mirror of
https://github.com/opencv/opencv.git
synced 2025-06-08 01:53:19 +08:00
Merge pull request #19259 from nglee:dev_gpumatnd1
Minimal implementation of GpuMatND * GpuMatND - minimal implementation * GpuMatND - createGpuMatHeader * GpuMatND - GpuData, offset, getDevicePtr(), license * reviews * reviews
This commit is contained in:
parent
9d227641c9
commit
7ea21c4b3c
@ -340,6 +340,201 @@ public:
|
||||
Allocator* allocator;
|
||||
};
|
||||
|
||||
struct CV_EXPORTS_W GpuData
|
||||
{
|
||||
explicit GpuData(size_t _size);
|
||||
~GpuData();
|
||||
|
||||
GpuData(const GpuData&) = delete;
|
||||
GpuData& operator=(const GpuData&) = delete;
|
||||
|
||||
GpuData(GpuData&&) = delete;
|
||||
GpuData& operator=(GpuData&&) = delete;
|
||||
|
||||
uchar* data;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
class CV_EXPORTS_W GpuMatND
|
||||
{
|
||||
public:
|
||||
using SizeArray = std::vector<int>;
|
||||
using StepArray = std::vector<size_t>;
|
||||
using IndexArray = std::vector<int>;
|
||||
|
||||
//! destructor
|
||||
~GpuMatND();
|
||||
|
||||
//! default constructor
|
||||
GpuMatND();
|
||||
|
||||
/** @overload
|
||||
@param size Array of integers specifying an n-dimensional array shape.
|
||||
@param type Array type. Use CV_8UC1, ..., CV_16FC4 to create 1-4 channel matrices, or
|
||||
CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
|
||||
*/
|
||||
GpuMatND(SizeArray size, int type);
|
||||
|
||||
/** @overload
|
||||
@param size Array of integers specifying an n-dimensional array shape.
|
||||
@param type Array type. Use CV_8UC1, ..., CV_16FC4 to create 1-4 channel matrices, or
|
||||
CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
|
||||
@param data Pointer to the user data. Matrix constructors that take data and step parameters do not
|
||||
allocate matrix data. Instead, they just initialize the matrix header that points to the specified
|
||||
data, which means that no data is copied. This operation is very efficient and can be used to
|
||||
process external data using OpenCV functions. The external data is not automatically deallocated, so
|
||||
you should take care of it.
|
||||
@param step Array of _size.size()-1 steps in case of a multi-dimensional array (the last step is always
|
||||
set to the element size). If not specified, the matrix is assumed to be continuous.
|
||||
*/
|
||||
GpuMatND(SizeArray size, int type, void* data, StepArray step = StepArray());
|
||||
|
||||
/** @brief Allocates GPU memory.
|
||||
Suppose there is some GPU memory already allocated. In that case, this method may choose to reuse that
|
||||
GPU memory under the specific condition: it must be of the same size and type, not externally allocated,
|
||||
the GPU memory is continuous(i.e., isContinuous() is true), and is not a sub-matrix of another GpuMatND
|
||||
(i.e., isSubmatrix() is false). In other words, this method guarantees that the GPU memory allocated by
|
||||
this method is always continuous and is not a sub-region of another GpuMatND.
|
||||
*/
|
||||
void create(SizeArray size, int type);
|
||||
|
||||
void release();
|
||||
|
||||
void swap(GpuMatND& m) noexcept;
|
||||
|
||||
/** @brief Creates a full copy of the array and the underlying data.
|
||||
The method creates a full copy of the array. It mimics the behavior of Mat::clone(), i.e.
|
||||
the original step is not taken into account. So, the array copy is a continuous array
|
||||
occupying total()\*elemSize() bytes.
|
||||
*/
|
||||
GpuMatND clone() const;
|
||||
|
||||
/** @overload
|
||||
This overload is non-blocking, so it may return even if the copy operation is not finished.
|
||||
*/
|
||||
GpuMatND clone(Stream& stream) const;
|
||||
|
||||
/** @brief Extracts a sub-matrix.
