mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
Add pack description
This commit is contained in:
parent
752653c70b
commit
7eba3a7c96
@ -250,7 +250,7 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
std::vector<size_t> pads_begin, pads_end;
|
||||
CV_DEPRECATED_EXTERNAL Size kernel, stride, pad;
|
||||
CV_DEPRECATED_EXTERNAL int pad_l, pad_t, pad_r, pad_b;
|
||||
bool globalPooling;
|
||||
CV_DEPRECATED_EXTERNAL bool globalPooling;
|
||||
std::vector<bool> isGlobalPooling;
|
||||
bool computeMaxIdx;
|
||||
String padMode;
|
||||
|
@ -144,14 +144,26 @@ void getStrideAndPadding(const LayerParams ¶ms, std::vector<size_t>& pads_be
|
||||
}
|
||||
}
|
||||
|
||||
void getPoolingKernelParams(const LayerParams ¶ms, std::vector<size_t>& kernel, bool &globalPooling,
|
||||
void getPoolingKernelParams(const LayerParams ¶ms, std::vector<size_t>& kernel, std::vector<bool>& globalPooling,
|
||||
std::vector<size_t>& pads_begin, std::vector<size_t>& pads_end,
|
||||
std::vector<size_t>& strides, cv::String &padMode)
|
||||
{
|
||||
globalPooling = params.has("global_pooling") &&
|
||||
params.get<bool>("global_pooling");
|
||||
bool is_global = params.get<bool>("global_pooling", false);
|
||||
globalPooling = std::vector<bool>(3, is_global);
|
||||
if (params.has("global_d"))
|
||||
{
|
||||
globalPooling[0] = params.get<bool>("global_d");
|
||||
}
|
||||
else if (params.has("global_h"))
|
||||
{
|
||||
globalPooling[1] = params.get<bool>("global_h");
|
||||
}
|
||||
else if (params.has("global_w"))
|
||||
{
|
||||
globalPooling[2] = params.get<bool>("global_w");
|
||||
}
|
||||
|
||||
if (globalPooling)
|
||||
if (is_global)
|
||||
{
|
||||
util::getStrideAndPadding(params, pads_begin, pads_end, strides, padMode);
|
||||
if(params.has("kernel_h") || params.has("kernel_w") || params.has("kernel_size"))
|
||||
|
@ -63,7 +63,7 @@ void getConvolutionKernelParams(const LayerParams ¶ms, std::vector<size_t>&
|
||||
std::vector<size_t>& pads_end, std::vector<size_t>& strides, std::vector<size_t>& dilations,
|
||||
cv::String &padMode, std::vector<size_t>& adjust_pads);
|
||||
|
||||
void getPoolingKernelParams(const LayerParams ¶ms, std::vector<size_t>& kernel, bool &globalPooling,
|
||||
void getPoolingKernelParams(const LayerParams ¶ms, std::vector<size_t>& kernel, std::vector<bool>& globalPooling,
|
||||
std::vector<size_t>& pads_begin, std::vector<size_t>& pads_end, std::vector<size_t>& strides, cv::String &padMode);
|
||||
|
||||
void getConvPoolOutParams(const std::vector<int>& inp, const std::vector<size_t>& kernel,
|
||||
|
@ -79,6 +79,7 @@ public:
|
||||
{
|
||||
computeMaxIdx = true;
|
||||
globalPooling = false;
|
||||
isGlobalPooling = std::vector<bool>(3, false);
|
||||
stride = Size(1, 1);
|
||||
pad_t = pad_l = pad_b = pad_r = 0;
|
||||
|
||||
@ -95,7 +96,8 @@ public:
|
||||
else
|
||||
CV_Error(Error::StsBadArg, "Unknown pooling type \"" + pool + "\"");
|
||||
|
||||
getPoolingKernelParams(params, kernel_size, globalPooling, pads_begin, pads_end, strides, padMode);
|
||||
getPoolingKernelParams(params, kernel_size, isGlobalPooling, pads_begin, pads_end, strides, padMode);
|
||||
globalPooling = std::accumulate(isGlobalPooling.begin(), isGlobalPooling.end(), 0) == 3;
|
||||
if (kernel_size.size() == 2) {
|
||||
kernel = Size(kernel_size[1], kernel_size[0]);
|
||||
stride = Size(strides[1], strides[0]);
|
||||
@ -125,14 +127,7 @@ public:
|
||||
|
||||
setParamsFrom(params);
|
||||
ceilMode = params.get<bool>("ceil_mode", true);
|
||||
if (params.has("is_global_pooling"))
|
||||
{
|
||||
const DictValue &global_axis = params.get("is_global_pooling");
