
|
||||
float k = alphaT / c_weight;
|
||||
T_MEAN mean_new = mad((T_MEAN)-k, diff, c_mean);
|
||||
float variance_new = clamp(mad(k, (dist2 - c_var), c_var), c_varMin, c_varMax);
|
||||
|
||||
T_MEAN diff = c_mean - pix;
|
||||
float dist2 = sqr(diff);
|
||||
|
||||
if (totalWeight < c_TB && dist2 < c_Tb * c_var)
|
||||
background = true;
|
||||
|
||||
if (dist2 < c_Tg * c_var)
|
||||
for (int i = mode; i > 0; --i)
|
||||
{
|
||||
fitsPDF = true;
|
||||
c_weight += alphaT;
|
||||
float k = alphaT / c_weight;
|
||||
int prev_idx = mode_idx - idx_step;
|
||||
if (c_weight < _weight[prev_idx])
|
||||
break;
|
||||
|
||||
_mean[(mode * frame_row + y) * mean_step + x] = c_mean - k * diff;
|
||||
_weight[mode_idx] = _weight[prev_idx];
|
||||
_variance[mode_idx] = _variance[prev_idx];
|
||||
_mean[mode_idx] = _mean[prev_idx];
|
||||
|
||||
float varnew = c_var + k * (dist2 - c_var);
|
||||
varnew = fmax(varnew, c_varMin);
|
||||
varnew = fmin(varnew, c_varMax);
|
||||
|
||||
_variance[(mode * frame_row + y) * var_step + x] = varnew;
|
||||
for (int i = mode; i > 0; --i)
|
||||
{
|
||||
if (c_weight < _weight[((i - 1) * frame_row + y) * weight_step + x])
|
||||
break;
|
||||
swap_count++;
|
||||
swap(_weight, x, y, i - 1, frame_row, weight_step);
|
||||
swap(_variance, x, y, i - 1, frame_row, var_step);
|
||||
#if (CN==1)
|
||||
swap(_mean, x, y, i - 1, frame_row, mean_step);
|
||||
#else
|
||||
swap4(_mean, x, y, i - 1, frame_row, mean_step);
|
||||
#endif
|
||||
}
|
||||
mode_idx = prev_idx;
|
||||
}
|
||||
} // !fitsPDF
|
||||
|
||||
_mean[mode_idx] = mean_new;
|
||||
_variance[mode_idx] = variance_new;
|
||||
_weight[mode_idx] = c_weight; //update weight by the calculated value
|
||||
|
||||
totalWeight += c_weight;
|
||||
|
||||
mode ++;
|
||||
|
||||
break;
|
||||
}
|
||||
if (c_weight < -prune)
|
||||
c_weight = 0.0f;
|
||||
|
||||
_weight[mode_idx] = c_weight; //update weight by the calculated value
|
||||
totalWeight += c_weight;
|
||||
}
|
||||
|
||||
for (; mode < nmodes; ++mode)
|
||||
{
|
||||
int mode_idx = mad24(mode, idx_step, pt_idx);
|
||||
float c_weight = mad(alpha1, _weight[mode_idx], prune);
|
||||
|
||||
if (c_weight < -prune)
|
||||
{
|
||||
c_weight = 0.0f;
|
||||
nmodes--;
|
||||
nmodes = mode;
|
||||
break;
|
||||
}
|
||||
|
||||
_weight[((mode - swap_count) * frame_row + y) * weight_step + x] = c_weight; //update weight by the calculated value
|
||||
_weight[mode_idx] = c_weight; //update weight by the calculated value
|
||||
totalWeight += c_weight;
|
||||
}
|
||||
|
||||
totalWeight = 1.f / totalWeight;
|
||||
for (int mode = 0; mode < nmodes; ++mode)
|
||||
_weight[(mode * frame_row + y) * weight_step + x] *= totalWeight;
|
||||
|
||||
nmodes = nNewModes;
|
||||
if (0.f < totalWeight)
|
||||
{
|
||||
totalWeight = 1.f / totalWeight;
|
||||
for (int mode = 0; mode < nmodes; ++mode)
|
||||
_weight[mad24(mode, idx_step, pt_idx)] *= totalWeight;
|
||||
}
|
||||
|
||||
if (!fitsPDF)