|
||||
The operator makes a new header for the specified sub-array of \*this.
|
||||
The operator is an O(1) operation, that is, no matrix data is copied.
|
||||
@param ranges Array of selected ranges along each dimension.
|
||||
*/
|
||||
GpuMatND operator()(const std::vector<Range>& ranges) const;
|
||||
|
||||
/** @brief Creates a GpuMat header for a 2D plane part of an n-dim matrix.
|
||||
@note The returned GpuMat is constructed with the constructor for user-allocated data.
|
||||
That is, It does not perform reference counting.
|
||||
@note This function does not increment this GpuMatND's reference counter.
|
||||
*/
|
||||
GpuMat createGpuMatHeader(IndexArray idx, Range rowRange, Range colRange) const;
|
||||
|
||||
/** @overload
|
||||
Creates a GpuMat header if this GpuMatND is effectively 2D.
|
||||
@note The returned GpuMat is constructed with the constructor for user-allocated data.
|
||||
That is, It does not perform reference counting.
|
||||
@note This function does not increment this GpuMatND's reference counter.
|
||||
*/
|
||||
GpuMat createGpuMatHeader() const;
|
||||
|
||||
/** @brief Extracts a 2D plane part of an n-dim matrix.
|
||||
It differs from createGpuMatHeader(IndexArray, Range, Range) in that it clones a part of this
|
||||
GpuMatND to the returned GpuMat.
|
||||
@note This operator does not increment this GpuMatND's reference counter;
|
||||
*/
|
||||
GpuMat operator()(IndexArray idx, Range rowRange, Range colRange) const;
|
||||
|
||||
/** @brief Extracts a 2D plane part of an n-dim matrix if this GpuMatND is effectively 2D.
|
||||
It differs from createGpuMatHeader() in that it clones a part of this GpuMatND.
|
||||
@note This operator does not increment this GpuMatND's reference counter;
|
||||
*/
|
||||
operator GpuMat() const;
|
||||
|
||||
GpuMatND(const GpuMatND&) = default;
|
||||
GpuMatND& operator=(const GpuMatND&) = default;
|
||||
|
||||
GpuMatND(GpuMatND&&) noexcept = default;
|
||||
GpuMatND& operator=(GpuMatND&&) noexcept = default;
|
||||
|
||||
void upload(InputArray src);
|
||||
void upload(InputArray src, Stream& stream);
|
||||
void download(OutputArray dst) const;
|
||||
void download(OutputArray dst, Stream& stream) const;
|
||||
|
||||
//! returns true iff the GpuMatND data is continuous
|
||||
//! (i.e. when there are no gaps between successive rows)
|
||||
bool isContinuous() const;
|
||||
|
||||
//! returns true if the matrix is a sub-matrix of another matrix
|
||||
bool isSubmatrix() const;
|
||||
|
||||
//! returns element size in bytes
|
||||
size_t elemSize() const;
|
||||
|
||||
//! returns the size of element channel in bytes
|
||||
size_t elemSize1() const;
|
||||
|
||||
//! returns true if data is null
|
||||
bool empty() const;
|
||||
|
||||
//! returns true if not empty and points to external(user-allocated) gpu memory
|
||||
bool external() const;
|
||||
|
||||
//! returns pointer to the first byte of the GPU memory
|
||||
uchar* getDevicePtr() const;
|
||||
|
||||
//! returns the total number of array elements
|
||||
size_t total() const;
|
||||
|
||||
//! returns the size of underlying memory in bytes
|
||||
size_t totalMemSize() const;
|
||||
|
||||
//! returns element type
|
||||
int type() const;
|
||||
|
||||
private:
|
||||
//! internal use
|
||||
void setFields(SizeArray size, int type, StepArray step = StepArray());
|
||||
|
||||
public:
|
||||
/*! includes several bit-fields:
|
||||
- the magic signature
|
||||
- continuity flag
|
||||
- depth
|
||||
- number of channels
|
||||
*/
|
||||
int flags;
|
||||
|
||||
//! matrix dimensionality
|
||||
int dims;
|
||||
|
||||
//! shape of this array
|
||||
SizeArray size;
|
||||
|
||||
/*! step values
|
||||
Their semantics is identical to the semantics of step for Mat.