|
||||
int size = global_axis.size();
|
||||
isGlobalPooling.resize(size);
|
||||
for (int i = 0; i < size; i++)
|
||||
isGlobalPooling[i] = global_axis.get<bool>(i);
|
||||
}
|
||||
|
||||
spatialScale = params.get<float>("spatial_scale", 1);
|
||||
avePoolPaddedArea = params.get<bool>("ave_pool_padded_area", true);
|
||||
}
|
||||
@ -155,17 +150,14 @@ public:
|
||||
inp.push_back(inputs[0].size[i]);
|
||||
out.push_back(outputs[0].size[i]);
|
||||
}
|
||||
if (globalPooling) {
|
||||
kernel = Size(inp[1], inp[0]);
|
||||
kernel_size = std::vector<size_t>(inp.begin(), inp.end());
|
||||
} else if (!isGlobalPooling.empty()) {
|
||||
for (int i = 0; i < isGlobalPooling.size(); i++)
|
||||
kernel_size.resize(out.size());
|
||||
int diff_size = isGlobalPooling.size() - kernel_size.size();
|
||||
for (int i = 0; i < kernel_size.size(); i++)
|
||||
{
|
||||
if (isGlobalPooling[i])
|
||||
if (isGlobalPooling[i + diff_size])
|
||||
kernel_size[i] = inp[i];
|
||||
}
|
||||
kernel = Size(kernel_size[1], kernel_size[0]);
|
||||
}
|
||||
|
||||
getConvPoolPaddings(inp, kernel_size, strides, padMode, pads_begin, pads_end);
|
||||
if (pads_begin.size() == 2) {
|
||||
@ -1053,14 +1045,12 @@ virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inp
|
||||
outShape[0] = inputs[1][0]; // Number of proposals;
|
||||
outShape[1] = psRoiOutChannels;
|
||||
}
|
||||
else if (!isGlobalPooling.empty())
|
||||
|
||||
int diff_size = isGlobalPooling.size() - (outShape.size() - 2);
|
||||
for (int i = 2; i < outShape.size(); i++)
|
||||
{
|
||||
CV_Assert(isGlobalPooling.size() == inpShape.size());
|
||||
for (int i = 0; i < isGlobalPooling.size(); i++)
|
||||
{
|
||||
if (isGlobalPooling[i])
|
||||
outShape[2 + i] = 1;
|
||||
}
|
||||
if (isGlobalPooling[i - 2 + diff_size])
|
||||
outShape[i] = 1;
|
||||
}
|
||||
|
||||
int numOutputs = requiredOutputs ? requiredOutputs : (type == MAX ? 2 : 1);
|
||||
|
@ -1961,8 +1961,7 @@ void TFImporter::populateNet(Net dstNet)
|
||||
CV_Assert(layer_id.find(avgName) == layer_id.end());
|
||||
avgLp.set("pool", "ave");
|
||||
// pooling kernel H x 1
|
||||
bool isGlobalPooling[] = {true, false};
|
||||
avgLp.set("is_global_pooling", DictValue::arrayInt(&isGlobalPooling[0], 2));
|
||||
avgLp.set("global_h", true);
|
||||
avgLp.set("kernel_size", 1);
|
||||
int avgId = dstNet.addLayer(avgName, "Pooling", avgLp);
|
||||
layer_id[avgName] = avgId;
|
||||
@ -2025,6 +2024,12 @@ void TFImporter::populateNet(Net dstNet)
|
||||
}
|
||||
else if (type == "Pack")
|
||||
{
|
||||
// op: tf.stack(list of tensors, axis=0)
|
||||
// Join a list of inputs along a new axis.
|
||||
// The "axis" specifies the index of the new axis in the dimensions of the output.
|
||||
// Example: given a list with "N" tensors of shape (C, H, W):
|
||||
// if axis == 0 then the output tensor will have the shape (N, C, H, W),
|
||||
// if axis == 1 then the output tensor will have the shape (C, N, H, W).
|
||||
CV_Assert(hasLayerAttr(layer, "axis"));
|
||||
int dim = (int)getLayerAttr(layer, "axis").i();
|
||||
if (dim != 0)
|
||||
@ -2054,11 +2059,8 @@ void TFImporter::populateNet(Net dstNet)
|
||||
int id = dstNet.addLayer(name, "Concat", layerParams);
|
||||
layer_id[name] = id;
|
||||
|
||||
for (int li = 0; li < num; li++) {
|
||||
Pin inp = parsePin(reshape_names[li]);
|
||||
connect(layer_id, dstNet, inp, id, li);
|
||||
}
|
||||
|
||||
for (int li = 0; li < num; li++)
|
||||
connect(layer_id, dstNet, Pin(reshape_names[li]), id, li);
|
||||
}
|
||||
else if (type == "ClipByValue")
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user