|
||||
{
|
||||
int mode = nmodes == (NMIXTURES) ? (NMIXTURES) - 1 : nmodes++;
|
||||
uchar mode = nmodes == (NMIXTURES) ? (NMIXTURES) - 1 : nmodes++;
|
||||
int mode_idx = mad24(mode, idx_step, pt_idx);
|
||||
|
||||
if (nmodes == 1)
|
||||
_weight[(mode * frame_row + y) * weight_step + x] = 1.f;
|
||||
_weight[mode_idx] = 1.f;
|
||||
else
|
||||
{
|
||||
_weight[(mode * frame_row + y) * weight_step + x] = alphaT;
|
||||
_weight[mode_idx] = alphaT;
|
||||
|
||||
for (int i = 0; i < nmodes - 1; ++i)
|
||||
_weight[(i * frame_row + y) * weight_step + x] *= alpha1;
|
||||
for (int i = pt_idx; i < mode_idx; i += idx_step)
|
||||
_weight[i] *= alpha1;
|
||||
}
|
||||
|
||||
_mean[(mode * frame_row + y) * mean_step + x] = pix;
|
||||
_variance[(mode * frame_row + y) * var_step + x] = c_varInit;
|
||||
|
||||
for (int i = nmodes - 1; i > 0; --i)
|
||||
{
|
||||
if (alphaT < _weight[((i - 1) * frame_row + y) * weight_step + x])
|
||||
int prev_idx = mode_idx - idx_step;
|
||||
if (alphaT < _weight[prev_idx])
|
||||
break;
|
||||
|
||||
swap(_weight, x, y, i - 1, frame_row, weight_step);
|
||||
swap(_variance, x, y, i - 1, frame_row, var_step);
|
||||
#if (CN==1)
|
||||
swap(_mean, x, y, i - 1, frame_row, mean_step);
|
||||
#else
|
||||
swap4(_mean, x, y, i - 1, frame_row, mean_step);
|
||||
#endif
|
||||
_weight[mode_idx] = _weight[prev_idx];
|
||||
_variance[mode_idx] = _variance[prev_idx];
|
||||
_mean[mode_idx] = _mean[prev_idx];
|
||||
|
||||
mode_idx = prev_idx;
|
||||
}
|
||||
|
||||
_mean[mode_idx] = pix;
|
||||
_variance[mode_idx] = c_varInit;
|
||||
}
|
||||
|
||||
_modesUsed[0] = nmodes;
|
||||
bool isShadow = false;
|
||||
if (detectShadows_flag && !background)
|
||||
#ifdef SHADOW_DETECT
|
||||
if (foreground)
|
||||
{
|
||||
float tWeight = 0.0f;
|
||||
|
||||
for (int mode = 0; mode < nmodes; ++mode)
|
||||
for (uchar mode = 0; mode < nmodes; ++mode)
|
||||
{
|
||||
T_MEAN c_mean = _mean[(mode * frame_row + y) * mean_step + x];
|
||||
int mode_idx = mad24(mode, idx_step, pt_idx);
|
||||
T_MEAN c_mean = _mean[mode_idx];
|
||||
|
||||
T_MEAN pix_mean = pix * c_mean;
|
||||
|
||||
float numerator = sum(pix_mean);
|
||||
float denominator = sqr(c_mean);
|
||||
float denominator = dot(c_mean, c_mean);
|
||||
|
||||
if (denominator == 0)
|
||||
break;
|
||||
@ -214,60 +207,67 @@ __kernel void mog2_kernel(__global const uchar* frame, int frame_step, int frame
|
||||
{
|
||||
float a = numerator / denominator;
|
||||
|
||||
T_MEAN dD = a * c_mean - pix;
|
||||
T_MEAN dD = mad(a, c_mean, -pix);
|
||||
|
||||
if (sqr(dD) < c_Tb * _variance[(mode * frame_row + y) * var_step + x] * a * a)
|
||||
if (dot(dD, dD) < c_Tb * _variance[mode_idx] * a * a)
|
||||
{
|
||||
isShadow = true;
|
||||
foreground = c_shadowVal;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
tWeight += _weight[(mode * frame_row + y) * weight_step + x];
|
||||
tWeight += _weight[mode_idx];
|
||||
if (tWeight > c_TB)
|
||||
break;