|
||||
*/
|
||||
StepArray step;
|
||||
|
||||
private:
|
||||
/*! internal use
|
||||
If this GpuMatND holds external memory, this is empty.
|
||||
*/
|
||||
std::shared_ptr<GpuData> data_;
|
||||
|
||||
/*! internal use
|
||||
If this GpuMatND manages memory with reference counting, this value is
|
||||
always equal to data_->data. If this GpuMatND holds external memory,
|
||||
data_ is empty and data points to the external memory.
|
||||
*/
|
||||
uchar* data;
|
||||
|
||||
/*! internal use
|
||||
If this GpuMatND is a sub-matrix of a larger matrix, this value is the
|
||||
difference of the first byte between the sub-matrix and the whole matrix.
|
||||
*/
|
||||
size_t offset;
|
||||
};
|
||||
|
||||
/** @brief Creates a continuous matrix.
|
||||
|
||||
@param rows Row count.
|
||||
|
@ -383,6 +383,92 @@ void swap(GpuMat& a, GpuMat& b)
|
||||
a.swap(b);
|
||||
}
|
||||
|
||||
//===================================================================================
|
||||
// GpuMatND
|
||||
//===================================================================================
|
||||
|
||||
inline
|
||||
GpuMatND::GpuMatND() :
|
||||
flags(0), dims(0), data(nullptr), offset(0)
|
||||
{
|
||||
}
|
||||
|
||||
inline
|
||||
GpuMatND::GpuMatND(SizeArray _size, int _type) :
|
||||
flags(0), dims(0), data(nullptr), offset(0)
|
||||
{
|
||||
create(std::move(_size), _type);
|
||||
}
|
||||
|
||||
inline
|
||||
void GpuMatND::swap(GpuMatND& m) noexcept
|
||||
{
|
||||
std::swap(*this, m);
|
||||
}
|
||||
|
||||
inline
|
||||
bool GpuMatND::isContinuous() const
|
||||
{
|
||||
return (flags & Mat::CONTINUOUS_FLAG) != 0;
|
||||
}
|
||||
|
||||
inline
|
||||
bool GpuMatND::isSubmatrix() const
|
||||
{
|
||||
return (flags & Mat::SUBMATRIX_FLAG) != 0;
|
||||
}
|
||||
|
||||
inline
|
||||
size_t GpuMatND::elemSize() const
|
||||
{
|
||||
return CV_ELEM_SIZE(flags);
|
||||
}
|
||||
|
||||
inline
|
||||
size_t GpuMatND::elemSize1() const
|
||||
{
|
||||
return CV_ELEM_SIZE1(flags);
|
||||
}
|
||||
|
||||
inline
|
||||
bool GpuMatND::empty() const
|
||||
{
|
||||
return data == nullptr;
|
||||
}
|
||||
|
||||
inline
|
||||
bool GpuMatND::external() const
|
||||
{
|
||||
return !empty() && data_.use_count() == 0;
|
||||
}
|
||||
|
||||
inline
|
||||
uchar* GpuMatND::getDevicePtr() const
|
||||
{
|
||||
return data + offset;
|
||||
}
|
||||
|
||||
inline
|
||||
size_t GpuMatND::total() const
|
||||
{
|
||||
size_t p = 1;
|
||||
for(auto s : size)
|
||||
p *= s;
|
||||
return p;
|
||||
}
|
||||
|
||||
inline
|
||||
size_t GpuMatND::totalMemSize() const
|
||||
{
|
||||
return size[0] * step[0];
|
||||
}
|
||||
|
||||
inline
|
||||
int GpuMatND::type() const
|
||||
{
|
||||
return CV_MAT_TYPE(flags);
|
||||
}
|
||||
|
||||
//===================================================================================
|
||||
// HostMem
|
||||
//===================================================================================
|
||||
|
269
modules/core/src/cuda/gpu_mat_nd.cu
Normal file
269
modules/core/src/cuda/gpu_mat_nd.cu
Normal file
@ -0,0 +1,269 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "opencv2/opencv_modules.hpp"
|
||||
|
||||
#ifndef HAVE_OPENCV_CUDEV
|
||||
|
||||
#error "opencv_cudev is required"
|
||||
|
||||
#else
|
||||
|
||||
#include "opencv2/core/cuda.hpp"
|
||||
#include "opencv2/cudev.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::cuda;
|
||||
|
||||
GpuData::GpuData(const size_t _size)
|
||||
: data(nullptr), size(_size)
|
||||
{
|
||||
CV_CUDEV_SAFE_CALL(cudaMalloc(&data, _size));
|
||||
}
|
||||
|
||||
GpuData::~GpuData()
|
||||
{
|
||||
CV_CUDEV_SAFE_CALL(cudaFree(data));
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
/// create
|
||||
|
||||
void GpuMatND::create(SizeArray _size, int _type)
|
||||
{
|
||||
{
|
||||
auto elements_nonzero = [](SizeArray& v)
|
||||
{
|
||||
return std::all_of(v.begin(), v.end(),
|
||||
[](unsigned u){ return u > 0; });
|
||||
};
|
||||
CV_Assert(!_size.empty());
|
||||
CV_Assert(elements_nonzero(_size));
|
||||
}
|
||||
|
||||
_type &= Mat::TYPE_MASK;
|
||||
|
||||
if (size == _size && type() == _type && !empty() && !external() && isContinuous() && !isSubmatrix())
|
||||
return;
|
||||
|
||||
release();
|
||||
|
||||
setFields(std::move(_size), _type);
|
||||
|
||||
data_ = std::make_shared<GpuData>(totalMemSize());
|
||||
data = data_->data;
|
||||
offset = 0;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
/// release
|
||||
|
||||
void GpuMatND::release()
|
||||
{
|
||||
data = nullptr;
|
||||
data_.reset();
|
||||
|
||||
flags = dims = offset = 0;
|
||||
size.clear();
|
||||
step.clear();
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
/// clone
|
||||
|
||||
static bool next(uchar*& d, const uchar*& s, std::vector<int>& idx, const int dims, const GpuMatND& dst, const GpuMatND& src)
|
||||
{
|
||||
int inc = dims-3;
|
||||
|
||||
while (true)
|
||||
{
|
||||
if (idx[inc] == src.size[inc] - 1)
|
||||
{
|
||||
if (inc == 0)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
idx[inc] = 0;
|
||||
d -= (dst.size[inc] - 1) * dst.step[inc];
|
||||
s -= (src.size[inc] - 1) * src.step[inc];
|
||||
inc--;
|
||||
}
|
||||
else
|
||||
{
|
||||
idx[inc]++;
|
||||
d += dst.step[inc];
|
||||
s += src.step[inc];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
GpuMatND GpuMatND::clone() const
|
||||
{
|
||||
CV_DbgAssert(!empty());
|
||||
|
||||
GpuMatND ret(size, type());
|
||||
|
||||
if (isContinuous())
|
||||
{
|
||||
CV_CUDEV_SAFE_CALL(cudaMemcpy(ret.getDevicePtr(), getDevicePtr(), ret.totalMemSize(), cudaMemcpyDeviceToDevice));
|
||||
}
|
||||
else
|
||||
{
|
||||
// 1D arrays are always continuous
|
||||
|
||||
if (dims == 2)
|
||||
{
|
||||