|
||||
}
|
||||
}
|
||||
__global int* _fgmask = (__global int*)(fgmask + mad24(y, fgmask_step, x*(int)(sizeof(int)) + fgmask_offset));
|
||||
*_fgmask = background ? 0 : isShadow ? c_shadowVal : 255;
|
||||
#endif
|
||||
__global uchar* _fgmask = fgmask + mad24(y, fgmask_step, x + fgmask_offset);
|
||||
*_fgmask = (uchar)foreground;
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void getBackgroundImage2_kernel(__global const uchar* modesUsed, int modesUsed_step, int modesUsed_offset, int modesUsed_row, int modesUsed_col,
|
||||
__global const uchar* weight, int weight_step, int weight_offset,
|
||||
__global const uchar* mean, int mean_step, int mean_offset,
|
||||
__global uchar* dst, int dst_step, int dst_offset,
|
||||
__kernel void getBackgroundImage2_kernel(__global const uchar* modesUsed,
|
||||
__global const uchar* weight,
|
||||
__global const uchar* mean,
|
||||
__global uchar* dst, int dst_step, int dst_offset, int dst_row, int dst_col,
|
||||
float c_TB)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if(x < modesUsed_col && y < modesUsed_row)
|
||||
if(x < dst_col && y < dst_row)
|
||||
{
|
||||
__global int* _modesUsed = (__global int*)(modesUsed + mad24( y, modesUsed_step, x*(int)(sizeof(int))));
|
||||
int nmodes = _modesUsed[0];
|
||||
int pt_idx = mad24(y, dst_col, x);
|
||||
|
||||
__global const uchar* _modesUsed = modesUsed + pt_idx;
|
||||
uchar nmodes = _modesUsed[0];
|
||||
|
||||
T_MEAN meanVal = (T_MEAN)F_ZERO;
|
||||
|
||||
float totalWeight = 0.0f;
|
||||
|
||||
for (int mode = 0; mode < nmodes; ++mode)
|
||||
__global const float* _weight = (__global const float*)weight;
|
||||
__global const T_MEAN* _mean = (__global const T_MEAN*)(mean);
|
||||
int idx_step = dst_row * dst_col;
|
||||
for (uchar mode = 0; mode < nmodes; ++mode)
|
||||
{
|
||||
__global const float* _weight = (__global const float*)(weight + mad24(mode * modesUsed_row + y, weight_step, x*(int)(sizeof(float))));
|
||||
float c_weight = _weight[0];
|
||||
int mode_idx = mad24(mode, idx_step, pt_idx);
|
||||
float c_weight = _weight[mode_idx];
|
||||
T_MEAN c_mean = _mean[mode_idx];
|
||||
|
||||
__global const T_MEAN* _mean = (__global const T_MEAN*)(mean + mad24(mode * modesUsed_row + y, mean_step, x*(int)(sizeof(float))*cnMode));
|
||||
T_MEAN c_mean = _mean[0];
|
||||
meanVal = meanVal + c_weight * c_mean;
|
||||
meanVal = mad(c_weight, c_mean, meanVal);
|
||||
|
||||
totalWeight += c_weight;
|
||||
|
||||
if(totalWeight > c_TB)
|
||||
if (totalWeight > c_TB)
|
||||
break;
|
||||
}
|
||||
|
||||
meanVal = meanVal * (1.f / totalWeight);
|
||||
__global uchar* _dst = dst + y * dst_step + x*CN + dst_offset;
|
||||
if (0.f < totalWeight)
|
||||
meanVal = meanVal / totalWeight;
|
||||
else
|
||||
meanVal = (T_MEAN)(0.f);
|
||||
__global uchar* _dst = dst + mad24(y, dst_step, mad24(x, CN, dst_offset));
|
||||
meanToFrame(meanVal, _dst);
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user