CV_CUDEV_SAFE_CALL(
|
||||
cudaMemcpy2D(ret.getDevicePtr(), ret.step[0], getDevicePtr(), step[0],
|
||||
size[1]*step[1], size[0], cudaMemcpyDeviceToDevice)
|
||||
);
|
||||
}
|
||||
else
|
||||
{
|
||||
std::vector<int> idx(dims-2, 0);
|
||||
|
||||
uchar* d = ret.getDevicePtr();
|
||||
const uchar* s = getDevicePtr();
|
||||
|
||||
// iterate each 2D plane
|
||||
do
|
||||
{
|
||||
CV_CUDEV_SAFE_CALL(
|
||||
cudaMemcpy2DAsync(
|
||||
d, ret.step[dims-2], s, step[dims-2],
|
||||
size[dims-1]*step[dims-1], size[dims-2], cudaMemcpyDeviceToDevice)
|
||||
);
|
||||
}
|
||||
while (next(d, s, idx, dims, ret, *this));
|
||||
|
||||
CV_CUDEV_SAFE_CALL(cudaStreamSynchronize(0));
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
GpuMatND GpuMatND::clone(Stream& stream) const
|
||||
{
|
||||
CV_DbgAssert(!empty());
|
||||
|
||||
GpuMatND ret(size, type());
|
||||
|
||||
cudaStream_t _stream = StreamAccessor::getStream(stream);
|
||||
|
||||
if (isContinuous())
|
||||
{
|
||||
CV_CUDEV_SAFE_CALL(cudaMemcpyAsync(ret.getDevicePtr(), getDevicePtr(), ret.totalMemSize(), cudaMemcpyDeviceToDevice, _stream));
|
||||
}
|
||||
else
|
||||
{
|
||||
// 1D arrays are always continuous
|
||||
|
||||
if (dims == 2)
|
||||
{
|
||||
CV_CUDEV_SAFE_CALL(
|
||||
cudaMemcpy2DAsync(ret.getDevicePtr(), ret.step[0], getDevicePtr(), step[0],
|
||||
size[1]*step[1], size[0], cudaMemcpyDeviceToDevice, _stream)
|
||||
);
|
||||
}
|
||||
else
|
||||
{
|
||||
std::vector<int> idx(dims-2, 0);
|
||||
|
||||
uchar* d = ret.getDevicePtr();
|
||||
const uchar* s = getDevicePtr();
|
||||
|
||||
// iterate each 2D plane
|
||||
do
|
||||
{
|
||||
CV_CUDEV_SAFE_CALL(
|
||||
cudaMemcpy2DAsync(
|
||||
d, ret.step[dims-2], s, step[dims-2],
|
||||
size[dims-1]*step[dims-1], size[dims-2], cudaMemcpyDeviceToDevice, _stream)
|
||||
);
|
||||
}
|
||||
while (next(d, s, idx, dims, ret, *this));
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
/// upload
|
||||
|
||||
void GpuMatND::upload(InputArray src)
|
||||
{
|
||||
Mat mat = src.getMat();
|
||||
|
||||
CV_DbgAssert(!mat.empty());
|
||||
|
||||
if (!mat.isContinuous())
|
||||
mat = mat.clone();
|
||||
|
||||
SizeArray _size(mat.dims);
|
||||
std::copy_n(mat.size.p, mat.dims, _size.data());
|
||||
|
||||
create(std::move(_size), mat.type());
|
||||
|
||||
CV_CUDEV_SAFE_CALL(cudaMemcpy(getDevicePtr(), mat.data, totalMemSize(), cudaMemcpyHostToDevice));
|
||||
}
|
||||
|
||||
void GpuMatND::upload(InputArray src, Stream& stream)
|
||||
{
|
||||
Mat mat = src.getMat();
|
||||
|
||||
CV_DbgAssert(!mat.empty());
|
||||
|
||||
if (!mat.isContinuous())
|
||||
mat = mat.clone();
|
||||
|
||||
SizeArray _size(mat.dims);
|
||||
std::copy_n(mat.size.p, mat.dims, _size.data());
|
||||
|
||||
create(std::move(_size), mat.type());
|
||||
|
||||
cudaStream_t _stream = StreamAccessor::getStream(stream);
|
||||
CV_CUDEV_SAFE_CALL(cudaMemcpyAsync(getDevicePtr(), mat.data, totalMemSize(), cudaMemcpyHostToDevice, _stream));
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
/// download
|
||||
|
||||
void GpuMatND::download(OutputArray dst) const
|
||||
{
|
||||
CV_DbgAssert(!empty());
|
||||
|
||||
dst.create(dims, size.data(), type());
|
||||
Mat mat = dst.getMat();
|
||||
|
||||
GpuMatND gmat = *this;
|
||||
|
||||
if (!gmat.isContinuous())
|
||||
gmat = gmat.clone();
|
||||
|
||||
CV_CUDEV_SAFE_CALL(cudaMemcpy(mat.data, gmat.getDevicePtr(), mat.total() * mat.elemSize(), cudaMemcpyDeviceToHost));
|
||||
}
|
||||
|
||||
void GpuMatND::download(OutputArray dst, Stream& stream) const
|
||||
{
|
||||
CV_DbgAssert(!empty());
|
||||
|
||||
dst.create(dims, size.data(), type());
|
||||
Mat mat = dst.getMat();
|
||||
|
||||
GpuMatND gmat = *this;
|
||||
|
||||
if (!gmat.isContinuous())
|
||||
gmat = gmat.clone(stream);
|
||||
|
||||
cudaStream_t _stream = StreamAccessor::getStream(stream);
|
||||
CV_CUDEV_SAFE_CALL(cudaMemcpyAsync(mat.data, gmat.getDevicePtr(), mat.total() * mat.elemSize(), cudaMemcpyDeviceToHost, _stream));
|
||||
}
|
||||
|
||||
#endif
|
180
modules/core/src/cuda_gpu_mat_nd.cpp
Normal file
180
modules/core/src/cuda_gpu_mat_nd.cpp
Normal file
@ -0,0 +1,180 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::cuda;
|
||||
|
||||
GpuMatND::~GpuMatND() = default;
|
||||
|
||||
GpuMatND::GpuMatND(SizeArray _size, int _type, void* _data, StepArray _step) :
|
||||
flags(0), dims(0), data(static_cast<uchar*>(_data)), offset(0)
|
||||
{
|
||||
CV_Assert(_step.empty() || _size.size() == _step.size() + 1);
|
||||
|
||||
setFields(std::move(_size), _type, std::move(_step));
|
||||
}
|
||||
|
||||
GpuMatND GpuMatND::operator()(const std::vector<Range>& ranges) const
|
||||
{
|
||||
CV_Assert(dims == (int)ranges.size());
|
||||
|
||||
for (int i = 0; i < dims; ++i)
|
||||
{
|
||||
Range r = ranges[i];
|
||||
CV_Assert(r == Range::all() || (0 <= r.start && r.start < r.end && r.end <= size[i]));
|
||||
}
|
||||
|
||||
GpuMatND ret = *this;
|
||||
|
||||
for (int i = 0; i < dims; ++i)
|
||||
{
|
||||
Range r = ranges[i];
|
||||
if (r != Range::all() && r != Range(0, ret.size[i]))
|
||||
{
|
||||
ret.offset += r.start * ret.step[i];
|
||||
ret.size[i] = r.size();
|
||||
ret.flags |= Mat::SUBMATRIX_FLAG;
|
||||
}
|
||||
}
|
||||
|
||||
ret.flags = cv::updateContinuityFlag(ret.flags, dims, ret.size.data(), ret.step.data());
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
GpuMat GpuMatND::createGpuMatHeader(IndexArray idx, Range rowRange, Range colRange) const
|
||||
{
|
||||
CV_Assert((int)idx.size() == dims - 2);
|
||||
|
||||
std::vector<Range> ranges;
|
||||
for (int i : idx)
|
||||
ranges.emplace_back(i, i+1);
|
||||
ranges.push_back(rowRange);
|
||||
ranges.push_back(colRange);
|
||||
|
||||
return (*this)(ranges).createGpuMatHeader();
|
||||
}
|
||||
|
||||
GpuMat GpuMatND::createGpuMatHeader() const
|
||||
{
|
||||
auto Effectively2D = [](GpuMatND m)
|
||||
{
|
||||
for (int i = 0; i < m.dims - 2; ++i)
|
||||
if (m.size[i] > 1)
|
||||
return false;
|
||||
return true;
|
||||
};
|
||||
CV_Assert(Effectively2D(*this));
|
||||
|
||||
return GpuMat(size[dims-2], size[dims-1], type(), getDevicePtr(), step[dims-2]);
|
||||
}
|
||||
|
||||
GpuMat GpuMatND::operator()(IndexArray idx, Range rowRange, Range colRange) const
|
||||
{
|
||||
return createGpuMatHeader(idx, rowRange, colRange).clone();
|
||||
}
|
||||
|
||||
GpuMatND::operator GpuMat() const
|
||||
{
|
||||
return createGpuMatHeader().clone();
|
||||
}
|
||||
|
||||
void GpuMatND::setFields(SizeArray _size, int _type, StepArray _step)
|
||||
{
|
||||
_type &= Mat::TYPE_MASK;
|
||||
|
||||
flags = Mat::MAGIC_VAL + _type;
|
||||
dims = static_cast<int>(_size.size());
|
||||
size = std::move(_size);
|
||||
|
||||
if (_step.empty())
|
||||
{
|
||||
step = StepArray(dims);
|
||||
|
||||
step.back() = elemSize();
|
||||
for (int _i = dims - 2; _i >= 0; --_i)
|
||||
{
|
||||
const size_t i = _i;
|
||||
step[i] = step[i+1] * size[i+1];
|
||||
}
|
||||
|
||||
flags |= Mat::CONTINUOUS_FLAG;
|
||||
}
|
||||
else
|
||||
{
|
||||
step = std::move(_step);
|
||||
step.push_back(elemSize());
|
||||
|
||||
flags = cv::updateContinuityFlag(flags, dims, size.data(), step.data());
|
||||
}
|
||||
|
||||
CV_Assert(size.size() == step.size());
|
||||
CV_Assert(step.back() == elemSize());
|
||||
}
|
||||
|
||||
#ifndef HAVE_CUDA
|
||||
|
||||
GpuData::GpuData(const size_t _size)
|
||||
: data(nullptr), size(0)
|
||||
{
|
||||
CV_UNUSED(_size);
|
||||
throw_no_cuda();
|
||||
}
|
||||
|
||||
GpuData::~GpuData()
|
||||
{
|
||||
}
|
||||
|
||||
void GpuMatND::create(SizeArray _size, int _type)
|
||||
{
|
||||
CV_UNUSED(_size);
|
||||
CV_UNUSED(_type);
|
||||
throw_no_cuda();
|
||||
}
|
||||
|
||||
void GpuMatND::release()
|
||||
{
|
||||
throw_no_cuda();
|
||||
}
|
||||
|
||||
GpuMatND GpuMatND::clone() const
|
||||
{
|
||||
throw_no_cuda();
|
||||
}
|
||||
|
||||
GpuMatND GpuMatND::clone(Stream& stream) const
|
||||
{
|
||||
CV_UNUSED(stream);
|
||||
throw_no_cuda();
|
||||
}
|
||||
|
||||
void GpuMatND::upload(InputArray src)
|
||||
{
|
||||
CV_UNUSED(src);
|
||||
throw_no_cuda();
|
||||
}
|
||||
|
||||
void GpuMatND::upload(InputArray src, Stream& stream)
|
||||
{
|
||||
CV_UNUSED(src);
|
||||
CV_UNUSED(stream);
|
||||
throw_no_cuda();
|
||||
}
|
||||
|
||||
void GpuMatND::download(OutputArray dst) const
|
||||
{
|
||||
CV_UNUSED(dst);
|
||||
throw_no_cuda();
|
||||
}
|
||||
|
||||
void GpuMatND::download(OutputArray dst, Stream& stream) const
|
||||
{
|
||||
CV_UNUSED(dst);
|
||||
CV_UNUSED(stream);
|
||||
throw_no_cuda();
|
||||
}
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user